8 класс решение уравнений сводящихся к

Решение уравнений, сводящихся к квадратным

Биквадратные уравнения

Биквадратным уравнением называется уравнение вида:

$$ ax^4+bx^2+c = 0, a \neq 0 $$

Алгоритм решения биквадратного уравнения

Шаг 1. Ввести новую переменную: $z = x^2 \ge 0$.

Переписать уравнение для новой переменной: $az^2+bz+c = 0$

Шаг 2. Решить полученное квадратное уравнение.

Если $D \gt 0$, $z_ <1,2>= \frac<-b \pm \sqrt> <2a>$. Проверить условие $z ≥ 0$, если положительных корней нет, решений нет, переход на шаг 4.

Если D = 0,$z_0 = -\frac<2a>$. Проверить условие $z \ge 0$, если корень отрицательный, решений нет, переход на шаг 4.

Если $D \lt 0$, решений нет, переход на шаг 4.

Шаг 3.Если после шага 2 остались положительные корни, найти x: $x = \pm \sqrt$.

Шаг 4. Работа завершена.

Шаг 1. $z = x^2 \ge 0, z^2+7z-30 = 0$

$z_1 = -10 \lt 0, z_2 = 3 \gt 0 $

Шаг 3. Находим корни из положительного $z: x_ <1,2>= \pm \sqrt<3>$

Метод разложения на множители

Решение уравнений, в которые переменная x входит с различными натуральными степенями и вещественными коэффициентами, по существу, является поиском корней многочлена.

Число $x_0$ называют корнем многочлена $P_n (x) = a_n x^n+a_ x^ + ⋯ + a_1 x+a_0$ если $P_n (x_0 ) = 0$.

Для многочлена $P_n$ (x) произвольной степени n справедливо следующее.

Если $x = x_0$ является корнем многочлена $P_n$ (x), то $P_n (x) = (x-x_0) P_ (x)$, где $P_ (x)$ — многочлен степени n-1.

Таким образом, разными способами находя корни и формируя скобки, можно постепенно добиваться понижения степени «оставшегося» многочлена, пока не будут найдены все корни.

При разложении многочлена

  • множители вида (x-a) называют линейными множителями ;
  • множители вида $ (x^2+bx+c)$, для которых $D \lt 0$, называют неприводимыми квадратичными множителями .

Любой многочлен $P_n$ (x) можно представить в виде конечного числа линейных и/или неприводимых квадратичных множителей.

Причём, такое представление единственно с точностью до порядка множителей.

Для разложения многочленов на множители применяются разные методы:

  • вынесение общего множителя за скобку (см. §19 справочника для 7 класса);
  • группировка (см. §20 справочника для 7 класса);
  • формулы сокращенного умножения (см. §25 справочника для 7 класса);
  • метод неопределённых коэффициентов;
  • выделение полного квадрата и т.п.

Решим уравнение $2x^3-x^2-8x+4 = 0$.

Раскладываем на множители: $x^2 (2x-1)-4(2x-1) = 0$

$$ (x^2-4)(2x-1) = 0 \Rightarrow (x-2)(x+2)(2x-1) = 0 $$

Корни уравнения: $x_1 = 2, x_2 = -2, x_3 = \frac<1><2>$

Метод замены переменной

Замена переменной – это уравнение, с помощью которого можно упростить исходное уравнение, и перейти к решению системы из двух более простых уравнений:

$Исходное \quad сложное \quad уравнение \iff <\left\< \begin Новая \quad переменная \quad (урав. \quad связи \quad со \quad старой \quad переменной \\ Исходное \quad урав. \quad в \quad «упрощ.» \quad виде \end \right.>$

Например, для биквадратных уравнений:

$$ ax^4+bx^2+c = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

Можно предложить аналогичные схемы для других уравнений:

$$ ax+b \sqrt+c = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ az^2+bz+c = 0 \end \right.> $$

И, в общем виде, для любой рациональной степени n:

$$ ax^<2n>+bx^n+c = 0 \iff <\left\< \begin z = x^n \\ az^2+bz+c = 0 \end \right.> , n \in \Bbb Q $$

В других случаях замена переменной не настолько очевидна.

Но при удачном выборе, этот метод очень упрощает задачу.

