Аффинная система координат уравнение прямой

Аффинные координаты

Аффинная система координат на прямой, на плоскости, в пространстве

Пусть в пространстве фиксирована точка . Совокупность точки и базиса называется аффинной (декартовой) системой координат :

– аффинная система координат на прямой (рис.2.1,а) — это точка и ненулевой вектор на прямой (базис на прямой);

– аффинная система координат на плоскости (рис.2.1,6) — это точка и два неколпинеарных вектора , взятые в определенном порядке (базис на плоскости);

– аффинная система координат в пространстве (рис.2.1,в) — это точка и три некомпланарных вектора , взятые в определенном порядке (базис в пространстве).

Точка называется началом координат . Прямые, проходящие через начало координат в направлении базисных векторов, называются координатными осями: — ось абсцисс, — ось ординат, — ось аппликат . Плоскости, проходящие через две координатные оси, называются координатными плоскостями .

Аффинная система координат в пространстве (или на плоскости) называется правой, если ее базис является правым, и левой, если её базис — левый.

Координаты векторов и точек в аффинной системе координат

Координатами вектора в заданной системе координат называются, как и ранее, коэффициенты в разложении вектора по базису (см. разд.1.3.1; 1.3.2; 1.3.3).

Для любой точки в заданной аффинной системе координат можно рассмотреть вектор начало которого совпадает с началом координат, а конец — с точкой (рис.2.1,а,б,в). Этот вектор называется радиус-вектором точки .

Координатами точки в заданной системе координат называются координаты радиус-вектора этой точки относительно заданного базиса. В пространстве это координаты вектора в базисе , т.е. коэффициенты в разложении (рис.2.1,в). Координаты точки записывают в виде . Первая координата называется абсциссой , вторая – ординатой , третья – аппликатой . На плоскости и на прямой координаты записывают в виде и согласно разложениям (рис.2.1,6), (рис.2.1,а). Координаты точки , или, что то же самое, координаты ее радиус-вектора представляют в виде координатного столбца (матрицы-столбца):

Найдем координаты вектора с началом в точке и концом в точке . Рассмотрим треугольник (рис.2.2). Радиус-векторы и представляются в виде , . По правилу треугольника (см. разд. 1.1.2) вычитания векторов получаем , т.е. вектор имеет координаты . Этим доказано следующее правило: чтобы найти координаты вектора,нужно из координат его конца вычесть соответствующие координаты его начала . Это же правило справедливо для аффинных систем координат на плоскости и на прямой.

1. В заданной системе координат каждой точке можно поставить в соответствие её координаты, причем это соответствие взаимно однозначное:

В частности, разным точкам соответствуют разные наборы координат.

2. Если вектор с координатами отложить от точки , то конец вектора будет иметь координаты .

3. Координаты точки , которая делит отрезок в отношении , находятся по координатам его концов и :

В частности, координаты середины отрезка равны среднему арифметическому соответствующих координат концов отрезка :

