1 частные уравнения регрессии характеризуют

Частные уравнения множественной регрессии. Индексы множественной и частной корреляции и их расчет

На основе линейного уравнения множественной регрессии

могут быть найдены частные уравнения регрессии:

(25.1)

т.е. уравнения регрессии, которые связывают результативный признак с соответствующими факторами хi при закреплении других учитываемых во множественной регрессии факторов на среднем уровне. В случае линейной регрессии частные уравнения имеют следующий вид:

(25.2)

Подставляя в эти уравнения средние значения соответствующих факторов получаем систему уравнений линейной регрессии, т.е. имеем:

(25.3)

где (25.4)

Частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на низменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии (Аi).Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности

(25.5)

На основании данной информации могут быть найдены средние по совокупности показатели эластичности: .

Практическая значимость уравнения множественной регрессии оценивается с помощью показателя множественной корреляции и его квадрата – коэффициента детерминации. Показатель множественной корреляции характеризует тесноту совместного влияния факторов на результат.

Независимо от вида уравнения индекс множественной корреляции рассчитывается по формуле:

, (25.6)

где σ 2 y — общая дисперсия результативного признака,

σ 2 ост — остаточная дисперсия .

Чем ближе его значение к 1, тем теснее связь результативного признака со всем набором исследуемых факторов.

Сравнивая индексы множественной регрессии и парной корреляции, можно сделать вывод о целесообразности включения в уравнение регрессии того или иного фактора. В частности, если дополнительно включенные в уравнение множественной регрессии факторы третьестепенны, то индекс множественной корреляции практически совпадает с индексом парной корреляции.

Если оценивается значимость влияния фактора хi в уравнении регрессии, то определяется частный F- критерий:

(25.7)

Значимость коэффициентов чистой регрессии производится по t — критерию Стьюдента.

24. Построение частных коэффициентов корреляции для модели множественной регрессии через показатель остаточной дисперсии

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии.

Чем больше доля полученной разности в остаточной вариации, тем теснее связь между у и x2 , при неизменности действия фактора x1

Величина, рассчитываемая формулой:

(26.1)

называется индексом частной корреляции для фактора х2:

Аналогично определяется индекс частной корреляции для фактора x1.

Выражая остаточную дисперсию через показатель детерминации

S 2 ост = σ 2 у (1-r 2 ), имеем формулу частной корреляции:

(26.2)

25. Коэффициент множественной корреляции

Практическая значимость уравнения множественной регрессии оценивается показателем множественной корреляции

Показатель множественной корреляции характеризует тесноту связи рассматриваемого набора факторов с исследуемым при знаком, или оценивает тесноту совместного влияния факторов на результат.

Независимо от формы связи показатель множественной корреляции можёт быть найден как индекс множественной корреляции:

(27.1)

σ 2 ост – остаточная дисперсия для уравнения у=f(x1,x2,… xр)

σ 2 у – общая дисперсия результативного признака

Методика построения индекса множественной корреляции аналогична построению индекса корреляции для парной зависимости. Его пределы от 0 до 1. Чем ближе его значение к 1, тем теснее связь результативного признака со всем I бором исследуемых факторов. Величина индекса множественно корреляции должна быть больше или равна максимальному парному индексу корреляции: —

(27.2)

Обоснованность включения факторов в регрессионный анализ приведет к существенному отличию показателя от индекса корреляции парной зависимости. При включении модель маловажных факторов происходит уравнение индекса множественной корреляции с индексом парной корреляции. Сравнивая индексы множественной и парной корреляции делают заключение о возможности включения в уравнение регрессии того или иного фактора.

Расчет индекса множественной Корреляции предполагает определение уравнения множественной регрессии и на его основе остаточной дисперсии:

(27.3)

Возможна и такая интерпретация формулы индекса множественной корреляции

(27.4)

26. Коэффициент множественной детерминации

Коэффициент детерминации –это квадрат показателем множественной корреляции.

Множественный коэффициент детерминации можно рассматривать как меру качества уравнения регрессии, характеристику прогностической силы анализируемой регрессионной модели: чем ближе R 2 к единице, тем лучше регрессия описывает зависимость между объясняющими и зависимой переменными. Недостаток R 2 состоит в том, что его значение не убывает с ростом числа объясняющих переменных. В эконометрическом анализе чаще применяют скорректированный коэффициент детерминации R^ 2 определяемый по формуле

(28.1)

который может уменьшаться при введении в регрессионную модель переменных, не оказывающих существенного влияния на зависимую переменную.