Раскроем скобки:$ x^2-x = \frac<24>$. Сделаем замену:

$$ z = \frac<24> \Rightarrow z(z-2) = 24 \Rightarrow z^2-2z-24 = 0 \Rightarrow (z-6)(z+4) = 0 \Rightarrow \left[ \begin z_1 = -4 \\ z_2 = 6 \end \right.$$

Возвращаемся к исходной переменной x:

$$ \left[ \begin x^2-x = -4 \\ x^2-x = 6 \end \right. \Rightarrow \left[ \begin x^2-x+4 = 0 \\ x^2-x-6 = 0 \end \right. \Rightarrow \left[ \begin D \lt 0, x \in \varnothing \\ (x-3)(x+2) = 0 \end \right. \Rightarrow \left[ \begin x_1 = -2 \\ x_2 = 3 \end \right. $$

При использовании метода замены переменной не забывайте возвращаться к исходной переменной.

Выделение полного квадрата

Метод выделения полного квадрата является одним из методов разложения на множители. Его идея – представить многочлен в виде разности квадратов двух других многочленов степенью пониже, и разложить разность на две скобки:

$$ P_n (x) = Q_k^2 (x)-R_m^2 (x) = (Q_k (x)-R_m (x))(Q_k (x)+R_m (x)) $$

Такое разложение не всегда возможно.

Рассмотрим выделение полного квадрата для квадратного трёхчлена:

$$ = a \Biggl(x+\frac <2a>\Biggr)^2 — \frac <4a>= a \Biggl(x+ \frac <2a>\Biggr)^2- \frac<4a>, D = b^2-4ac $$

Нами выделен полный квадрат $(x+\frac<2a>)^2$.

Данное выражение используется для построения и анализа графиков парабол (см. §28 данного справочника).

А его разложение на две линейные скобки, известное как теорема Виета (см. §26 данного справочника), возможно только при условии $D \ge 0$.

Решить уравнение $x^4+4x^2-1 = 0$

Выделим полный квадрат и разложим на множители:

$$ \left[ \begin x^2+2-\sqrt <5>= 0 \\ x^2+2+\sqrt <5>= 0 \end \right. \Rightarrow \left[ \begin x^2 = \sqrt <5>-2 \gt 0 \\ x^2 = -(2+\sqrt<5>) \lt 0 \end \right. \Rightarrow x_1,2 = \pm \sqrt<\sqrt<5>-2> $$

Примеры

Пример 1. Решите биквадратные уравнения:

Делаем замену: $2x^4+7x^2-4 = 0 \iff <\left\< \begin z = x^2 \ge 0 \\ 2z^2+7z-4 = 0 \end \right.>$

Решаем квадратное уравнение: $D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2$

$$ z = \frac<-7 \pm 9> <4>= \left[ \begin z_1 = -4 \lt 0 \\ z_2 = \frac<1> <2>\gt 0 \end \right. $$

Выбираем положительный z и возвращаемся к исходной переменной x:

Делаем замену: $(x+3)^4-10(x+3)^2+24 = 0 \iff <\left\< \begin z = (x+3)^2 \ge 0 \\ z^2-10z+24 = 0 \end \right.>$

Решаем квадратное уравнение: $z^2-10z+24 = 0 \Rightarrow (z-4)(z-6) = 0 \Rightarrow \left[ \begin z_1 = 4 \\ z_2 = 6 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x+3)^2 = 4 \\ (x+3)^2 = 6 \end \right. \Rightarrow \left[ \begin x+3 = \pm \sqrt <4>\\ x+3 = \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm 2 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. \Rightarrow \left[ \begin x_1 = -5 \\ x_2 = -1 \\ x_ <3,4>= -3 \pm \sqrt <6>\end \right. $$

Пример 2. Решите уравнения аналогичные биквадратным:

Делаем замену: $x+4 \sqrt-60 = 0 \iff <\left\< \begin z = \sqrt \ge 0 \\ z^2+4z-60 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2+4z-60 = 0 \Rightarrow (z+10)(z-6) = 0 \Rightarrow \left[ \begin z_1 = -10 \\ z_2 = 6 \end \right.$

Выбираем положительный корень и возвращаемся к исходной переменной:

