10 способов решения квадратных уравнений

10 способов решения квадратных уравнений

Исследовательская работа по теме «10 способов решения квадратных уравнений»

Скачать:

ВложениеРазмер
10_sposobov_resheniya_kvadratnykh_uravneniy.doc748 КБ

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа № 59»

10 способов решения квадратных уравнений

Выполнила: ученица 8А класса

МБОУ «СОШ № 59г.Барнаула

Захарова Людмила Владимировна,

учитель математики, МБОУ «СОШ № 59»

I. История развития квадратных уравнений ……………………………. 3

1. Квадратные уравнения в Древнем Вавилоне……………………………. 4

2. Как составлял и решал Диофант квадратные уравнения…………………5

3. Квадратные уравнения в Индии……………………………………………6

4. Квадратные уравнения у ал- Хорезми …………………………………….7

5. Квадратные уравнения в Европе XIII — XVII вв………………. 9

II. Способы решения квадратных уравнений ………………………. 11

  1. Разложение левой части уравнения на множители………………. 12
  2. Метод выделения полного квадрата.……………………….……. 13
  3. Решение квадратных уравнений по формулам …………………..………14
  4. Решение уравнений с использованием теоремы Виета……………. 16

5.Решение уравнений способом переброски»……………………………….18

  1. Свойства коэффициентов квадратного уравнения……………………. 19

7.Графическое решение квадратного уравнен……………………..……….. 21

8.Решение квадратных уравнений с помощью циркуля и линейки……….. 24

9.Решение квадратных уравнений с помощью номограммы………………. 26

10. Геометрический способ решения квадратных уравнений……………….28

Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.

В учебнике алгебры для 8 класса мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем их решение по формулам. У меня возник вопрос «Существуют ли другие методы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому в этом учебном году я выбрала тему исследования связанную с квадратными уравнениями, в ходе работы она получила название «10 способов решения квадратных уравнений». Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и в 9 классе при сдаче экзаменов.

Цель работы: научиться решать квадратные уравнения, изучить различные методы их решения.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Объект исследования : квадратные уравнения.

Предмет исследования : с пособы решения квадратных уравнений.

Теоретические: изучение литературы по теме исследования;

Анализ: информации полученной при изучении литературы;

результатов полученных при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

Теоретический материал по теме «10 способов решений квадратных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

10 способов решения квадратных уравнений

Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Многие практические задачи решаются с их помощью. Например, квадратное уравнение позволяет рассчитать тормозной путь автомобиля, мощность ракеты для вывода на орбиту космического корабля, траектории движения различных физических объектов – от элементарных частиц до звёзд.

В школе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. Предлагаю 10.

Определение 1. Квадратным уравнением называют уравнение вида ах 2 + b х + с = 0, где коэффициенты а, в, с- действительные числа, а ≠ 0.

Определение 2 . Полное квадратное уравнение — это квадратное уравнение, в котором присутствуют все три слагаемых т.е. коэффициенты в и с отличны от нуля.

Неполное квадратное уравнение — это уравнение, в котором хотя бы один из коэффициентов в или, с равен нулю.

Определение 3. Корнем квадратного уравнения ах 2 + вх + с = 0 называют всякое значение переменной х, при котором квадратный трехчлен ах 2 + вх + с обращается в нуль.

Определение 4 . Решить квадратное уравнение — значит найти все его

корни или установить, что корней нет.

Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0 .

Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так:

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю.

х + 12= 0 или х – 2=0

2. Метод выделения полного квадрата двучлена.

Решим уравнение х 2 + 6х — 7 = 0 .

Выделим в левой части полный квадрат:

тогда, данное уравнение можно записать так:

х + 3=4 или х + 3 = -4

3.Решение квадратных уравнений по формулам.

а) Решим уравнение:

б) Решим уравнение:

в) Решим уравнение: 2 + 3х + 4 = 0,

Данное уравнение корней не имеет.

Ответ: корней нет.

4. Решение уравнений с использованием теоремы Виета.

Чтобы квадратное уравнение привести к приведенному виду, нужно все его члены разделить на a ,, тогда

сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

5. Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение

Умножая обе его части на а, получаем уравнение а 2 х 2 + а b х + ас = 0.

Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению у 2 + by + ас = 0,

Его корни у 1 и у 2 найдем с помощью теоремы Виета и окончательно:

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме Виета

6. Свойства коэффициентов квадратного уравнения.

1. Пусть дано квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0.

Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю),

А. Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

Б. Решим уравнение 132х 2 – 247х + 115 = 0.

Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то

2) Решим уравнение 2х 2 + 3х +1= 0. Так как 2 — 3+1=0, значит х 1 = — 1, х 2 = -с/а= -1/2

Данный метод удобно применять к квадратным уравнениям с большими коэффициентами.

2. Если второй коэффициент уравнения b = 2 k – четное число, то формулу корней можно записать в виде

Решим уравнение 2 — 14х + 16 = 0 .

