8 методов решения тригонометрических уравнений

Методы решения тригонометрических уравнений

Разделы: Математика

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,

Ответ: (-1) к+1 /6 + k, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.

Ответ: ± /3 + 2k, k€z, /4 + m, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg x = 1 и tg x = 2,

откуда х = /4 + m, m€z,

х = arctg 2 + k, k€z.

Ответ: /4 + m, m€z, arctg 2 + k, k€z.

4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.

Решение: Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 42 sin у = 4

1 – 2 sin 2 у + 42 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 42t + 3 = 0

t = 2/2 и t = 32/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = 2/2,

5x + 6 = (-1) к /4 + k, k€z,

х = (-1) к /20 – 6/5 + k/5, k€z.

Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.

Ответ: (0; /2 + k) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = /2 + k, k€z

Ответ: /2 + k, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 sin 5х 1, и -1 sin х 1

0 cos 2 х 1

0 + 2 2 + cos 2 х 1 + 2

2 2 + cos 2 х 3

sin 5х + sin х 2, и 2 + cos 2 х 2

-2 sin 5х + sin х 2, т.е.

sin 5х + sin х 2,

имеем левая часть 2, а правая часть 2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = /2 + k, k€z (обязательно проверить).

Ответ: /2 + k, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

  1. cos х/2 = 0, х/2 = /2 + k, k€z, х = + 2k, k€z;
  2. cos 5/2х = 0, 5/2х = /2 + k, k€z, х = /5 + 2/5k, k€z;
  3. cos х = 0, х = /2 + k, k€z.

Ответ: + 2k, /5 + 2/5k, /2 + k, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = /5 + 2/5k, х2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = /3 + 2/3k.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.

Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ: /2 + k, + 2k, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.

Эти значения х удовлетворяют уравнению.

Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.

Ответ: /2 + k, /3 + 2k, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 t 1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t1 = 1/2, t2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .

уравнение sin 2х = – 4 решений не имеет.

Ответ: (- 1) к //12 + k /2, k€z .

14. Решить уравнение: sin 9х + sin х = 2.

Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin а1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = /2 + 2k, k€z и х = /18 + 2n, n€z.

Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = /2 + 2k, k€z.

Ответ: /2 + 2k, k€z.

15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.

Решение: воспользуемся формулой:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

и перепишем уравнение в виде

2 cos x = – cos 2х – 3 sin 2х.

Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:

2 cos x = – 2 (1/2 cos 2х + 3/2 sin 2х),

которое можно записать в виде

2 cos x = – 2 (cos а cos 2х + sin а sin 2х),

где очевидно, а = /3. Преобразуя правую часть полученного уравнения с помощью формулы:

cos (a – b) = cos a cos b + sin a sin b;

приходим к уравнению

2 cos x = – 2 cos (2х – /3),

cos x + cos (2х – /3) = 0.

Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,

cos x + cos (2х – /3) = 2 cos (3х/2 – /6) cos (/6 – х/2) = 0

Это уравнение расщепляется на два уравнения

cos (3х/2 – /6) = 0, и

cos (/6 – х/2) = 0,

решение которых уже не представляет сколь нибудь значительных трудностей.

Ответ: 2/9(2 + 3n), 2/3(2 + 3 k), n, k€z.

16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?

Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:

а sin x – 4 cos x = (а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/(а 2 + 16), и cos y = а /(а 2 + 16).

Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде

(а 2 + 16) sin (x – y) = 5,

sin (x – y) = 5/(а 2 + 16), это уравнение имеет решение при условии 5/(а 2 + 16) 1.

Решим это неравенство:

5/(а 2 + 16) 1, обе части умножим на (а 2 + 16):

5 (а 2 + 16),

(а 2 + 16) 5,

а 2 + 16 25,

а 2 9, или

а 3, следовательно

а € (-;-3] U [3; ).

Ответ: (-;-3] U [3; ).

17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?

Решение: поскольку 0 sin 2 x 1, и -1 cos (x +2а) 1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.

Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.

sin x = – 1, sin x = 1, cos (x +2 а) = 1;

х = /2 + n, n€z, и x +2 а = 2 к, к€z;

х = /2 + n, и x = – 2 а + 2 к;

/2 + n = – 2 а + 2 к;

2 а = 2 к – /2 – n;

а = к – /4 – n/2;

а = – /4 + /2 (2к – n);

а = – /4 + m/2, m€z.

