28 уравнение с двумя переменными

Лекция 28. Уравнения с двумя переменными

1. Уравнения с двумя переменными. Уравнение линии. Уравнение окружности.

2. Система уравнений с двумя переменными. Способы решения системы двух уравнений с двумя переменными: способ подстановки и способ сложения.

3. Совокупности уравнений с двумя переменными.

УРАВНЕНИЯ С ДВУМЯ ПЕРЕМЕННЫМИ f2 (х) = g₂ (х)

Предикат вида f (х, у) = g (х, у) называют уравнением с двумя переменными.

Любая пара (а, b) значений переменных, обращающая уравне­ние f (х, у) = g (х, у) в истинное числовое равенство, называется решением этого уравнения, а множество всех таких пар — мно­жеством решений этого уравнения.

Пример. Определим, являются ли пары (1; 5) и (—2; 7) решениями уравнения х + 2у = 12, и запишем множество решений данного уравнения.

Решени е. Если х = 1, а у = 5, то уравнение х + 2у = 12 обращается в неверное числовое равенство

1 +2 × 5 = 12. Следо­вательно, пара (1; 5) не является решением уравнения.

Если х = —2, а у = 7, то данное уравнение обращается в вер­ное равенство —2 + 2 • 7 = 12. Следовательно, пара (—2; 7) является решением уравнения х + = 12.

Данное уравнение имеет бесконечное множество решений. Для записи этого множества удобно выразить одну переменную через другую, например х через у. Получим: х = 12 — 2у. Тогда множе­ство Т решений этого уравнения можно записать так:

Упражнения

1. Путем подбора найдите несколько решений каждого из следующих уравнений: а) ху = 5;

б) у = Зх; в) Зх — 2у == 16.

2. Найдите три решения уравнения х + = 7. Сколько решений имеет данное уравнение? Можно ли сказать, что любая пара чисел является решением данного уравнения?

3. Найдите пары чисел, разность которых равна 10. Сколько решений имеет задача?

4. Даны два уравнения: х + у = 9 и ху = 1. Найдите пару чисел, которая: а) является решением первого уравнения, но не является решением второго; б) является решением второго урав­нения, но не является решением первого; в) является решением и первого и второго уравнений; г) не является решением ни первого уравнения, ни второго.

СИСТЕМЫ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

Система двух уравнений с двумя переменными имеет вид:

<f(х, у) = g(х, у)
f2 (х, у) = g₂ (х,у)

Решением этой системы является любая пара чисел (а; b), обра­щающая каждое из уравнений системы в верное числовое равенст­во. Множество таких пар есть пересечение множества решений пер­вого уравнения с множеством решений второго.

Две системы уравнений называются равносильными на некотором множестве X, если их множества решений совпадают.

Пример 1. Решим систему уравнений

х — 2у = 4, используя метод алгебраического сложения.

Решение. Умножив обе части второго уравнения на 2 и первое уравнение сложим со вторым, получим систему

(Зх + 4у) + (2х — 4у) = 5 + 8

После приведения подобных членов данная система примет вид:
Зх + 4у = 5

Решением данной системы явля­ется пара чисел х = 13/5, у = — 7/10.

УРАВНЕНИЕ ПРЯМОЙ

Общее уравнение прямой— уравнение первой степени относительно пе­ременных х и у, т.е. уравнение вида Ах + Ву + С = 0 при условии, что коэффици­енты А и В одновременно не равны нулю.

Уравнение прямой в отрезкахимеет вид х/а + у/b = 1, где а и b- соответственно абсцисса и ордината точек пересечения прямой с осями Ох и Оу.

Уравнение прямой с угловым коэффициентомимеет вид у = кх + b, где к = tg ά — угловой коэффициент, равный тангенсу угла наклона прямой к оси Ох, а b

ордината точки пересечения прямой с осью Оу/

Уравнение прямой, проходящей через две точкиА(х], у]) и В(х22), имеет вид

Угловой коэффициент прямой, проходящей через точки А и В, находится по формуле

Пример 16.22. Найдите отрезки, отсекаемые на осях координат прямой, проходя­щей через точки А(6; 2) и В(-3;8). )

Решение. Подставив в уравнение прямой, проходящей через две точки, координаты то­чек

А (6; 2) и В(-3;8), получим (х – 6) / (-3 – 6) = (у – 2) / (8 – 2) или у = — 2/3х + 6.