Если известен коэффициент детерминации R 2 то критерий значимости уравнения регрессии может быть записан в виде:

(28.2)

где ‚ к1= р, к2 = n — р — 1, ибо в уравнении множественной регрессии вместе со свободным членом оценивается m = р + 1 параметров.

27. Проверка гипотезы о значимости частного и множественного коэффициентов корреляции

Проверка гипотез используется, когда необходим обоснованный вывод о значимости частного и множественного коэффициентов корреляции. При этом гипотезой называется любое предположение о виде или параметрах неизвестного закона распределения.

Множественный коэффициент корреляции заключен в пре делах 0 до1. Он не меньше, чем абсолютная величина любого парного или частного коэффициента корреляции с таким же первичным индексом.

С помощью множественного коэффициента корреляции (по мере приближения к 1 делается вывод о тесноте взаимосвязи, но не о ее направлении.

Частный коэффициент корреляции. Если переменные коррелируют друг с другом, то на величине парного коэффициента корреляции частично сказывается влияние других переменных. В связи с этим часто возникает необходимость исследовать частную корреляцию между переменными при устранении влияния одной/нескольких переменных

28. Проверка гипотезы о значимости коэффициентов регрессии и модели множественной регрессии в целом

Основной предпосылкой регрессионного анализа является то, что толь­ко результативный признак (У) подчиняется нормальному закону распре­деления, а факторные признаки х 1 . Х 2 . х n могут иметь произвольный закон распределения. В анализе динамических рядов в качестве фактор­ного признака выступает время t При этом в регрессионном анализе зара­нее подразумевается наличие причинно-следственных связей между ре­зультативным (У) и факторными х 1 . Х 2 . х n признаками. В тех случаях, когда из природы процессов в модели или из данных наблюдений над ней следует вывод о нормальном законе распределения двух СВ — Y и X , из которых одна является независимой, т. е. Y является функцией X , то возникает соблазн определить такую зависимость “формульно”, аналитически.Уравнение регрессии, или статистическая модель связи социально-эко­номических явлений, выражаемая функцией Y=f( х 1 . Х 2 . х n ) является достаточно адекватным реальному моделируемому явлению или процессу в случае соблюдения следующих требований их построе­ния. 1) Совокупность исследуемых исходных данных должна быть одно­родной и математически описываться непрерывными функциями. 2) Возможность описания моделируемого явления одним или несколь­кими уравнениями причинно-следственных связей. 3) Все факторные признаки должны иметь количественное (цифровое) выражение. 4) Наличие достаточно большого объема исследуемой выборочной со­вокупности. 5) Причинно-следственные связи между явлениями и процессами сле­дует описывать линейной или приводимой к линейной формой зависимо­сти. 6) Отсутствие количественных ограничений на параметры модели свя­зи. 7) Постоянство территориальной и временной структуры изучаемойсовокупности. Соблюдение данных требований позволяет исследователю построить статистическую модель связи, наилучшим образом аппроксимирующую моделируемые социально-экономические явления и процессы. В случае успеха нам будет намного проще вести моделирование. Конечно, наиболее заманчивой является перспектива линейной зависимости типа Y = a + b · X . Подобная задача носит название задачи регрессионного анализа и предполагает следующий способ решения. Выдвигается следующая гипотеза H 0 : случайная величина Y при фиксированном значении величины X распределена нормально с математическим ожиданием М y = a + b · X и дисперсией D y , не зависящей от X . При наличии результатов наблюдений над парами X i и Y i предварительно вычисляются средние значения M y и M x , а затем производится оценка коэффициента b в виде b = = R xy что следует из определениякоэффициента корреляции. После этого вычисляется оценка для a в виде <2 - 16>и производится проверка значимости полученных результатов. Таким образом, регрессионный анализ является мощным, хотя и далеко не всегда допустимым расширением корреляционного анализа, решая всё ту же задачу оценки связей в сложной системе.

