24 показательное уравнение логарифмические корни

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение логарифмических уравнений.

Этот математический калькулятор онлайн поможет вам решить логарифмическое уравнение. Программа для решения логарифмического уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения ответа.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> ln(b) или log(b) или log(e,b) — натуральный логарифм числа b
log(10,b) — десятичный логарифм числа b
log(a,b) — логарифм b по основанию a

Введите логарифмическое уравнение
Решить уравнение

Немного теории.

Логарифмическая функция. Логарифмы

Задача 1. Найти положительный корень уравнения x 4 = 81
По определению арифметического корня имеем \( x = \sqrt[4] <81>= 3 \)

Задача 2. Решить уравнение 3 x = 81
Запишем данное уравнение так: 3 x = 3 4 , откуда x = 4

В задаче 1 неизвестным является основание степени, а в задаче 2 — показатель степени. Способ решения задачи 2 состоял в том, что левую и правую части уравнения удалось представить в виде степени с одним и тем же основанием 3. Но уже, например, уравнение 3 x = 80 таким способом решить не удаётся. Однако это уравнение имеет корень. Чтобы уметь решать такие уравнения, вводится понятие логарифма числа.
Уравнение a x = b, где a > 0, \( a \neq 1 \), b > 0, имеет единственный корень. Этот корень называют логарифмом числа b no основанию a и обозначают logab
Например, корнем уравнения 3 x = 81 является число 4, т.е. log381 = 4.

Определение. Логарифмом положительного числа b по основанию a, где a > 0, \( a \neq 1 \), называется показатель степени, в которую надо возвести число a, чтобы получить b

log77 = 1, так как 7 1 = 7

Определение логарифма можно записать так:

Действие нахождения логарифма числа называют логарифмированием.
Действие нахождения числа по его логарифму называют потенцированием.

Вычислить log64128
Обозначим log64128 = х. По определению логарифма 64 x = 128. Так как 64 = 2 6 , 128 = 2 7 , то 2 6x = 2 7 , откуда 6x = 7, х = 7/6.
Ответ log64128 = 7/6

Вычислить \( 3^ <-2\log_3 5>\)
Используя свойства степени и основное логарифмическое тождество, находим

Решить уравнение log3(1-x) = 2
По определению логарифма 3 2 = 1 — x, откуда x = -8

Свойства логарифмов

При выполнении преобразований выражений, содержащих логарифмы, при вычислениях и при решении уравнений часто используются различные свойства логарифмов. Рассмотрим основные из них.

Пусть а > 0, \( a \neq 1 \), b > 0, c > 0, r — любое действительное число. Тогда справедливы формулы:

Десятичные и натуральные логарифмы

Для логарифмов чисел составлены специальные таблицы (таблицы логарифмов). Логарифмы вычисляют также с помощью микрокалькулятора. И в том и в другом случае находятся только десятичные или натуральные логарифмы.

Определение. Десятичным логарифмом числа называют логарифм этого числа по основанию 10 и пишут
lg b вместо log10b

Определение. Натуральным логарифмом числа называют логарифм этого числа по основанию e, где e — иррациональное число, приближённо равное 2,7. При этом пишут ln b вместо logeb

Иррациональное число e играет важную роль в математике и её приложениях. Число e можно представить как сумму:
$$ e = 1 + \frac<1> <1>+ \frac<1> <1 \cdot 2>+ \frac<1> <1 \cdot 2 \cdot 3>+ \dots + \frac<1> <1 \cdot 2 \cdot 3 \cdot \dots \cdot n>+ \dots $$

Оказывается, что достаточно знать значения только десятичных или только натуральных логарифмов чисел, чтобы находить логарифмы чисел по любому основанию.
Для этого используется формула замены основания логарифма:

Следствия из формулы замены основания логарифма.
При c = 10 и c = e получаются формулы перехода к десятичным и натуральным логарифмам:
$$ \log_a b = \frac<\lg b> <\lg a>, \;\; \log_a b = \frac<\ln b> <\ln a>$$

Логарифмическая функция, её свойства и график

В математике и её приложениях часто встречается логарифмическая функция
y = logax
где а — заданное число, a > 0, \( a \neq 1 \)

Логарифмическая функция обладает свойствами:
1) Область определения логарифмической функции — множество всех положительных чисел.