Ответ: – /4 + m/2, где m€z.

Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.

Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.

8 методов решения тригонометрических уравнений

Методы решения тригонометрических уравнений.

1. Алгебраический метод.

( метод замены переменной и подстановки ).

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Восемь способов решения одного тригонометрического уравнения.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Описание презентации по отдельным слайдам:

Краевая научно-практическая конференция «Эврика» Малой академии наук учащихся Кубани Восемь способов решения одного тригонометрического уравнения Выполнен ученицей 11 «А» класса МОУ гимназии №40 Скопинцевой М. Г. Краснодара Научный руководитель- учитель математики МОУ гимназии№40 Шмитько И.А. Научный консультант-преподаватель ИНСПО Куб ГУ, канд. пед. наук Печкуренко Е.Н. 2008г.

Человеку, изучающему алгебру часто полезнее решить одну и ту же задачу тремя различными способами, чем решать три – четыре различные задачи. Решая одну задачу различными способами , можно путем сравнивания выяснить, какой из них короче и эффективнее. Так вырабатывается опыт. У. У. Сойер /английский математик и педагог XX века/

Восемь способов решения одного тригонометрического уравнения. 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. 3.Введение вспомогательного угла. 4.Преобразование разности (или суммы) тригонометрических функций в произведение. 5.Приведение к квадратному уравнению. 6.Возведение обеих частей уравнения в квадрат. 7.Универсальная подстановка. 8.Графическое решение.

Задача. Решите уравнение различными способами: sin x – cos x = 1. ?

Способ первый. Приведение уравнения к однородному. sin x – cos x = 1 Это однородное уравнение первой степени. Делим обе части этого уравнения на т.к., если что противоречит тождеству Получим: sin x = 2 sin x/2 cos x/2, cos x = cos 2 x/2 +sin 2 x/2, 1 = sin 2 x/2 + cos2 x/2. , .

Способ второй. Разложение левой части уравнения на множители: sin x – cos x = 1 Далее так, как в первом способе.

Способ третий. Введение вспомогательного угла. sin x – cos x =1 В левой части вынесем — корень квадратный из суммы квадратов коэффициентов при sin х и cos х. = sin  /4 = cos  /4 sin cos — cos  sin  = sin (-)

Внимание! Эквивалентны ли результаты , полученные в рассмотренных способах решений данного уравнения sin x – cos x = 1? Покажем однозначность ответов. 1 –й способ x =  /2 + 2  n, n  Z x:  /2; 5  /2 ; 9 /2; -3  /2; -7  /2;… x =  + 2 n, b Z x =  ; 3  ; 5 ; —  ; -3 ;… 2-й способ x = /4 + ( -1)  /4 +  k, k  Z x:  /2; ; 5  /2 ; 3  ; 9/2; -; — 3/2; -3; -7/2…

Способ четвертый. Преобразование разности (или суммы) тригонометрических функций в произведение. sin x – cos x = 1 Запишем уравнение в виде: Применим формулу разности двух синусов. Далее так, как в третьем способе. 1 cos x = sin ( / 2 – x )

Способ пятый. Приведение к квадратному уравнению относительно одной функции. sin x — cos x = 1 Возведем в квадрат: или

Внимание! При решении уравнения обе части уравнения возводились в квадрат, что могло привести к появлению посторонних решений, поэтому необходима проверка. Сделаем проверку. Полученные решения эквивалентны объединению трёх решений Первое и второе решение совпадают с ранее полученными, поэтому не являются посторонними. Проверять не будем. Проверим: Левая часть: а правая часть уравнения равна 1, следовательно это решение является посторонним.