29. Определение мультиколлинеарности. Последствия мулыиколлицеарности. Методы обнаружения мультиколлинеарности

Мультиколлинеарность -это процесс, при котором между факторами происходит совокупное воздействие друг на друга

Наличие мультиколлинеарности факторов может означать, что некоторые факторы действуют синхронно. В итоге вариация в исходных данных зависима и невозможно оценить воздействие каждого фактора в отдельности. Чем сильнее мультиколлинеарность факторов, тем менее надежна оценка распределения суммы объясненной вариации по отдельным факторам с помощью метода наименьших квадратов.

Если рассматривается регрессия у = а + b * х + с * z + d * v + ε то для расчета параметров с применением МНК предполагается равенство:

(31.1)

где — общая сумма квадратов отклонений Σ(уi-у¯) 2

— факторная сумма квадратов отклонений: Σ(у^i-у¯) 2

— остаточная сумма квадратов отклонений Σ(у^i-у) 2

Если же факторы интеркоррелированы, то данное равенство нарушается.

Включение в модель мультиколлинеарных факторов нежелательно по причинам:

• затрудняется интерпретация параметров множественной регрессии как характеристик действия факторов в чистом виде, т.к. факторы коррелированны. При этом параметры линейной регрессии утрачивают экономический смысл;

• оценки параметров ненадежны, появляются стандартные ошибки, которые меняются с изменением объема наблюдений (по величине и знаку), Модель нельзя анализировать и строить на ее основе прогнозы.

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных Коэффициентов корреляции между факторами.

Если бы факторы не коррелировали между собой, то матрица парных коэффициентов корреляции между ними была бы единичной, т.к. все элементы не находящиеся на диагоналях равны 0. Для уравнения включающее три объясняющих переменных,

у = а + b1 * х1 + b2 * х2 + b3 * х3 +ε, при этом матрица коэффициентов корреляции между факторами имела определитель равный единице.

(31.2)

Если же между факторами существует полная линейная зависимость и все Коэффициенты корреляции равны единице, то определитель такой матрицы равен нулю.

(31.3)

Чем ближе к — нулю определитель матрицы межфакторной корреляции тем сильнее мультиколлинеарность факторов и ненадежнее результаты множествснной регрессии. Наоборот чем ближе к единице определитель матрицы межфакторной корреляции тем меньше мультиколлинеарность факторов.

30. Методы устранения мультиколлинеарности

Устраняя мультиколлинеарность факторов чаще всего используют приведенную форму. Для этого в уравнение регрессии подставляют рассматриваемый фактор, выраженный из другого уравнения.

В двухфакторной регрессии вида

(32.1)

сделав предобразования получим:

(32.2)

Если исключить один из факторов, то мы придем к уравнению парной регрессии. Вместе с тем, можно оставить факторы в модели, но исследовать данное двух факторное уравнение регрессии совместно с другим уравнением, в котором фактор рассматривается как зависимая переменная. При (1-b2*В) ≠ 0, делим первую и вторую части уравнения на (1-b2*В), получаем:

(32.3)

Получили приведенную форму уравнения для определения результативного признака у. Это уравнение может быть представлено в виде (32.4)

К нему для оценки параметров может быть применен метод наименьших квадратов.

Отбор факторов, включаемых в регрессию -основной этап практического использования методов регрессии. Подходы к отбору факторов на основе показателей корреляции могут различны. Они приводят построение уравнение множественной регрессии соответственно к разным методикам.

Наиболее распространены методы построения уравнения множественной регрессии:

• шаговый регрессионный анализ.

Каждый метод помогает устранить мультиколлинеарность позволяя производить отсев факторов из полного его набора (метод исключения), дополнительное введение фактора (метод включения), исключение ранее введенного фактора (шаговый регрессионный анализ).

На первый Взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут полностью решать вопрос целесообразности включения в модель того определенного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедуре отсева факторов. Отсев факторов можно проводить и по t-критерию Стьюдента для коэффициентов регрессии: из уравнения исключаются факторы с величиной t-критерия меньше табличного.

В заключении следует уточнить: число включаемых факторов обычно в 6—7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной вариации очень мало. Это приводит к тому, что пара метры уравнения регрессии оказываются статистически незначимыми, а Р-критерий меньше табличного значения.