Делаем замену: $(x-1)^6-7(x-1)^3-8 = 0 \iff <\left\< \begin z = (x-1)^3 \\ z^2-7z-8 = 0 \end \right.>$

Решаем квадратное уравнение: $ z^2-7z-8 = 0 \Rightarrow (z+1)(z-8) = 0 \Rightarrow \left[ \begin z_1 = -1 \\ z_2 = 8 \end \right.$

При замене куба знак z может быть любым, берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin (x-1)^3 = -1 \\ (x-1)^3 = 8 \end \right. \Rightarrow \left[ \begin x-1 = -1 \\ x-1 = 2 \end \right. \Rightarrow \left[ \begin x_1 = 0 \\ x_2 = 3 \end \right. $$

Пример 3. Решите уравнения с помощью замены переменной:

Заметим, что $(x+3)^2 = x^2+6x+9$. Получаем:

$$ (x^2+6x)^2-(x^2+6x+9) = 33 \Rightarrow (x^2+6x)^2-(x^2+6x)-42 = 0 $$

Решаем квадратное уравнение: $ z^2-z-42 = 0 \Rightarrow (z+6)(z-7) = 0 \Rightarrow \left[ \begin z_1 = -6 \\ z_2 = 7 \end \right.$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin x^2+6x = -6 \\ x^2+6x = 7 \end \right. \Rightarrow \left[ \begin x^2+6x+6 = 0 \\ x^2+6x-7=0 \end \right. \Rightarrow \left[ \begin D = 12, x = \frac<-6 \pm 2 \sqrt<3>> <2>\\ (x+7)(x-1) = 0 \end \right. \Rightarrow \left[ \begin x_ <1,2>= -3 \pm \sqrt <3>\\ x_3 = -7 \\ x_4 = 1 \end \right. $$

Делаем замену: $ \frac<4> + \frac<5> = 2 \iff \left[ \begin z = x^2+3 \ge 3 \\ \frac<4> + \frac<5> = 2 \end \right.$

Решаем уравнение относительно z:

$$ \frac<4> + \frac<5> = 2 \Rightarrow \frac<4(z+1)+5z> = \frac<2> <1>\Rightarrow 4(z+1)+5z = 2z(z+1) $$

$$ 2z^2+2z-9z-4 = 0 \Rightarrow 2z^2-7z-4 = 0 $$

$$ D = 7^2-4 \cdot 2 \cdot (-4) = 49+32 = 81 = 9^2 $$

$$ z = \frac<7 \pm 9> <4>= \left[ \begin z_1 = — \frac<1> <2>\lt 3 \\ z_2 = 4 \gt 3 \end \right. $$

Выбираем корень больше 3 и возвращаемся к исходной переменной:

$$ x^2+3 = 4 \Rightarrow x^2 = 1 \Rightarrow x_ <1,2>= \pm 1$$

Пример 4*. Решите уравнения:

Приведём это уравнение к биквадратному.

В линейных множителях (x+a) выберем все a =

Найдем их среднее арифметическое (см. §52 справочника для 7 класса)

Замена переменных $z = x+a_$:

Упрощаем уравнение, используя формулу разности квадратов:

$$ (z^2-9)(z^2-1) = 945 \Rightarrow z^4-10z^2+9 = 945 \Rightarrow z^4-10z^2-936 = 0 $$

Получили биквадратное уравнение.

Делаем замену: $z^4-10z^2-936 = 0 \iff <\left\< \begin t = z^2 \ge 0 \\ t^2-10t-936 = 0 \end \right.> $

Решаем квадратное уравнение:

$$ D = 100+4 \cdot 936 = 3844 = 62^2, t = \frac<10 \pm 62> <2>= \left[ \begin t_1 = -26 \lt 0 \\ t_2 = 36 \gt 0 \end \right. $$

Выбираем положительный корень и возвращаемся к переменной z:

$$ z = \pm \sqrt= \pm \sqrt <36>= \pm 6 $$

Возвращаемся к исходной переменной x:

$$ x = z-4 = \pm 6-4 = \left[ \begin x_1 = -10 \\ x_2 = 2 \end \right. $$

$$ z- \frac<1> =2,1 |\times z (z \neq 0) $$

$$ z^2-2,1z-1 = 0 \Rightarrow D = 2,1^2+4 = 8,41 = 2,9^2; z = \frac<2,1 \pm 2,9> <2>= \left[ \begin z_1 = -0,4 \\ z_2 = 2,5 \end \right. $$