Способ шестой.Возведение обеих частей уравнения в квадрат. sin x – cos x = 1 sin2x — 2sin x cos x + cos2 x = 1, sin2 x + cos2x = 1 1 – 2sin x cos x = 1, 2sin x cos x = 0, Ответ: x =  n, n  Z, x=  /2 + n, n  Z. или cos x =0 x=  /2 + n, n  Z sin x = 0 x =  n, n  Z

Способ седьмой. Универсальная подстановка (выражение sin x и cos x через tg x/2). sin x – cos x =1 Выражение всех функций через tg х (универсальная подстановка) по формулам: Sin x –cosx = 1 Умножим обе части уравнения на

Внимание! Могли потерять корни.Необходима проверка! Область допустимых значений первоначального уравнения — всё множество R . При переходе к tg x/2 из рассмотрения выпали значения x, при которых tg x/2 не имеет смысла, т.е.x =  +  n, где n  Z . Следует проверить , не является ли x =  + n, где n  Z решением данного уравнения. Левая часть sin(π — 2πk) – cos(π + 2πk) = sin π – cos π = 0 – (-1) = 1 и правая часть равна единице. Значит, x =  +  n ,где n  Zявляется решением данного уравнения. Ответ: : x=  n, n  Z, x=  /2 + n, n  Z.

Способ восьмой. Графический способ решения. sin x – cos x = 1 На одном и том же чертеже построим графики функций, соответствующих левой и правой части уравнения. Абсциссы точек пересечения графиков являются решением данного уравнения, у = sin х — график синусоида. у = соs х + 1 – синусоида, смещённая на единицу вверх. sin x = cos x + 1

Проверь себя ! Решу, применяя разные способы решения одного и того же тригонометрического уравнения: 1. sin2x + cosx = 0 ; 2. 3 sin x – cos x = 0 3. sin6x + sin3x = 0; 4. sin2x +cos2x = 1; 5.  3sin x + cos x = 1.

sin2x + cosx = 0 sin2x =2sinxcosx, тогда 2sinxcosx + cosx = 0, cosx( 2sinx + 1 ) = 0, cosx = 0 или 2sinx + 1 = 0, х =  /2 +  n; n  Z; sinx = -1/2 x = ( -1)k+1  /6 + k, k  Z. Ответ: x =  /2 +  n, ; x = (-1)k+1  /6 +  k , где n Z , k  Z . Способ: разложение левой части уравнения на множители ( 2-й способ ).

sin2x + cosx = 0 cosx = sin ( /2 – x ), тогда : sin2x + sin ( /2 – x ) = 0, 2sin ( x/2 +  /4)cos (3x/2 —  /4 ) = 0. sin (x/2 +  /4) = 0 или cos (3x/2 —  /4 ) = 0, x/2 +  /4 =  n 3x/2 —  /4 =  /2 +  n x =-  /2 + 2  n x =  / 2+ 2  n/3 , n Z Ответ : x = —  /2 + 2  n , x =  / 2 + 2 n/3 , n Z . Способ : преобразование суммы тригонометрических функций в произведение ( 4 –й способ ) .

Сравним результаты двух способов решения уравнения sin2x + cosx = 0 2 –й способ: x =  /2 +  n; n Z, n =0, x =  /2 ( т. A ), n = 1, x = 3  /2 (т. В ), n =-1, x = —  /2 ( т. В ), n = 2, x =  /2 +2 (т.А) 2) x=(-1)k+1 /6 + k;k Z, k=0, x = —  /6 ( т.C ), k =1, x =  /6 +  (т.D ), k =-1, x =  /6 —  (т .D), k =2,x = —  /6+2  (т.C) 4-способ: 1) x = - /2 +  n, n Z , n =0, x= —  /2, (т .В ), n =1, x =-  /2 + 2 , (т .В ), n=-1, x= —  /2 –2  , (т. В ), n=2, x = —  / 2+ 4 ,(т .В ). 2) x =  / 2 + 2 n/3 , n Z . n =0, x=  /2 ( т.А ), n=1, x = 7  /6 ( т. D ), n= -1, x = —  /6 (т. А), n = 2, x = 11 / 6 (т.С ),…

Графическая иллюстрация этих решений на тригонометрическом круге Вывод : при обоих способах решений данного уравнения результаты одни и те же. 0 х у у А В С D

3 sin x – coos x = 0 cos x  0 в силу основного тригонометрического тождества sin2x + cos2x = 1. Разделим обе части уравнения на cos x. 3 tg x = 1, tg x = 1/ 3 , x =  /6 + n , n  Z. Ответ: x =  /6 +  n, n  Z. Cпособ :решение однородного уравнения ( 1-й способ ).