31. Модели регрессии, нелинейные по факторным переменным

Если между экономическими явлениями существуют нели­нейные соотношения, то они выражаются с помощью соответ­ствующих нелинейных функций: например, равносторонней ги­перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

• регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым па­раметрам;

• регрессии, нелинейные по оцениваемым параметрам.
Примером нелинейной регрессии по включаемым в нее объ­ясняющим переменным могут служить следующие функции:

• полиномы разных степеней

К нелинейным регрессиям по оцениваемым параметрам от­носятся функции:

§ 10. Частные уравнения регрессии

На основе линейного уравнения множественной регрессии:

могут быть найдены частные уравнения регрессии, которые связывают зависимую переменную Y с объясняющей переменной Xj при закреплении остальных объясняющих переменных на среднем уровне.

При подстановке в эти уравнения средних значений соответствующих объясняющих переменных они принимают вид уравнений парной линейной регрессии. Оценки моделей примут вид:

где свободные коэффициенты равны:

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние объясняющей переменной на зависимую, ибо остальные объясняющие переменные модели закреплены на неизменном уровне. Влияние остальных объясняющих переменных присоединено к свободным коэффициентам Bj. Это позволяет определить частные коэффициенты эластичности:

Множественная линейная регрессия является обобщением парной линейной регрессии на несколько объясняющих переменных.

Вопросы для самопроверки

  1. С какой целью применяется скорректированный коэффициент детерминации? Запишите формулу для его расчета.
  2. Как ведет себя обычный коэффициент детерминации при введении в модель множественной линейной регрессии дополнительной объясняющей переменной?
  3. Какая дополнительная, по сравнению с парной регрессией, предпосылка Гаусса-Маркова используется в модели множественной регрессии?
  4. Что и при каких условиях показывает коэффициент при какой-либо объясняющей переменной в модели множественной линейной регрессии?
  5. Как связаны коэффициенты модели в исходных и стандартизованных переменных?
  6. Каков смысл коэффициентов при объясняющих переменных в стандартизованной модели?
  7. Через какую точку всегда проходит график уравнения парной линейной регрессии в стандартизованной модели?
  8. Через какую точку всегда проходит график уравнения парной линейной регрессии в исходных переменных?
  9. Пусть все стандартизованные объясняющие переменные равны нулю. Чему равно значение стандартизованной зависимой переменной? Чему при этом равно значение исходной зависимой переменной?
  10. Как получают частные уравнения регрессии?
  11. Как получают стандартизованные значения переменных?
  12. Студент построил следующую модель:

у = b 0 + b1X1 + b 2 x 2,

где y — прибыль, x1 — выручка, x2 — затраты. Каким числам будут равны коэффициенты уравнения? Чему равен коэффициент детерминации? Как называется такая зависимость?

1 частные уравнения регрессии характеризуют

Наряду со средними показателями эластичности в целом по совокупности регионов на основе частных уравнений регрессии могут быть определены частные коэффициенты эластичности для каждого региона. Частные уравнения регрессии в нашем случае составят [c.111]

Частные уравнения регрессии по отдельным видам вспашки составили [c.146]

Частные уравнения регрессии для отдельных типов домов, свидетельствуя о наиболее высоких ценах квартир в панельных домах, будут иметь следующий вид [c.147]

Число степеней свободы 49 Частные уравнения регрессии 109 [c.340]

Частные уравнения регрессии и частные коэффициенты эластичности. [c.15]

Частным уравнением регрессии модели y=a0+ai Xi +а2 х2 +. +ат хт + Е [c.16]

На основе линейного уравнения множественной регрессии постройте частные уравнения регрессии, рассчитайте частные коэффициенты эластичности и охарактеризуйте изолированное влияние каждого из факторов на результирующую переменную (в случае, когда другие факторы закреплены на среднем уровне). [c.11]

Частный коэффициент эластичности показывает, на сколько процентов в среднем изменяется производительность труда при изменении данного фактора на 1%. Для полученного уравнения регрессии коэффициенты эластичности соответственно равны Э2=+4,25 Э3=+0,38 34 = —5,69 Э5=+0,43. [c.201]