Преобразуем последнее уравнение

к уравнении ю прямой в отрезках: (2/3)х/6 + у/6 = 1 или х/9 + у/6 = 1. Значит, а = 9 и b =6.

Если даны две пересекающиеся прямые А₁ х + В₁ у + С₁ = 0 и А₂ + В₂ у + С2 0, то для вычисления координат точки пересечения данных прямых необходимо решить систему уравнений этих прямых.

Пример 16.23. Найдите точку пересечения прямых Зх — 4у + 11 = 0 и 4х — у — 7 = 0. Решение. Решив систему уравнений получим х = 3 и у = 5. Следовательно, (3, 5) — точка пересечения этих прямых.

Острый угол между двумя прямыми, заданными:

— общими уравнениями А₁ х + В₁ у + С₁ = 0 и А₂ х + В₂ у + С2 0

вычисляется по формуле соs φ = | (А ₁ А₂ + В₁ В₂) /( √ А₁² + В₁ ²А₂ ² + В₂ ) ²|

— общими уравнениями у = k₁ х + b₁ и у = k ₂ х + b ₂

вычисляется по формуле tg φ = | (k ₁ — k ) | (1 + k ₁ × k )|

Пример 16.24. Найдите угол между прямыми у = 3х — 1 и у = -2х + 4.

Условие параллельности двух прямых, заданных:

-общими уравнениями А₁ х + В₁ у + С = 0 и А ₂ х + В₂ у + С2 = 0, имеет вид Ах / А ₂ = В₁/ В₂;

— уравнениями с угловыми коэффициентами у = k₁ х + b₁ и у = k ₂ х + b ₂ имеет видk = k ₂.

Условие перпендикулярности двух прямых, заданных:

— общими уравнениями А₁ х + В₁ у + С₁ = 0 и А₂ х + В₂ у + С2 = 0, имеет вид Ах А ₂ + В₁ В₂ = 0;

— уравнениями с угловыми коэффициентами у = k₁ х + b₁ и у = k ₂ х + b ₂ имеет вид k k₂ = — 1

Пример 16.25. Найдите уравнение прямой, проходящей через точку А (4; -2) и па­раллельной прямой 4х — 2у + 5 = 0.

УРАВНЕНИЕ ОКРУЖНОСТИс центром в начале координат и радиусом R имеет вид х 2 + у 2 = /? 2 ; уравнение окружности с центром в точке А<а; b) и ради­усом Rимеет вид (х — а) 2 + <у - b) 2 = /? 2 ; уравнение окружности в общем виде имеет вид Ах 2 + Ау г + Вх + Су + О = 0.

Лекция 29. Системы и совокупности неравенств с одной переменной

1. Системы двух неравенств с двумя переменными: запись результата решения.

2. Совокупности неравенств с двумя переменными.

СИСТЕМЫ НЕРАВЕНСТВ С ОДНОЙ ПЕРЕМЕННОЙ

Система неравенств f(х) > g(х) и f2 (х) > g₂ (х) имеет вид:

<f(х) > g(х)
f2 (х) > g₂ (х).

Решением этой системы является всякое значение переменной х , которое обращает каждое из неравенств в истинное числовое не­равенство.

Множество решений системы неравенств есть пересечение мно­жеств решений неравенств, образующих данную систему.

Неравенство |х| 0, равносильно системе

или двойному неравенству —а — 6(х + 2)

3 (3 + 2х) —7 есть числовой проме­жуток ]—7; оо[, а множество решений неравенства х g(х) и f2 (х) > g₂ (х) с одной переменной может быть записана в виде

[f(х) > g(х) (1)
f2 (х) > g₂ (х) (2).