3 sin x – cos x = 0 3sin x – cos x = 0, разделим обе части уравнения на 2. 3/2sin x – ½cos x = 0, sin x cos  /6 – cos x sin  /6 = 0, sin (x —  /6) = 0, x —  /6 =  n , n  Z, x =  /6 +  n , n  Z. Ответ : x =  /6 +  n, n  Z. Способ: введение вспомогательного угла ( 3 –й способ ).

3 sin x – cos x = 0 3 sin x – cos x = 0, возведем обе части уравнения в квадрат. 3 sin2x – 2 3 sin x cos x + cos2x = 1, разделим обе части уравнения на cos2x  0. 3 tg2x – 23 tg x + 1 = 0 D = 0, tg x =  3/ 3; x =  /6 +  n, n  Z. Ответ 😡 =  /6 +  n, n  Z. Способ :возведение обеих частей уравнения в квадрат ( 6-й способ). уравнения в

3 sin x – cos x = 0  3 sin x – cos x = 0, 2 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 , 1 + tg 2 x/2 , 3 2 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2 3 2 tg x/2 — 1 + tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2  0, tg 2 x/2 + 2 3 tg x/2 — 1 = 0, tg x/2 = m, m 2 + 2 3 m – 1 =0, D = 0, m1 = — 3 — 2, m2 = — 3 + 2, 1) tg x = — 3 — 2, 2(- 3 — 2 ) — 2(3 + 2 ) — 2(3 + 2 ) — 1 1 +( — 3 — 2)2 8-4 3 4( 2+ 3 ) 2 , sin x = — 1/2, x = ( -1 ) k +1 /6 +  k, k  Z; 2) tg x = — 3 + 2, 2(- 3 + 2 ) — 2(3 — 2 ) — 2(3 — 2 ) 1 1 +( — 3 + 2)2 8-4 3 4( 2- 3 ) 2 , sin x = 1/2, x = ( -1 ) k  /6 +  k, k  Z. Примечание:решения можно объединить: x = ( -1 ) k  /6 +  k, k  Z. Ответ: x = ( -1 ) k  /6 +  k, k  Z. Способ: универсальная подстановка ( 7 –й способ ). sin x = cos x= — = = 0, =0, sin x= sin x = = = = = = =

sin 6x + sin 3x = 0 sin 6x + sin 3x = 0, 2 sin 3x cos 3x + sin 3x = 0, sin 3x ( 2 cos 3x + 1 ) = 0, sin 3x =0 , 2 cos 3x + 1 = 0, 3x =  n, n  Z, cos 3x = -½, x =  n/3, n  Z , x = 2  /9 + 2  n /3, n  Z. Ответ: x =  n/3, n  Z; x = 2  /9 + 2  n /3, n  Z. Способ:разложение левой части уравнения на множители ( 2 способ ).

sin 6x + sin 3x = 0 sin 6x + sin 3x = 0, 2sin 9x/2 cos 3x/2 = 0 , sin 9x/2=0 , cos 3x /2 = 0, 9x/2 =  n, n  Z, 3x /2 =  /2 +  n, n  Z, x = 2  n/9, n  Z; x =  /3 + 2  n/3, n  Z . Ответ: x = 2  n/9, n Z; x =  /3 + 2  n/3, n Z. Способ: преобразование тригонометрических функций в произведение ( 4-й способ ).

Сравним решения уравнения sin6x+ sin3x =0, полученные разными способами. Вывод: результаты решения данного уравнения разными способами совпадают