Оценка полученного уравнения регрессии по известным критериям показала, что данная модель удовлетворяет условиям адекватности (R — 0,95, t = 62,2, 6 = 8,8%). Частные коэффициенты эластичности и 3-коэффициенты, представленные в табл. 14, показывают, что наибольшее влияние на уровень затрат этой подсистемы оказывает коэффициент падения добычи нефти. Однако значение этого фактора в основном обусловлено природно-геологическими условиями разработки нефтяных месторождений, поэтому возможность его регулирования посредством воздействия извне ограниченна. [c.37]

Прогнозы по регрессионным моделям более надежны, поскольку они позволяют проводить эксперименты на моделях, в которых учитывается большее число факторов, влияющих на развитие процесса. Кроме того, полученные результаты всегда легко объяснить и обосновать. В силу этих причин прогнозы по уравнениям регрессии (иначе их называют производственными функциями) используются практически при экономическом прогнозировании всех видов макро- и микро-, краткосрочном и долгосрочном, частном и общем и т.д. [c.225]

Силу связи между вариациями себестоимости добычи нефти и газа п факторов определяют чистые (частные) коэффициенты корреляции. Они более соответствуют данной цели, чем парные коэффициенты корреляции, которые не свободны от корреляции с зависимой переменной прочих факторов, содержащихся в уравнении регрессии. Ввиду этого целесообразно остановиться на чистых коэффициентах корреляции. Наиболее сильно коррелируют с себестоимостью добычи нефти и газа (пятая строка, табл. 27) фондоемкость ( — 0,55), средний дебит ( — 0,49), время ( — 0,65), а наиболее слабо — удельная численность промышленно-производственного персонала (0,1). [c.92]

Следует усвоить, что коэффициенты частной детерминации — это доли от разных величин, поэтому они несравнимы по этим долям нельзя судить о роли факторов. Их главное практическое значение -определить, имеет ли смысл добавить в уравнение регрессии новый фактор или нет. Если при его включении ранее необъясненная вариация уменьшится на три четверти, как в примере при введении фактора х3, его включение оправдано если же коэффициент частной детерминации мал, то дополнительный фактор включать не следует. Сумма частных коэффициентов детерминации смысла не имеет и растет с ростом числа факторов и ростом R2 без ограничения. [c.282]

Для увязки этих частных индексов следует ввести корректирующий индекс, отражающий изменение свободного члена уравнения регрессии v по М [c.419]

Частный коэффициент детерминации показывает, на сколько процентов вариация результативного признака объясняется вариацией первого признака, входящего в множественное уравнение регрессии. [c.122]

Мера статистической значимости независимой переменной b уравнения регрессии Y = а + Ьх по влиянию на зависимую переменную Y. Рассчитывается как частное оценка коэффициента регрессии/стандартное отклонение. [c.471]

На первый взгляд может показаться, что матрица парных коэффициентов корреляции играет главную роль в отборе факторов. Вместе с тем вследствие взаимодействия факторов парные коэффициенты корреляции не могут в полной мере решать вопрос о целесообразности включения в модель того или иного фактора. Эту роль выполняют показатели частной корреляции, оценивающие в чистом виде тесноту связи фактора с результатом. Матрица частных коэффициентов корреляции наиболее широко используется в процедуре отсева факторов. При отборе факторов рекомендуется пользоваться следующим правилом число включаемых факторов обычно в 6—7 раз меньше объема совокупности, по которой строится регрессия. Если это соотношение нарушено, то число степеней свободы остаточной вариации очень мало. Это приводит к тому, что параметры уравнения регрессии оказываются статистически незначимыми, a F- критерий меньше табличного значения. [c.100]

Частные коэффициенты (или индексы) корреляции характеризуют тесноту связи между результатом и соответствующим фактором при устранении влияния других факторов, включенных в уравнение регрессии. [c.121]

Данный коэффициент частной корреляции позволяет измерить тесноту связи между у и хг при неизменном уровне всех других факторов, включенных в уравнение регрессии. [c.124]

Для уравнения регрессии с тремя факторами частные коэффициенты корреляции второго порядка определяются на основе частных коэффициентов корреляции первого порядка. Так, по уравнению [c.125]