Решением совокупности неравенств с одной переменной назы­вается всякое значение переменной х, которое обращает в истинное числовое неравенство хотя бы одно из неравенств совокупности.

Множество решений совокуп­ности есть объединение множеств решений неравенств, образующих совокупность.

Неравенство |х| >а, где а > 0 равносильно совокупности:

[ х > а
х 0 или f(х) × g(х) (1) > 0 равносильно

совокупности (дизъюнкции) систем:

[f (х) > 0
g (х) > 0.
[f (х) х — 1,

Решение. Найдем сначала множества решений каждого из неравенств совокупности, а затем их объединение.

Преобразуем каждое из неравенств совокупности, заменяя его равносильным:

Множество решений неравенства х > 2 есть числовой промежу­ток ]2; ¥[, а множество решений неравенства х > 1 — промежу­ток — ]1; ¥[. Изобразим эти множества на числовой прямой и найдем их объединение. Следовательно, множество решений совокупности есть числовой промежуток ]1; оо[.

П р и м е р 2. Решим неравенство (4х – 3) / (3 – 2х) > 1.

ЧТО И КАК ПИСАЛИ О МОДЕ В ЖУРНАЛАХ НАЧАЛА XX ВЕКА Первый номер журнала «Аполлон» за 1909 г. начинался, по сути, с программного заявления редакции журнала.

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.

Что способствует осуществлению желаний? Стопроцентная, непоколебимая уверенность в своем.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Уравнение с двумя переменными

Уравнение с двумя переменными и его решение

Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

Например: 2x+5y = 6; -x+1,5y = 0; $\frac<1><2>$ x-8y = 7

Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y=6 решениями являются пары

x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

Уравнение имеет бесконечное множество решений.

Свойства уравнения с двумя переменными

Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

  • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
  • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

Например: $2x+5y = 6 ⟺5y = -2x+6 \iff y = -0,4x+1,2$

Примеры

Пример 1. Из данного линейного уравнения выразите y через x и x через y:

Алгоритм: рассмотрим 3x+4y=10

1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

Аналогично для x(y): $3x+4y = 10 \iff 3x = -4y+10 \iff x = -1 \frac<1> <3>y+3 \frac<1><3>$

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

Урок 1.

Ход урока.

1) Орг. момент.

2) Актуализация опорных знаний.

Определение. Линейным уравнением с двумя переменными называется уравнение вида

mx + ny = k, где m, n, k – числа, x, y – переменные.

Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

1. 5x+2y=12 (2)y = -2.5x+6

Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

Пусть x = 2, y = -2.5•2+6 = 1

x = 4, y = -2.5•4+6 =- 4

Пары чисел (2;1); (4;-4) – решения уравнения (1).

Данное уравнение имеет бесконечно много решений.

3) Историческая справка

Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

4) Изучение нового материала.

Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0

Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

Пример: 34x – 17y = 3.

НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

где (; ) – какое-либо решение уравнения (1), t Z

Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

m, n, x, y Z

Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид

5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: где m Z.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: , где n Z.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) =>

    б) =>

    в) =>

    г) =>

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а)

    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б)

    в)

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Z
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Z
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Z
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Z
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Z
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Z
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Z
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Z

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) (1;2), (5;2), (-1;-1), (-5;-2)

    Число 3 можно разложить на множители:

    a) б) в) г)
    в) (11;12), (-11;-12), (-11;12), (11;-12)
    г) (24;23), (24;-23), (-24;-23), (-24;23)
    д) (48;0), (24;1), (24;-1)
    е) x = 3m; y = 2m, mZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Z
    з) x = 2m; y = m; x = 2m; y = -m, m Z
    и)решений нет

    4) Решить уравнения в целых числах

    (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    (-4;-1), (-2;1), (2;-1), (4;1)
    (-11;-12), (-11;12), (11;-12), (11;12)
    (-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) (-1;0)
    б)(5;0)
    в) (2;-1)
    г) (2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.

  • источники:

    http://reshator.com/sprav/algebra/7-klass/uravnenie-s-dvumya-peremennymi/

    http://urok.1sept.ru/articles/417558