Берём оба корня и возвращаемся к исходной переменной.

$$ \left[ \begin \frac = -0,4 \\ \frac = 2,5 \end \right. \Rightarrow \left[ \begin x^2+1 = -0,4x \\x^2+1 = 2,5x \end \right. \Rightarrow \left[ \begin x^2+0,4x+1 = 0 \\ x^2-2,5x+1 = 0 \end \right. $$

В первом уравнении $D = 0,4^2-4 \lt 0$, решений нет.

Во втором уравнении (x-2)(x-1/2) = 0 $\Rightarrow \left[ \begin x_1 = \frac<1> <2>\\ x_2 = 2 \end \right.$

План-конспект урока: Уравнения, сводящиеся к квадратным.

«Уравнение представляет собой наиболее серьезную

и важную вещь в математике».

Просмотр содержимого документа
«План-конспект урока: Уравнения, сводящиеся к квадратным.»

Учитель: Татарникова Наталья Николаевна.

Тема: Уравнения, сводящиеся к квадратным.

Тип урока: Урок изучение новых знаний.

Цель урока: Образовательные:

Познакомить учащихся с понятием «биквадратное уравнение»;

Рассмотреть способ решения биквадратных уравнений;

Способствовать формированию у учащихся умения решать биквадратные уравнения, методом замены переменных;

Отработать навыки решения квадратных уравнений.

Способствовать формированию навыков общения, умения работать в коллективе;

Способствовать формированию самостоятельности, аккуратности, правильной речи, взаимопомощи, точности.

Способствовать развитию умения учащихся анализировать, делать выводы, планировать и оценивать свои действия.

Учебник Алгебра, 8 класс, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир, учебник для учащихся общеобразовательных организаций;

Методическое пособие: Е. В. Буцко, А. Г. Мерзляк, В. Б. Полонский, М. С. Якир, алгебра 8 класс;

Дидактический материал: А. Г. Мерзляк, В. Б. Полонский, Е. М. Рабинович, М. С. Якир, алгебра, 8 класс.

Планируемые результаты: Учащиеся научатся решать биквадратные уравнения, решать уравнения методом замены переменных.

Форма работы: индивидуальная, фронтальная, групповая.

Оборудование: доска, мел, раздаточный материал, компьютер, проектор.

Проверка домашнего задания;

Актуализация знаний, постановка проблемы;

Изучение нового материала;

Физминутка для глаз;

Первичное закрепление изученного материала;

Рефлексия. Постановка домашнего задания.

Основные понятия: Биквадратное уравнение, метод замены переменных.

Общие сведения: По программе на данную тему запланировано 4 часа, номер урока по КТП 83.

Организационный момент: (1 мин) Мотивация.

Цель: создать благоприятный психологический и эмоциональный настрой на работу и возникновение у ученика осознанного включения в учебный процесс.

Здравствуйте, ребята! Сегодня на уроке мы постараемся узнать еще больше об уравнениях. Эпиграф нашего урока- слова английского физика Оливера Лоджа:

«Уравнение представляет собой наиболее серьезную

и важную вещь в математике».

Вы будете исследователями, будете работать в группах. Желаю вам удачи, хорошего настроения и взаимопонимания!

Проверка домашнего задания (2 мин).

На экране ответы на все уравнения. Учащиеся проверяют свою работу (слайд 1). Давайте подведем итог. Кто справился со всеми уравнениями? Кто выполнил половину? Кто не справился?

Актуализация знаний. Постановка проблемы (10 мин).

Цель: Актуализировать умение решать квадратные уравнения и неполные квадратные уравнения.

Вначале выполним устные упражнения (слайд 2).

Решить уравнение х 2 = 81, а 2 = 16, у 2 = 1, в 2 = 0, с 2 = 23, р 2 = — 25, к 2 = — 16, х 2 = .

Что записано на доске? (уравнения) (слайд3)

6 х = 0 Как называется это уравнение? (неполное квадратное уравнение. Как оно решается (вынесением общего множителя).