Рассчитанные по рекуррентной формуле частные коэффициенты корреляции изменяются в пределах от —1 до +1, а по формулам через множественные коэффициенты детерминации — от 0 до 1. Сравнение их друг с другом позволяет ранжировать факторы по тесноте их связи с результатом. Частные коэффициенты корреляции, подтверждая ранжировку факторов по их воздействию на результат, на основе стандартизованных коэффициентов регрессии /3-коэффициентов) в отличие от последних дают конкретную меру тесноты связи каждого фактора с результатом в чистом виде. Если из стандартизованного уравнения регрессии Л = Дч q + V 2 + з г з следует, что , > 2 > /3XJ, т. е. по силе влияния на результат порядок факторов таков Х , х2, х3, то этот же порядок факторов определяется и по соотношению частных коэффициентов корреляции, ГуХ] хт > г 2, Х ХЗ > г хт. [c.127]

В табл. 3.2 приведены три значения / -критерия. В первой строке показан общий / -критерий. Он составил 19,3 и характеризует значимость двухфакторного уравнения регрессии в целом. Вторая величина F— 22,0 характеризует значимость парной регрессии у = а + Ь Х при условии, что остаточная дисперсия совпадает с величиной остаточной дисперсии для множественной регрессии. Влияние фактора х, статистически значимо, так как F = 22,0 больше табличного значения /табл = 4,21. Третье значение F = 16,5 — это частный /»-критерий, оценивающий значимость дополнительного включения в модель фактора х2 после введения в нее фактора х,. Его величина совпадает с ранее рассчитанной по формуле частного /»-критерия Fxr [c.134]

Если А является наивысшим порядком расчета частных коэффициентов корреляции для уравнения регрессии, то практически величина к совпадает с числом степеней свободы для остаточной вариации с п — т — 1. Так, в уравнении = а + Ьх х + b2 х2 + Ьъ х х д 3 + е, рассчитанном при п = 30, я — т — 1 = 26. Если же уравнение рефессии дополняется расчетом частных коэффициентов корреляции разных порядков (второго, третьего и т. п.), то [c.140]

Взаимосвязь показателей частного коэффициента корреляции, частного /»-критерия и 7-критерия Стьюдента для коэффициентов чистой регрессии может использоваться в процедуре отбора факторов. Отсев факторов при построении уравнения регрессии методом исключения практически можно осуществлять не только по частным коэффициентам корреляции, исключая на каждом шаге фактор с наименьшим незначимым значением частного коэффициента корреляции, но и по величинам tb. и Fx.. Частный /»-критерий широко используется и при построении модели методом включения переменных и шаговым регрессионным методом. [c.141]

Применение зяблевой вспышки способствует росту урожайности в среднем на 2,9 ц с 1 га при одном и том же количестве внесенного удобрения на 1 га, что в целом соответствует и различию средней урожайности по видам вспашки (15,3 ц с 1 га для зяблевой вспашки и 12,5 ц с 1 га для весенней вспашки). Частный /»-критерий для фактора z составил 16,58, что выше табличного значения при числе степеней свободы 1 и 22 (4,30 при а = 0,05 и 7,94 при а = 0,01). Это подтверждает целесообразность включения фиктивной переменной в уравнение регрессии. [c.145]

Поэтому вполне реально предположить единую меру влияния данного фактора независимо от вида вспашки, что и имеет место в уравнении регрессии с фиктивной переменной. Включив фиктивную переменную, удалось измерить ее влияние на изменение урожайности частный коэффициент корреляции ryz. х, оценивающий в чистом виде влияние данного фактора, составил 0,6555, что несколько выше, чем аналогичный показатель для фактора х, т.е. г = 0,6385. [c.146]

Результаты свидетельствуют о целесообразности построения модели по отдельным частным совокупностям. Ввиду разной зависимости уровня квалификации рабочих от уровня занятости ручным трудом по заводам с традиционной и прогрессивной технологиями производства уравнение регрессии по совокупности в целом не позволило выявить наличие связи. Не улучшился результат модели и с введением фиктивной переменной, ибо этот метод предполагает равенство коэффициентов регрессии при х по частным совокупностям и возможность их замены общим коэффициентом регрессии Ь. [c.149]