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1 2 sin x cos x + cos 2 x – sin2 x = sin 2x + cos 2x, 2 sin x cos x – 2 sin 2 x = 0, 2 sin x ( cos x – sin x ) = 0, sin x = 0, cos x – sin x = 0, x =  n, n  Z, tg x = 1, x =  /4 + n, n  Z. Ответ:  n, n  Z, x =  /4 + n, n  Z. Способ: Приведение уравнения к однородному.( 1-й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin2x – (1 – cos 2x ) = 1, 2 sin x cos x – 2 cos 2x/2 = 0, Далее так, как первым способом ( кадр № 27 ). Способ: разложение левой части уравнения на множители ( 2 – й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin 2x + sin ( /2 – 2x ) = 1, 2sin  /4 cos ( 2x —  /4 ) = 1, sin  /4 = 1/ 2 ,  2 cos ( 2x —  /4 )= 1 arksin (1 /  2 ) =  /4 . cos ( 2x —  /4 )= 1 /  2 , 2x —  /4 = arkcos (1 /  2 ) + 2  n, n  Z, 2x=  /4 arkcos( 1 /  2 ) + 2  n, n  Z, x=  /8  /8 +  n, n  Z. Ответ: x=  /8  /8 +  n, n  Z. Способ: преобразование суммы тригонометрических функций в произведение ( 4 –й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, разделим обе части уравнения на 2, 1/2 sin 2x + 1/ 2 cos 2x = 1/ 2 , cos /4 sin 2x + sin /4 cos 2x = 1/ 2, sin (2x + /4 ) = 1/ 2, 2x + /4 = (- 1)k  /4 +  k, kZ, 2x = — /4 + (- 1) k /4 +  k, kZ, x = —  /8 +(- 1)k  /8 +  k/2, kZ. Ответ: x = —  /8 +(- 1)k  /8 +  k/2, kZ. Способ:Введение вспомогательного угла (3й – способ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, Cos 2x =   ( 1 — sin 2 2x ) sin 2x   ( 1 — sin 2 2x ) = 1,   ( 1 — sin 2 2x ) = 1 – sin 2x, возведем обе части уравнения в квадрат, тогда 1 — sin 2 2x = 1 – 2 sin 2x + sin 2 2x , 2 sin 2 2x — 2 sin 2x = 0, 2 sin 2x (sin 2x — 1 ) = 0, sin 2x = 0, sin 2x — 1 = 0, 2x =  n, sin 2x = 1, x =  n/2, n  Z ; 2x =  /2 + 2  n, n  Z, x =  /4 +  n, n  Z. Ответ: x =  n/2, n  Z ; x =  /4 +  n, n  Z. Способ: приведение к квадратному уравнению относительно sin 2x ( 5 –й способ ).

sin 2x + cos 2x = 1 sin 2x + cos 2x = 1, sin 2 2x + 2sin 2x cos 2x + cos 2x = 1, 2sin 2x cos 2x + 1 = 1, 2sin 2x cos 2x = 0, sin 2x = 0, cos 2x = 0 , 2x =  n, n  Z ; 2x =  / 2 + 2  n , n  Z, x =  n/2, n  Z ; x =  / 4 +  n , n  Z. Ответ:  / 2 + 2  n , n  Z; x =  / 4 +  n , n  Z. Способ : возведение обеих частей уравнения в квадрат ( 6 – й способ ).

sin 2x + cos 2x = 1 sin2 x +cos 2x = 0, 2 tg x 1 — tg 2 x 1 + tg 2 x , 1 + tg 2 x , 2 tg x 1 — tg 2 x 1 + tg 2 x 1 + tg 2 x 2 tg x +1 — tg 2 x –1 — tg 2 x — 0, 1 + tg 2 x/2  0, 2tg 2 x — 2 tg x = 0, 2tg x ( tg x – 1 ) = 0, tg x =0, tg x – 1 = 0, sin 2x = 0, sin 2x = 1, x =  n/2, n Z , 2x =  /2 + 2  n, n  Z, x =  /4 +  n, n Z. Ответ: x =  n/2, n Z ; x =  /4 +  n, n Z. Способ: универсальная подстановка ( 7 –й способ ). sin 2x = cos2 x = + = 0