х 2 + 6х — 7 = 0 Как называются эти уравнения (приведенное квадратное уравнение)

х 2 – 8х + 15 = 0 способ решения (по теореме Виета). Сформулируйте теорему.

Математический тест. (карточки) (слайд 3)

1.Найдите коэффициенты уравнения 2 + х – 1 = 0.

а) а = 4; в = -1; с = -1 б) а = 4; в = 1; с = -1 в) а = 1; в = 4; с = -1

2. Решите уравнение: х 2 — 5х +4 = 0.

а) 4; 5; б) -4; 5; в) 4; -5.

3. Квадратное уравнение не имеет решения, если:

4. Не решая уравнение 7х 2 +11х -18 = 0, найдите его корни

а) ; б) ; в) ; 18.

Учащиеся выбирают свои варианты ответов в процессе обсуждения в группе и проверяют их.

При исправлении ошибок некоторые учащиеся пришли к выводу, что им необходимо повторить формулы корней квадратных уравнений. (слайд 4)

Учащимся даются карточки с заданиями.

х 2 – 64 = 0 2) х 2 – х = 0 3) 3х 2 – 5х – 2 =0 4) 2х 4 – 5х 2 + 7 = 0

х 2 =64 х(х-1)=0 D=25+24=49

х1,2= ±8 х=0 или х=1 х1= х2=2

В ходе обсуждения учащиеся приходят к выводу, что они не знают, как решается последнее уравнение. Учащиеся ставят проблему: Как решить данное уравнение и как оно называется.

Уравнение х 4 – 9х 2 + 20 = 0 называется: (слайд 5)

а) линейной б) квадратной в)биквадратное г) приведенное квадратное .

В ходе обсуждения учащиеся делают вывод, что уравнение называется биквадратным.

А что означаетприставка «би»? Этот вопрос был задан на предыдущем уроке в качестве творческого задания.

Би…- часть сложных слов, обозначающая: состоящий из двух частей, имеющий два признака, взятый дважды (бицепс).

Учащиеся формулируют тему урока, записывают «Решение уравнений, сводящихся к квадратным» (слайд 6).

Изучение нового материала (8 мин).

Цель: Способствовать умению самостоятельно добывать знания §23 стр. 187. Учащиеся читают определение, выводят алгоритм решения биквадратных уравнений и записывают его:

Ввести новую переменную t = х 2 .

Решить получившееся квадратное уравнение.

С учетом замены решить следующие уравнения.

Возвращаемся к проблемным уравнениям.

2х 4 – 5х 2 + 7 = 0 2) х 4 – 9х 2 + 20 = 0

t1= t2= t1= t2=

х1 2 = х2 2 =1 х1 2 = х2 2 =5

Ø х1=-1 х2=1 х1=-2 х2=2 х3= х4=

Ответ: х1=-1 х2=1 Ответ: х1=-2 х2=2 х3= х4=

Физминутка для глаз. Включает различные упражнения для снятия напряжения и утомления глаз (1 мин).

Первичное закрепление изученного материала (10 мин)

Решение биквадратных уравнений №775 (нечет), 779 (нечет 1 столбик). Двое учащихся работают у доски, комментируя решение, остальные работают в тетрадях.

Самостоятельная работа (10 мин).

Цель: Проверить умения применять полученные знания.

Сейчас каждый проверит сам себя – насколько он усвоил способы решения биквадратных уравнений и научился их применять. Когда вы закончите работу над частью «А» — «поднимите руку». Получите ключ для выполнения самопроверки к этой части. Если задание «А» выполнено правильно, получаете следующее задание и т.д.

Ø t1= t2= t1= -9 t2=9

х1 2 = х2 2 =5 Ø y 2 =9

х1=-1 х2=1 х3= х4=2 y1=-3 y2=3

Б.1) Решить уравнение: № 164 (3) стр. 27 (дидактический материал) 4x 4 — 13x 2 +3=0;

t1= t2=

2)Решить уравнение, не используя алгоритм:

В. Решить уравнение

После выполнения работы учащиеся в группах обсуждают решения, исправляют допущенные ошибки.

Рефлексия. Постановка домашнего задания.

Цель: Формирование самостоятельности в учебно-познавательной деятельности, осознание учащимися своей учебной деятельности.