2) Множество значений логарифмической функции — множество всех действительных чисел.

3) Логарифмическая функция не является ограниченной.

4) Логарифмическая функция y = logax является возрастающей на промежутке \( (0; +\infty) \), если a > 1,
и убывающей, если 0 1, то функция y = logax принимает положительные значения при х > 1,
отрицательные при 0 1.

Ось Oy является вертикальной асимптотой графика функции y = logax

Отметим, что график любой логарифмической функции y = logax проходит через точку (1; 0).
При решении уравнений часто используется следующая теорема:

Логарифмическая функция y = logax и показательная функция y = a x , где a > 0, \( a \neq 1 \), взаимно обратны.

Логарифмические уравнения

Решить уравнение log2(x+1) + log2(x+3) = 3
Предположим, что х — такое число, при котором равенство является верным, т.е. х — корень уравнения. Тогда по свойству логарифма верно равенство
log2((x+1)(x+3)) = 3
Из этого равенства по определению логарифма получаем
(x+1)(x+3) = 8
х 2 + 4х + 3 = 8, т.е. х 2 + 4x — 5 = 0, откуда x1 = 1, х2 = -5
Так как квадратное уравнение является следствием исходного уравнения, то необходима проверка.
Проверим, являются ли числа 1 и -5 корнями исходного уравнения.
Подставляя в левую часть исходного уравнения х = 1, получаем
log2(1+1) + log2(1+3) = log22 + log24 = 1 + 2 = 3, т.е. х = 1 — корень уравнения.
При х = -5 числа х + 1 и х + 3 отрицательны, и поэтому левая часть уравнения не имеет смысла, т.е. х = -5 не является корнем этого уравнения.
Ответ x = 1

Решить уравнение lg(2x 2 — 4x + 12) = lg x + lg(x+3)
По свойству логарифмов
lg(2x 2 — 4x + 12) = lg(x 2 + 3x)
откуда
2x 2 — 4x + 12 = x 2 + 3x
x 2 — 7x + 12 = 0
x1 = 3, х2 = 4
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 3, х2 = 4

Решить уравнение log4(2x — 1) • log4x = 2 log4(2x — 1)
Преобразуем данное уравнение:
log4(2x — 1) • log4x — 2 log4(2x — 1) = 0
log4(2х — 1) • (log4 x — 2) = 0
Приравнивая каждый из множителей левой части уравнения к нулю, получаем:
1) log4 (2х — 1) = 0, откуда 2х — 1 = 1, х1 = 1
2) log4 х — 2 = 0, откуда log4 = 2, х2 = 16
Проверка показывает, что оба значения х являются корнями исходного уравнения.
Ответ x1 = 1, х2 = 16

Решение логарифмических уравнений

Данный калькулятор позволяет найти решение логарифмических уравнений.
Логарифмическое уравнение – это уравнения, в которых переменная величина находится под знаком логарифма. Логарифмическая функция всегда монотонна и может принимать любые значения. Кроме того, переменный аргумент логарифма должен быть больше нуля и переменное основание логарифма должно быть положительным и не равным единице.

При решении логарифмических уравнений зачастую необходимо логарифмировать или потенцировать обе части уравнения. Логарифмировать алгебраическое выражение — выразить его логарифм через логарифмы отдельных чисел, входящих в это выражение. Потенцирование – нахождение выражения, от которого получен результат логарифмирования.

Для того чтобы найти корни логарифмического уравнения, нужно ввести это уравнение в ячейку и нажать на кнопку «Вычислить». В ответе отображаются корни уравнения и график логарифмической функции.

Калькулятор поможет найти решение логарифмических уравнений онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

  • : x^a

Показательные и логарифмические уравнения, неравенства

Разделы: Математика

В данной статье я хочу привести методический материал, который использую при проведении обобщающего урока по теме «Решение показательных и логарифмических уравнений и неравенств» с учениками 10 класса.