Координаты точки которая «делит» площадь треугольника в отношении 0,\,\beta>0,\,\gamma>0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAKgAAAAVBAMAAAAgMbgsAAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADXRSTlMAAX1bEJvBQdDnITGx8wJf6wAAAnVJREFUOMvFVc9rE0EYfZNMNpp42BJ/BQkEokKwC6HYg5LAklLwIhQtpakIKSZGxMC2SEBpwBgLFRW0NpeKsAg99BCIB28GcrI9eKla8WD/F2fnxyYbsoWCYg6Z2f1m3rzvfW++Bf7Pj+h/ByfysD8P3307FD3z8ZCt9LFf4Et6xuU5qXdtTzTYKnT800qPl0ZHQkW67hLtIZHxROudwIYvaHAT84NypdyHdgaGetBsdC2Gfd5dtwv6bQhqwlSz4z3UBznkmwrIsGCoyBaQdsbagkrwJ8jvYX5PFWo7ieuOdNmy0IzkVei2hXpS8V++8I5ParfEiygDPZDH58smrjpbYy2pO9uXKALXXpzaCAjlpyRqdQC0dPGeKBpZqQiR+6D01UGDPhGOkMwMBroI+tyk+2fForHYqj0ESho4+V0pUdG9oNrsuWYgo5xnOcsd0D0E2Ja1CSVObNX0goYZTbcsW00v6Gdg5bQqRHSuI5m+QfwHA3nm+rpsCk1zEpQRIb6gTrVdPhEOmuPpJ5gmVVVqqfdA9TUTYTf9O7qs/i+37priE55bcoZuEu0er1VVYcpCdTPEsCMcNmHihLT6pwrh4xroPqakUUIzKkWLj3Hu09BrTL+PCYMoS2k9tBDnBB8lSVpYo7Yjj851ApswihJUZBSUxQe7bAUTdHd8Z/urML9yMH2ZLUFzbipJPSjMwmN+hNYLGVzZEw/HdFFf1R7G5icdW9MlEM7lpu7KH7zE/pa5TSOiJYUX+vfnw2V22qKYb+vea4poyjys/6WETX0amfA8yR6t49KGtOnoRibdceNojZpf3ZjlE52W4/1/8a2xR738AxcTjszkPv2OAAAAAElFTkSuQmCC» style=»vertical-align: middle;» />, находятся по координатам его вершин :

В частности, координаты точки пересечения медиан треугольника равны среднему арифметическому соответствующих координат вершин треугольника :

Эти формулы следуют из свойств 2,4 аффинных и выпуклых комбинаций (см. разд. 1.6.1). Они остаются справедливыми и на координатной плоскости, если аппликаты всех точек положить равными нулю. Например, координаты середины отрезка , или координаты точки пересечения медиан треугольника

Пример 2.1. В некоторой аффинной системе координат известны координаты вершин треугольной пирамиды (см. рис.2.3): Найти координаты (в той же системе координат):

а) точки пересечения медиан треугольника ;

б) точки , которая делит отрезок в отношении .

Решение. Учитывая пункт 3 замечаний 2.1, получаем:

Уравнения прямой, виды уравнений прямой в пространстве

Материал этой статьи продолжает тему прямой в пространстве. От геометрического описания пойдем к алгебраическому: зададим прямую при помощи уравнений в фиксированной прямоугольной системе координат трехмерного пространства. Приведем общую информацию, расскажем о видах уравнений прямой в пространстве и их связи между собой.

Уравнение прямой в пространстве: общие сведения

Уравнение прямой на плоскости в прямоугольной системе координат O x y – это линейное уравнение с переменными x и y , которому отвечают координаты всех точек прямой и не удовлетворяют координаты никаких прочих точек.

Если речь идет о прямой в трехмерном пространстве, все несколько иначе: не существует такого линейного уравнения с тремя переменными x , y , z , которому бы отвечали только координаты точек заданной прямой. В самом деле, уравнение A x + B y + C z + D = 0 , где x , y , z – переменные, а А , В , С и D – некоторые действительные числа ( А , В , С одновременно не равны нулю) – это общее уравнение плоскости. Тогда как же задать прямую линию в прямоугольной системе координат O x y z ? Найдем ответ на этот вопрос в следующих пунктах темы.

Уравнение прямой в пространстве как уравнение двух пересекающихся плоскостей

Когда две плоскости в пространстве имеют общую точку, существует их общая прямая, на которой находятся все общие точки этих плоскостей.

Рассмотрим это утверждение в алгебраическом толковании.

Допустим, в трехмерном пространстве зафиксирована прямоугольная система координат O x y z и задано, что прямая a – это линия пересечения двух плоскостей α и β , которые соответственно описываются уравнениями плоскости A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 . Поскольку прямая a – это множество общих точек плоскостей α и β , то координаты любой точки прямой a будут одновременно отвечать обоим уравнениям. Никакие прочие точки одновременно удовлетворять условия обоих уравнений не будут.