Учащиеся записывают домашнее задание: § 23, № 776 (нечет), 778 (1,3,5), 780 (1).

Какой новый вид уравнения мы узнали? К какому уравнению приводится биквадратное уравнение? Оцените свою работу на уроке, заполните лист самооценки.

Лист самооценки и взаимооценки в работе группы

Критерий (за каждый критерий от 0 до 5 баллов)

Я внес(ла) большой вклад в работу группы

Я умею выслушивать мнение других ребят, принимать другую точку зрения

Я умею объяснять свою точку зрения, приводить доводы и убеждать

Я готов(а) принимать новые идеи, отличающиеся от моего первоначального мнения

Тема: Уравнения, сводящиеся к квадратным.

Класс состоит из учащихся различного уровня подготовки и математических способностей, поэтому на уроке осуществлялся дифференцированный и проблемный подходы.

Перед уроком была поставлена триединая дидактическая цель урока, которая реализовывалась через следующие аспекты:

Отработка способов решения уравнений, сводящихся к квадратным по алгоритму;

Формирование навыков решения уравнений, сводящихся к квадратным по алгоритму.

Развивать умение выявлять закономерности, абстрагировать и обобщать;

развивать навыки самоконтроля и взаимоконтроля.

воспитание трудолюбия, взаимопомощи, математической культуры.

Поставлены реальные цели образовательного, развивающего и воспитательного аспектов. Цели данного урока соответствуют стандартным требованиям программы и связаны с предыдущими занятиями.

Структура урока: комбинированный урок, сочетает различные виды деятельности, с элементами проблемного обучения.

Форма организации деятельности учащихся: фронтальная, групповая, индивидуальная.

Оборудование: доска, мел, раздаточный материал, компьютер, проектор.

Структура урока соответствует типу урока и его дидактическим задачам. На уроке были использованы следующие методы обучения:

словесные (беседа с учащимися);

наглядные (демонстрация презентации);

Были использованы следующие формы познавательной деятельности: фронтальная, индивидуальная, групповая, которые в ходе урока сменяли друг друга.

Время, отведенное на все этапы урока, было распределено рационально. Поддерживался средний темп работы учащихся.

Урок начинался с организационного момента, задача которого подготовить учащихся к работе на уроке. Этот этап включал в себя мотивацию учащихся, хотя и был непродолжительным, позволил быстро включить учащихся в ход урока, активировать внимание.

Следующий этап – проверка домашнего задания. Задача данного этапа выявление уровня усвоения пройденного материала.

За ним шел этап актуализации знаний. Задача данного этапа выявление пробелов в знаниях учащихся и их устранение. С этой целью использовалась устная фронтальная работа. Обязательны были на этапе, повторение теоретического материала, комментирование ответов учащихся, постановка проблемы, повторение формул нахождения корней квадратного уравнения.

Следующий этап – изучение нового материала. Дети с помощью учителя решали биквадратные уравнения, методом замены пременных.

Затем ребята работали самостоятельно с карточками. Был осуществлен дифференцированный подход к заданиям. После выполнения самостоятельной работы дети в группе обсуждали решения.

Завершающим этапом была рефлексия: оценка учащимися и учителем результатов урока, подведение итогов, постановка домашнего задания.

Между всеми этапами четко прослеживается логическая связь и завершенность каждого этапа. В ходе урока была достигнута триединая дидактическая цель. Учащиеся повторили формулы нахождения корней квадратного уравнения, закрепили умения решать квадратные уравнения. Учащиеся учились рассуждать, логично излагать свои мысли, работать в группе.

Выбранные формы и методы обучения способствовали созданию на уроке положительной психологической атмосферы.

Общение учащихся и учителя доброжелательное, доверительное.

По моему мнению, реализованы все поставленные дидактические цели и задачи урока. Учитель и учащиеся получили удовольствие от общения. Ребята участвовали в подведении итогов урока. Отметки за урок выставлены и прокомментированы.

Урок алгебры в 8 – м классе по теме: «Решение уравнений, сводящихся к квадратным».

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Урок алгебры в 8 – м классе

по теме: «Решение уравнений, сводящихся к квадратным».

МБОУ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ

ОТДЕЛЬНЫХ ПРЕДМЕТОВ № 3»

Молодцова Нина Александровна.