Цель урока: систематизировать знания о методах решений различных типов указанных уравнений и неравенств, закрепить навыки решения задач.

Ход урока

Показательные уравнения

Пример 1. 4·2 x — 2 x = 96 (линейное показательное уравнение).

Вводим новую переменную 2 x = у; у > 0, т.к. показательная функция не может принимать отрицательные значения.

Уравнение 2 x = 32 имеет корень x = 5.

Ответ: 5

Пример 2. 5 x + 2 / 5 x — 3 = 0 (квадратное показательное уравнение).

Вводим новую переменную 5 x = у; у > 0, т.к. показательная функция не может

принимать отрицательные значения.

Решая квадратное уравнение, получаем корни у1 = 1, у2 = 2.

Уравнение 5 x = 1 имеет корень х = 0.

Уравнение 5 x = 2 имеет корень х = log52.

Ответ: 0; log52

Показательные неравенства

Пример 1. 5 x — 5 x+2 ≥ — 120 (линейное показательное неравенство).

— 24 · 5 x ≥ — 120 | : (-24),

Т.к. 5 > 1, то функция у = 5 x является возрастающей.

Таким образом, при х ≤ 1 неравенство является верным.

Ответ: (-∞; 1]

Пример 2. 5 x +2 · 5 -x – 3 ≤ 0 (квадратное показательное неравенство).

5 2x +2 – 3 · 5 x ≤ 0 .

Вводим новую переменную 5 x = у > 0, т.к. показательная функция не может

принимать отрицательные значения.

Решая квадратное неравенство, получаем 1≤ y ≤ 2 .

Отсюда получим неравенство 1≤ 5 x ≤ 2.

Решая его, получаем 0 ≤ х ≤ log52

Ответ: [0; log52]

Логарифмические уравнения

Пример 1. log16x + log4x + log2x= 7 (переход к новому основанию логарифма).

Используя формулу перехода к новому основанию логарифма, получаем

Ответ: 16

Пример 2. lg 2 x– 3·lg x +2 = 0 (квадратное логарифмическое уравнение).

Вводим новую переменную lg x = у.

Получаем квадратное уравнение относительно новой переменной y 2 — 3y + 2 = 0 .

Решая квадратное уравнение, получаем корни у1 = 1, у2 = 2.

Ответ: 10; 100

Пример 3. log2(x 2 — 3x) = log2 (х — 3) (потенцирование логарифмических уравнений).

Потенцируя уравнение, получаем x 2 — 3x = х — 3 .

Решая квадратное уравнение, получаем корни х1 = 1, х2 = 3 .

При потенцировании логарифмического уравнение возможно появление посторонних корней, поэтому необходима проверка.

1) подставляя х = 1 в исходное уравнение, получаем log2(- 2).

Это выражение не имеет смысла, т.к. логарифмическая функция определена при положительном значении аргумента. Поэтому x1 не является корнем заданного уравнения.

2) подставляя х = 3 в исходное уравнение, получаем log2(0).

Это выражение также не имеет смысла, поэтому x2 не является корнем заданного уравнения.

Ответ: решений нет

Логарифмические неравенства

Пример 1. lg 2 x– lgx – 2 > 0 (квадратное логарифмическое неравенство).

ОДЗ: x > 0, т.к. логарифмическая функция определена при положительном значении аргумента.

Вводим новую переменную lg x = t .

Это квадратное неравенство выполняется при t 2 .

Множество всех решений исходного неравенства есть объединение множеств всех решений двух неравенств lgx 2 .

Т.к. логарифмическая функция с основанием 10 определена при х > 0 и возрастает,то первое неравенство имеет решение 0 100.

Ответ: (0; 0,1)U(100; +∞)

Пример 2. log5(3 — 4x) 0, откуда х 0,7.

С учётом области определения неравенства имеем 0,7 18.05.2014


источники:

http://allcalc.ru/node/668

http://urok.1sept.ru/articles/645454