Управляемый фактор 371 Управляющая информация 413 Управляющая система 371 Управляющее воздействие 371 Управляющие параметры 258, 371 Уравнение обмена 372 Уравнение отклика 251 Уравнение регрессии 305 Уравнения бюджета потребителей 152 Уравнения в частных производных [c.493]

В частном случае единственного результирующего признака у и F — класса линейных функций получаем линейное уравнение регрессии [c.285]

Для выявления резервов снижения себестоимости более применимы уравнения регрессии, определяющие частные зависимости х от какого-либо фактора [c.227]

Если поверхность отклика локально может быть описана линейным уравнением, то частные производные, очевидно, будут равны коэффициентам уравнения регрессии [c.271]

Имеется три явления А, В и С, связанные между собой необходимо рассчитать силу связи между А и В при условии исключения воздействия явления С (как посредника между А и В). Для этого, зная уравнения регрессии между А и С и между В и С , рассчитываются для каждой пары А и В те их значения (наиболее вероятные), к-рые они принимали бы, если бы значения С оставались постоянными (напр., равными средней величине). Тогда, вычисляя К. к. между преобразованными переменными Ас и Вс, можно уловить ту частную связь между А и В [c.275]

Частный Значимость частного коэффициента регрессии переменной/можно проверить, используя приростную Она основана на приращении в объясняемой сумме квадратов, полученном добавлением независимой переменной в уравнение регрессии после исключения всех других независимых переменных. [c.660]

Логически, зависимость между коэффициентом парной регрессии и частным коэффициентом регрессии можно проиллюстрировать образом. Предположим, что мы исключили эффект от влияния Это можно сделать, установив регрессию по Иначе говоря, можно воспользоваться уравнением а + и вычислить остаточный член = (X, — Тогда частный коэффициент регрессии. станет равным коэффициенту парной регрессии полученному из уравнения 7 =а Таким образом, частный коэффициент регрессии равен/1, коэффициенту парной регрессии между переменной Уи остаточным значением переменной [c.661]

В отличие от парной регрессии частные уравнения регрессии характеризуют изолированное влияние фактора на результат, ибо другие факторы закреплены на неизменном уровне. Эффекты влияния других факторов присоединены в них к свободному члену уравнения множественной регрессии. Это позволяет на основе частных уравнений регрессии определять частные коэффициенты эластичности1 [c.110]

При Т — 1, Тп — 2 при помощи прямого обучения по алгоритму МГУА находится уравнение регрессии для ошибки, например Дх0 — f(Ax l,Ax 2,x l,x 2). Затем строится кривая Ax(t) для каждого частного уравнения регрессии. [c.60]

В эконометрике частные коэффициенты корреляции обычно не имеют самостоятельного значения. В основном их используют на стадии формирования модели, в частности в процедуре отсева факторов. Так, строя многофакторную модель, например, методом исключения переменных, на первом шаге определяется уравнение рефессии с полным набором факторов и рассчитывается матрица частных коэффициентов корреляции. На втором шаге отбирается фактор с наименьшей и несущественной по f-критерию Стьюдента величиной показателя частной корреляции. Исключив его из модели, строится новое уравнение регрессии. Процедура продолжается до тех пор, пока не окажется, что все частные коэффициенты корреляции существенно отличаются от нуля. Если исключен несущественный фактор, то множественные коэффициенты детерминации на двух смежных шагах построения рефессионной модели почти не отличаются друг от друга, т. е. R2p + j R2p где р — число факторов. [c.128]

Оцените статистическую значимость уравнений регрессии и их параметров при помощи F-критерия Фишера-Снедекора, частных F-критериев и t-критерия Стьюдента. [c.10]

Для анализа взаимосвязи или связи экономических показателей приходится обращаться к совокупности статистических параметров средних величин, средних квадрати-ческих отклонений, параметров распределения, парных и частных коэффициентов корреляции, коэффициентов влияния, корреляционных отношений, параметров уравнений регрессии, остаточных дисперсий, множественных коэффициентов корреляции и множественных корреляционных отношений. Для краткости совокупность статистических параметров, описывающих множество экономических показателей и взаимосвязь между ними, мы называем экономико-статистической моделью. [c.12]


источники:

http://economics.studio/ekonometrika/chastnyie-uravneniya-regressii-31568.html

http://economy-ru.info/info/15319/