Тема: «Уравнения, сводящиеся к квадратным».

Цели урока.

Закрепить навыки решения квадратных уравнений, расширить и углубить знания по данной теме.

Научить учащихся решать уравнения, используя метод введения новой переменной.

Воспитывать самостоятельность и творчество.

Способствовать выработке у школьников желания и потребности в применении изучаемых фактов.

Научить применять знакомые формулы в измененных условиях.

Продолжить работу над развитием речи, умением анализировать, выделять главное, обобщать, доказывать.

Проверка домашнего задания. (учащиеся тетради с д/з сдают на проверку до начала урока)

II Устная работа

Связь с устной работой.

На обороте доски заранее подготовлен текст

Связь с устной работой.

Работа с магнитной доской

Записать на обороте доски

VII Домашнее задание.

Сегодня на уроке мне хотелось бы вас пригласить «поглубже» заглянуть в замечательный мир математики – в мир уравнений, в мир поиска и исследований.

Но для начала давайте вспомним:

Какое уравнение называется квадратным? Какие квадратные уравнения называются неполными? Приведите примеры неполных квадратных уравнений. Сформулируйте определение дискриминанта квадратного уравнения. Сколько корней может иметь квадратное уравнение? Напишите основную формулу корней квадратного уравнения. Напишите дополнительную формулу корней квадратного уравнения. Сформулируйте теорему Виета. Сформулируйте теорему обратную теореме Виета.

Все способы решений, известных вам уравнений, можно образно представить в виде “ключей”.

Символ урока – связка ключей — «Квадратные уравнения», «Дробно-рациональные уравнения», «Уравнения, сводящиеся к квадратным».

Задание: Определите вид каждого уравнения и найдите корни (№ 1 — № 5), где это возможно выполнить (устно).

На доске записаны уравнения.

1) (ответ:)

2) (ответ: t 1 = 1, t 2 = 4)

3) (ответ:)

4) ( D Уравнения, сводящиеся к квадратным».

И наша задача состоит в том, чтобы «отточить» этот ключик и научиться, таким ключом, открывать тайну уравнений.

Поэтому, тема нашего урока: «Уравнения, сводящиеся к квадратным».

Давайте рассмотрим уравнение (№ 6).

— Какую особенность в данном уравнении Вы заметили? — Выражение обозначим буквой t . Что изменилось в уравнении? (получилось квадратное уравнение относительно t ). И такой подход к решению уравнений называют – методом введения новой переменной, который позволяет свести данное уравнение к квадратному.

Введем замену: Пусть х-1 = t , тогда исходное уравнение примет вид – по т. Виета найдём корни уравнения: t 1 = 1, t 2 = 4. Но нам нужны значения х. Вернемся к подстановке: х-1 = t ,получим линейные уравнения:

Ответ:

Давайте ещё раз проанализируем решение данного уравнения, каких целей добились.

План исследования уравнения:

Провести анализ уравнения.

Составить план решения.

Реализовать план решения.

Составить анализ метода решения и систематизировать опыт.

4 пункт плана исследования уравнения — составление анализа метода решения — это ещё один этап нашей исследовательской работы.

Знаете ли вы, что английский математик Джеймс Джозеф Сильвестр называл музыку математикой чувств, а математику – музыкой разума.

Релаксация: учащиеся закрывают глаза и расслабляются. (Звучит музыка) – 1минута.

Продолжим нашу работу.

Рассмотрим следующее уравнение (№ 7).

Раскроем скобки, объединяя 1 – 4 множители и 2 – 3 множители. Получим уравнение Нетрудно заметить, что если решать уравнение, раскрывая скобки дальше, то в левой части уравнения получится многочлен четвёртой степени – сложно.

Введем замену: Пусть ,тогда исходное уравнение примет вид:

Вернемся к подстановке, получим уравнения:

Ответ: .

Подведём итог нашей исследовательской работы. Вывод: Итак, два различных уравнения мы решили одним и тем же методом – методом введения новой переменной, где первоначальное уравнение приводится к квадратному. А теперь давайте попробуем составить алгоритм решения (выполняем четвертый пункт схемы исследования).

Уравнения, определяемые подстановкой

Корни квадратного уравнения

возврат к прежней

(У каждого учащегося на столе задание с «алгоритмом» решения).