Приведенное уравнение х 2 + рх + q = 0 совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней принимает вид

Формулу ( ) удобно использовать, когда р — четное число.

Пример. Решим уравнение х 2 – 14х – 15 = 0.

Решение. Имеем а=1, в =-14, (к=-7),с=-15.

7.Графическое решение квадратного уравнения.

И спользуя знания о квадратичной и линейной функциях и их графиках, можно решить квадратное уравнение так называемым функционально-графическим методом. Причем некоторые квадратные уравнения можно решить различными способами, рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение =0

1способ . Построим график функции , воспользовавшись алгоритмом.

Значит, вершиной параболы служит точка (1;-4), а осью параболы – прямая x=1

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки рис.2

х= -1 и х=3, тогда f (-1)= f (3)=0.

3) Через точки (-1;0) , (1;-4), (3;0) проводим параболу (рис 2).

Корнями уравнений являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения

Преобразуем уравнение к виду .

Построим в одной системе координат графики функций и (рис 3 ).

Они пересекаются в двух точках A(-1;1) и B(3;9). Корнями уравнения служат абсциссы точек A и B , значит, .

3 способ

Преобразуем уравнения к виду.

Построим в одной системе координат графики функций и (рис.4) Они пересекаются в двух точках A(-1;-2) и В (3;6). Корнями уравнения являются абсциссы точек А и В, поэтому .

Преобразуем уравнение к виду , затем т.е.

Построим в одной системе координат параболу и прямую . Они пересекаются в точках А(-1;4) и В(3;4). Корнями уравнений служат абсциссы точек А и В, поэтому (рис.5) .

Рис.5

Разделим почленно обе части уравнения на x, получим:

Построим в одной системе координат гиперболу и прямую (рис.6). Они пересекаются в двух точках А(-1;-3) и В(3;1). Корнями уравнений являются абсциссы точек А и В, следовательно, .

Первые четыре способа применимы к любым уравнениям вида

ах 2 + b х + с = 0, а пятый- только к тем, у которых с не равно нулю.

Графические способы решения квадратных уравнений красивы, но не дают стопроцентной гарантии решения любого квадратного уравнения.

8. Решение квадратных уравнений с помощью циркуля и

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + b х + с = 0 с помощью циркуля и линейки (рис.7 ).

Допустим, что искомая окружность пересекает ось

Центр окружности находится в точке пересечения перпендикуляров SF и SK , восстановленных в серединах хорд AC и BD , поэтому

Итак:

1) построим точки (центр окружности) и A (0; 1) ;

2) проведем окружность с радиусом SA ;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

2) Радиус окружности равен ординате центра ( AS = SB , или R = a + c /2 a ) , окружность касается оси Ох (рис.8б) в точке В(х 1 ; 0) , где х 1 — корень квадратного уравнения.

3) Радиус окружности меньше ординаты центра

окружность не имеет общих точек с осью абсцисс (рис 8в), в этом случае уравнение не имеет решения.

Решим уравнение х 2 — 2х — 3 = 0 (рис.9).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA , где А (0; 1).

9. Решение квадратных уравнений с помощью

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

Таблица XXII . Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

там определить корни уравнения.

Криволинейная шкала номограммы построена

по формулам (рис.10):

Полагая ОС = р, ED = q , ОЕ = а (все в см.), из

подобия треугольников САН и CDF получим

откуда после подстановок и упрощений вытекает уравнение

причем буква z означает метку любой точки криволинейной шкалы.

2) Решим с помощью номограммы уравнение

Разделим коэффициенты этого уравнения на 2,

3) Для уравнения z 2 — 25 z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5 t , получим уравнение t 2 — 5 t + 2,64 = 0,

10. Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.12).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD , достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25) , т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39 , получим, что S = 39 + 25 = 64 , откуда следует, что сторона квадрата ABCD , т.е. отрезок АВ = 8 . Для искомой стороны х первоначального квадрата получим

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0 .

Решение представлено на рис 13. где

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8 (рис. .

3) Решить геометрически уравнение у 2 — 6у — 16 = 0.

Преобразуя уравнение, получаем

На рис 14. находим «изображения» выражения у 2 — 6у, т.е. из площади квадрата со стороной у два раза вычитается площадь квадрата со стороной, равной 3 . Значит, если к выражению у 2 — 6у прибавить 9 , то получим площадь квадрата со стороной у — 3 . Заменяя выражение у 2 — 6у равным ему числом 16,

получаем: (у — 3) 2 = 16 + 9, т.е. у — 3 = ± √25 , или у — 3 = ± 5, где у 1 = 8 и у 2 = — 2.