 3 sin x + cos x = 1  3 sin x + cos x = 1,  3 /2sin x + 1/2cos x = 1/2, cos /6 sin x + sin  /6 cos x = 1/2 , Sin ( x +  /6 ) = 1 / 2 , x+  /6 = (- 1 ) k  /6 +  k, k Z, x = —  /6 +(- 1 ) k  /6 +  k, k Z, Ответ 😡 = —  /6 +(- 1 ) k  /6 +  k, k Z. Способ: введение вспомогательного угла ( 3-й способ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 2 3 sin x/2 cos x/2 + cos 2x/2 -sin 2x/2= cos 2x/2 + sin 2x/2, 2 3 sin x/2 cos x/2 — 2sin 2x/2 =0, 2 sin x/2 ( 3 cos x/2 — sin x/2 ) =0, sin x/2 = 0,  3 cos x/2 — sin x/2 = 0, sin x/2 =  3 cos x/2 , x/2=  n, n  Z, tg x/2 =  3 , x = 2 n, n  Z , x/2 =  /3 +  n, n  Z, x = 2  /3 + 2  n, n  Z. Ответ: x = 2 n, n  Z , x = 2 n, n  Z . Способ : приведение к однородному ( 1 –й способ ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 2 3 sin x/2cos x/2 = 1 – cos x, 1 – cos x = 2 cos 2 x/2 2 3 sin x/2cos x/2 = 2 cos 2 x/2, 2 3 sin x/2cos x/2 — 2 cos 2 x/2 = 0, 2 cos x/2 ( 3 sin x/2 — cos x/2) = 0, Далее решать так как в первом способе. Способ: разложение левой части уравнения на множители ( 2 –й способ).

 3 sin x + cos x = 1  3 sin x + cos x = 1, 3 sin2 x +2  3 sin x cos x +cos 2 x = 1, 2sin2 x +2  3 sin x cos x + (sin2 x +cos 2 x ) = 1, 2sin2 x +2  3 sin x cos x = 0, 2sinx ( sin x +  3 cos x) = 0, sinx = 0, sin x +  3 cos x = 0, x =  n , n Z, tg x = - 3 , x = —  /3 +  n, n  Z . Ответ : x =  n , n Z, x = —  /3 +  n, n  Z . Способ : возведение обеих частей уравнения в квадрат ( 6 – й способ ).

 3 sin x + cos x = 1  3 sin x +cos x = 0, 2  3 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 , 1 + tg 2 x/2 , 2 3 tg x/2 1 — tg 2 x/2 1 + tg 2 x/2 1 + tg 2 x/2 23 tg x/2 + 1 — tg 2 x/2 = 1 + tg 2 x/2 , так как 1 + tg 2 x/2  0, 2 tg 2 x/2 + 23 tg x/2 = 1, 2 tg x/2 (tg x/2 + 3 ) = 0, tg x/2 = 0 , , tg x/2 = - 3 , x/2 =  n , n Z, x/2 = —  /3 +  n , n Z, x = 2 n , n Z, x = — 2 /3 + 2 n , n Z. Ответ: x = 2 n , n Z, x = — 2 /3 + 2 n , n Z. Способ : универсальная подстановка (7 – й способ ). sin x = cos x = + =1,

Подведем итоги 1.Приведение уравнения к однородному. 2.Разложение левой части уравнения на множители. 3.Введение вспомогательного угла. 4.Преобразование разности (или суммы) тригонометрических функций в произведение. 5.Приведение к квадратному уравнению. 6.Возведение обеих частей уравнения в квадрат. 7.Универсальная подстановка. 8.Графическое решение. 12345678 1 sin2x + cosx = 0 2 sin6x + sin3x = 0 3 sin6x + sin3x = 0 4 sin2x +cos2x = 1 5 3sin x + cos x = 1

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 932 человека из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 682 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 308 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 575 721 материал в базе

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 09.09.2015
  • 725
  • 0
  • 09.09.2015
  • 520
  • 0
  • 09.09.2015
  • 577
  • 0
  • 09.09.2015
  • 545
  • 0
  • 09.09.2015
  • 3221
  • 5
  • 09.09.2015
  • 1310
  • 10
  • 09.09.2015
  • 721
  • 0

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 09.09.2015 5877
  • PPTX 1.4 мбайт
  • 30 скачиваний
  • Рейтинг: 3 из 5
  • Оцените материал:

Настоящий материал опубликован пользователем Шмитько Ирина Анатольевна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 6 лет и 5 месяцев
  • Подписчики: 0
  • Всего просмотров: 9598
  • Всего материалов: 7

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

В России действуют более 3,5 тысячи студенческих отрядов

Время чтения: 2 минуты

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://www.sites.google.com/site/trigonometriavneskoly/metody-resenia-trigonometriceskih-uravnenij

http://infourok.ru/vosem-sposobov-resheniya-odnogo-trigonometricheskogo-uravneniya-405964.html