(Беглый устный разбор).

а) Какую подстановку можно выполнить в каждом уравнении?

б) А теперь попробуйте свести данное уравнение к квадратному, подстановку мы уже определили (выберите по желанию для себя любое уравнение) и проверим.

Ответ: у = -2; -1; 0.

С.

D .

Алгоритм. Карточка — практикум. Решите уравнения:

Рефлексия. Сегодня на уроке мы только попробовали подобрать наш «ключик» к решению уравнений. Вам предстоит ещё большая работа, чтобы этот ключ работал в совершенстве. Благодарю вас за урок. Желаю удачи вам, новых поисков и открытий. До свидания.

Список источников информации.

Алгебра. Учебник для 8 класса с углублённым изучением математики./ Ю.Н. Макарычев, Н.Г. Миндюк, К.И. Нешков. Издательство: «МНЕМОЗИНА», Москва 2010г./

Алгебра. Учебное пособие для учащихся 8 класса с углублённым изучением математики./Под редакцией Н.Я. Виленкина. Москва «ПРОСВЕЩЕНИЕ», 2001г./

«Уравнения». Пособие для школьников, абитуриентов и учителей./Под редакцией Б.Г. Зива. С-Петербург, Москва 2003г./

Звавич Л.И, А.Р. Рязановский «Задачник для классов с углубленным изучением математики»/ «Мнемозина» Москва 2004г./

Самоанализ урока алгебры в 8 – м классе

по теме: «Решение уравнений, сводящихся к квадратным».

Урок построен в соответствии с программными требованиями.

По типу урок урок формирования новых знаний. Так как, школьное образование стоит перед необходимостью учитывать индивидуальность, уникальность каждого ученика. Наиболее эффективным в плане познания и развития личности является, на мой взгляд, исследовательский подход в обучении. Поэтому в ыбранная мною форма проведения урока – «Урок – исследование», целью которого является реализация приобретенных знаний и развитие умений и навыков. Такая форма проведения занятия существенно повышает мотивацию учения, эффективность и продуктивность учебной деятельности, обеспечивает работу всего класса, позволяет учащимся раскрыть свои способности. В ходе выполнения заданий проверяется усвоенный материал, на основе которого идет осмысление нового.

При подготовке к уроку мною были учтены возрастные и индивидуальные особенности учащихся.

Закрепить навыки решения квадратных уравнений, расширить и углубить знания по данной теме.

Научить учащихся решать уравнения, используя метод введения новой переменной.

Воспитывать самостоятельность и творчество.

Способствовать выработке у школьников желания и потребности в применении изучаемых фактов.

Научить применять знакомые формулы в измененных условиях.

Продолжить работу над развитием речи, умением анализировать, выделять главное, обобщать, доказывать.

Методы обучения являются инструментом развития, способствуют «вооружению» школьников прочными знаниями, а также умениями переносить их на новые ситуации. Служат способом формирования потребности в новых знаниях, создания максимальных условий для активной мыслительной деятельности учащихся. Выбранные мною методы соответствовали целям и задачам урока, характеру и содержанию учебного материала, уровню знаний, умений и навыков учащихся. Так, были использованы методы: словесные (беседа, мини- диалог), наглядные, практические.

Чередование словесных, практических методов, форм организации познавательной деятельности, по моему мнению, способствовали предупреждению перегрузки учащихся в процессе урока. Для домашнего задания было предложено семь заданий, два из которых требуют творческого подхода. В целом урок прошел успешно. Первичный контроль, проверка понимания показали, что материал усвоен. Учащиеся умеют определять вид уравнения и выбирать рациональный способ решения. Могут найти ошибку в своем решении или в решении другого ученика и исправить её. Могут объяснить и аргументировать свои действия учащимся всего класса. Осознают значимость учебного материала урока. Рефлексия показала, что своим продвижением довольны все учащиеся, отметили сотрудничество.

Урок достиг поставленных целей.

Учитель математики Молодцова Н.А.


источники:

http://multiurok.ru/files/plan-konspekt-uroka-uravneniia-svodiashchiesia-k-k.html

http://infourok.ru/urok-algebri-v-m-klasse-po-teme-reshenie-uravneniy-svodyaschihsya-k-kvadratnim-965466.html