Таким образом, координаты любой точки прямой a в прямоугольной системе координат станут частным решением системы линейных уравнений вида

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0

Общее же решение системы уравнений _ A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0 определит координаты каждой точки прямой a , т.е. по сути задает саму прямую a .

Резюмируем: прямая в пространстве в прямоугольной системе координат O x y z может быть задана системой уравнений двух плоскостей, которые пересекаются:

A 1 x + B 1 y + C 1 z + D 1 = 0 A 2 x + B 2 y + C 2 z + D 2 = 0

Приведем пример описания прямой линии в пространстве при помощи системы уравнений:

x + 3 y — 2 1 z + 11 3 y + 1 4 z — 2 = 0

Навык определения прямой линии уравнениями пересекающихся плоскостей необходим при решении задач на нахождение координат точки пересечения прямой и плоскости или нахождение координат точки пересечения двух прямых в пространстве.

Подробнее изучить эту тему можно, обратившись к статье об уравнениях прямой в пространстве, уравнениях двух пересекающихся прямых.

Заметим, что существует несколько способов описания прямой в пространстве. В практике прямую чаще задают не двумя пересекающимися плоскостями, а направляющим вектором прямой и точкой, принадлежащей этой прямой. В подобных случаях легче задать канонические и параметрические уравнения прямой в пространстве. Поговорим о них ниже.

Параметрические уравнения прямой в пространстве

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , где x 1 , y 1 , z 1 – координаты некой точки прямой; а x , а y и a z (одновременно не равны нулю) – координаты направляющего вектора прямой. а · λ – некий параметр, принимающий любые действительные значения.

Любое значение параметра λ позволяет, используя параметрические уравнения прямой в пространстве, определить тройку чисел ( x , y , z ) , соответствующую некой точке прямой (отсюда и название такого вида уравнений). Например, пусть λ = 0 , тогда из параметрических уравнений прямой в пространстве получим координаты:

x = x 1 + a x · 0 y = y 1 + a y · 0 z = z 1 + a z · 0 ⇔ x = x 1 y = y 1 z = z 1

Рассмотрим конкретный пример:

Пусть прямая задана параметрическими уравнениями вида x = 3 + 2 · a x y = — 2 · a y z = 2 + 2 · a z .

Заданная прямая проходит через точку М 1 ( 3 , 0 , 2 ) ; направляющий вектор этой прямой имеет координаты 2 , — 2 , 2 .

Продолжение изучения этой темы можно найти в статье о параметрических уравнениях прямой в пространстве.

Канонические уравнения прямой в пространстве

Если разрешить каждое из параметрических уравнений прямой

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ относительно параметра λ , возможно просто перейти к каноническим уравнениям прямой в пространстве x — x 1 a x = y — y 1 a y = z — z 1 a z .

Канонические уравнения прямой в пространстве задают прямую, которая проходит через точку М 1 ( x 1 , y 1 , z 1 ) , и у которой направляющий вектор равен a → = ( a x , a y , a z ) . Например, задана прямая, описываемая каноническим уравнением x — 1 1 = y 2 = z + 5 7 . Эта прямая проходит через точку с координатами ( 1 , 0 , — 5 ) , ее направляющий вектор имеет координаты ( 1 , 2 , — 7 ) .

Отметим, что одно или два числа из чисел а x , а y и а z в канонических уравнениях прямой могут быть равны нулю (все три числа не могут быть равны нулю, поскольку направляющий вектор не может быть нулевым). В таком случае запись вида x — x 1 a x = y — y 1 a y = z — z 1 a z является формальной (поскольку в знаменателях одной или двух дробей будут нули) и понимать ее нужно как:

x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , где λ ∈ R .