Исследовательская работа на тему»10 способов решения квадратных уравнений»

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Просмотр содержимого документа
«Исследовательская работа на тему»10 способов решения квадратных уравнений»»

Муниципальное учреждение «Отдел образования администрации муниципального района Мишкинский район

Муниципальное Бюджетное Общеобразовательное

Учреждение Лицей № 1 им. Флорида Булякова с. Мишкино

Тема: 10 способов решения квадратных уравнений

Выполнила: ученица 9 В класса

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Руководитель: учитель математики

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Алексеева Гузель Фанавиевна

Мишкино 2017 год

Исторические сведения о квадратных уравнениях……………………..стр.4

Определение квадратного уравнения………………………………. стр.7

Способы решения квадратных уравнений…………………………. стр.8

Разложение на множители левой части……………………………. стр.10

Метод выделения полного квадрата…………………………………стр.10

Решение квадратных уравнений по формуле…………………. стр.11

Решение уравнений с использованием теоремы Виета………. стр.11

Решение уравнений способом «переброски»…………………. стр.12

Свойства коэффициентов квадратного уравнения………………….стр.13

Графическое решение квадратного уравнения……………………. стр.13

Решение квадратных уравнений с помощью циркуля и линейки….стр.14

Уменьшение степени уравнения (использование теоремы Безу)….стр.15

Геометрический способ решения квадратных уравнений…………стр.15

Тренировочные задания для отработки различных способов решения квадратных уравнений…………………………………………………. стр.16

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

В школьной программе рассматривается только 3 способа их решения. Готовясь к предстоящим экзаменам, я заинтересовался другими способами их этих уравнений. Поэтому я выбрала тему «10 способов решения квадратных уравнений».

Актуальность темы: на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно, и рационально решать квадратные уравнения, что также пригодится и при решении более сложных задач, в том числе и при сдаче экзаменов. Плюс выбранная тема мне очень интересна.

Цель работы: выявить способы решения уравнений второй степени и рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.

1) Проследить историю развития теории и практики решения квадратных уравнений;

2) Описать технологии различных существующих способов решения квадратных уравнений;

3) Выявить наиболее удобные способы решения квадратных уравнений;

4) Подобрать тренировочные задания для отработки изученных приемов;

5) Провести кружок для одноклассников.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами.

Объект исследования: квадратные уравнения.

Предмет исследования: способы решения квадратных уравнений.

теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов;

анализ полученной информации;

сравнение способов решения квадратных уравнений на удобство и рациональность.

Время исследования: с 12 октября 2016 года по 20 декабря 2016 года.

Исторические сведения о квадратных уравнениях.

Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.

Вывод формулы решения квадратного уравнения в общем, виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Квадратные уравнения в древнем Вавилоне

В математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решение «типовых» задач, из которых решение аналогичных задач получались заменой числовых данных.

Необходимость решать квадратные уравнения возникла ещё в древности, была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются кроме неполных квадратных уравнений и полные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общее методы решения квадратных уравнений.

Квадратные уравнения у ал-Хорезми

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Основная идея для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-Джабр и ал-Мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII века., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

XIII-XVII ввКвадратные уравнения в Европе . Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII в.

Квадратные уравнения в ИНДИИ

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «АРИАБХАТТИАМ», составленном в 499г. индийским математиком и астрономом АРИБХАТТОЙ. Другой индийский ученый, БРАХМАГУПТА VII век, изложил общее правило решения квадратных уравнений приведенных к единой канонической форме. В уравнении коэффициенты, кроме положительных, могут быть и отрицательными. Правило БРАХМАГУПТЫ по существу совпадает с современным решением. В древней ИНДИИ были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующие: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Одна из задач знаменитого индийского математика XIIв. Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать повисая…

Сколько было обезьянок

Ты скажи мне, в этой стае?

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Часть страницы из алгебры Бхаскары (вычисление корней).

2.Определение квадратного уравнения

Квадратным уравнением называют уравнение вида ах²+bх+с=0, где коэффициенты а, b, с — любые действительные числа, причем, а≠0. Коэффициенты а, b, с, различают по названиям: а – первый или старший коэффициент; b – второй или коэффициент при х; с – свободный член, свободен от переменной х.

Квадратное уравнение также называют уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение называют приведенным, если старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

х²+рх+q=0 – стандартный вид приведенного квадратного уравнения

Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.

Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля.

Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b и с равен нулю.

Корнем квадратного уравнения ах²+вх+с=0 называют всякое значение переменной х, при котором квадратный трехчлен ах²+bх+с обращается в нуль.

Можно сказать и так: корень квадратного уравнения – это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство (0=0).

Решить квадратное уравнение – найти все его корни или установить, что их нет.

3.Способы решения квадратных уравнений

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать.


источники:

http://infourok.ru/teoreticheskij-material-po-teme-10-sposobov-reshenij-kvadratnyh-uravnenij-4034975.html

http://multiurok.ru/files/issliedovatiel-skaia-rabota-na-tiemu-10-sposobov-r.html