Если одно из чисел а x , а y и a z канонического уравнения прямой равно нулю, то прямая лежит в какой-то из координатных плоскостей, или в плоскости, ей параллельной. Если два из чисел а x , а y и a z равны нулю, то прямая или совпадает с какой-либо из координатных осей, или параллельна ей. К примеру, прямая, описываемая каноническим уравнением x + 4 3 = y — 5 2 = z + 2 0 , лежит в плоскости z = — 2 , параллельной координатной плоскости O x y , а координатная ось O y описывается каноническими уравнениями x 0 = y 1 = z 0 .

Графические иллюстрации подобных случаев, составление канонических уравнений прямой в пространстве, примеры решения типовых задач, а также алгоритм перехода от канонических уравнений к другим видам уравнений прямой в пространстве рассмотрены в статье о канонических уравнениях прямой в пространстве.

47. Аффинная система координат на прямой, плоскости и в пространстве

В случае прямой базис состоит из одного ненулевого вектора V = (V) и система координат (О, V) изображена на рис. 4.1. В системе координат на прямой каждая точка A прямой имеет одну координату A(X), определяему разложением вектора По базису, = XV. Тогда A(0), E(1), где V = .

Систему координат на прямой можно задать еще следующими способами:

Двумя различными точками О и E данной прямой. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем вектор V = (см. рис. 4.2).

Точкой О, единичным отрезком ОE и положительным направлением данной прямой, которое отмечается стрелкой.

2Аффинная система координат на плоскости. В случае плоскости базис состоит из двух неколлинеарных векторов плоскости, V = (V1, V2), и система координат (О, V1, V2) изображена на рис. 4.3. В системе координат на плоскости каждая точка A плоскости имеет две координаты A(X, Y), определяемые разложением вектора По базису, = XV1+ YV2. Тогда A(0, 0), E1(1, 0), E2(0, 1), где V1 = , V2 = . Координаты точки называются соответственно Абсциссой и Ординатой.

Систему координат на плоскости можно задать еще следующими способами:

Тремя точками О, E1, E2 плоскости, не лежащими на одной прямой. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем векторы V1 = , V2 = .

Двумя пересекающимися числовыми осями ОX, ОY данной плоскости с общим началом О. Ось ОX называется Осью абсцисс, ось ОYОсью ординат.

Аффинная система координат (О, V1, V2) называется Правой (Левой), если поворот от вектора к вектору по кратчайшему направлению совершается против часовой стрелки (по часовой стрелке). На рис. 4.3 и 4.4 представлены правые системы координат.

3. Аффинная система координат в пространстве. В случае пространства базис состоит из двух некомпланарных векторов пространства, V = (V1,V2, V3), и система координат (О, V1, V2, V3) изображена на рис. 4.5. В этой системе координат каждая точка A пространства имеет три координаты A(X,Y,Z), определяемые разложением вектора по базису, = XV1+ YV2 + ZV3. Тогда A(0, 0, 0), E1(1, 0, 0), E2(0, 1, 0), E3(0, 0, 1), где V1 = , V2 = , V3 = . Координаты точки называются соответственно Абсциссой, ординатой и Аппликатой.

Истему координат в пространстве можно задать еще следующими способами:

Четверкой точек О, E1, E2, E3 пространства, не лежащими на одной плоскости. Тогда одну из точек, например О, берем в качестве начала системы координат, а в качестве базисного вектора возьмем векторы V1 = , V2 = , V3 = .

Тремя числовыми осями ОX, ОY, ОZ, не лежащими в одной плоскости с общим началом О. Ось ОX называется Осью абсцисс, ось ОYОсью ординат, ось ОZОсью аппликат.

Аффинная система координат (О, V1, V2, V3) называется Правой (Левой), если тройка векторов V1, V2, V3 правая (левая) На рис. 4.5 и 4.6 представлены правые системы координат, а на рис. 4.7 левая система координат.


источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/uravnenija-prjamoj-vidy-uravnenij-prjamoj-v-prostr/

http://matica.org.ua/metodichki-i-knigi-po-matematike/algebra-i-geometriia-tolstikov-a-v/47-affinnaia-sistema-koordinat-na-priamoi-ploskosti-i-v-prostranstve