Актуальность темы решение квадратных уравнений

Исследовательская работа «Способы решения квадратных уравнений»

Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и в 9 классе при сдаче экзаменов.

Цель работы: научиться решать квадратные уравнения, изучить различные методы их решения.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Объект исследования: квадратные уравнения.

Скачать:

ВложениеРазмер
npk_2019_fevral.docx469.24 КБ
prezentatsiya1.pptx307.43 КБ

Предварительный просмотр:

Управление образования администрации МО «Заиграевский район»

МБОУ «Талецкая средняя общеобразовательная школа»

Образовательная область «Алгебра и начала анализа»

Тема «Способы решения квадратных уравнений»

Выполнила: Швалова Диана уч-ца 9 класса МБОУ «Талецкая сош»

Руководитель: Бадмацыренова Л,Д. учитель математики, I кв. категория

I. История развития квадратных уравнений ……………………………. 3

1. Квадратные уравнения в Древнем Вавилоне……………………………. 3

2. Как составлял и решал Диофант квадратные уравнения……………… 3

3. Квадратные уравнения в Индии…………………………………………… 4

4. Квадратные уравнения у ал- Хорезми …………………………………….5

5. Квадратные уравнения в Европе XIII — XVII вв………………. 5

II. Способы решения квадратных уравнений ………………………. 6

  1. Разложение левой части уравнения на множители………………. 7
  2. Метод выделения полного квадрата.……………………….……. 7
  3. Решение квадратных уравнений по формулам …………………..…….. 7
  4. Решение уравнений с использованием теоремы Виета……………. 9
  1. Решение уравнений способом переброски»……………………………. 10
  2. Свойства коэффициентов квадратного уравнения……………………. 11

7. Графическое решение квадратного уравнения……………………..……12

8. Решение квадратных уравнений с помощью циркуля и линейки………..14

9. Решение квадратных уравнений с помощью номограммы………………16

10. Геометрический способ решения квадратных уравнений………………17

Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.

В учебнике алгебры для 8 класса мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем их решение по формулам. У меня возник вопрос «Существуют ли другие методы решения квадратных уравнений? Насколько сложны данные методы и можно ли ими пользоваться на практике?» Поэтому в этом учебном году я выбрала тему исследования связанную с квадратными уравнениями, в ходе работы она получила название «Способы решения квадратных уравнений».

Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и в 9 классе при сдаче экзаменов.

Цель работы: научиться решать квадратные уравнения, изучить различные методы их решения.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

— выявить наиболее удобные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Объект исследования : квадратные уравнения.

Предмет исследования : с пособы решения квадратных уравнений.

Методы исследования: Теоретические: изучение литературы по теме исследования;

Анализ: информации полученной при изучении литературы, результатов полученных при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

I. История развития квадратных уравнений.

1. Квадратные уравнения в Древнем Вавилоне.

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков, с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

2. Квадратные уравнения в Греции или как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные. Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 — х . Разность между ними 2х .

(10 + х)(10 — х) = 96; 100 — х 2 = 96; х 2 — 4 = 0

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

3. Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 + bх = с, а > 0. (1)

В уравнении (1) коэффициенты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

4. Квадратные уравнения у ал — Хорезми.

В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = bх.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах 2 + с = bх.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Его решения, конечно, не совпадает полностью с современным решением. При решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., не учитывает нулевого решения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача . «Квадрат и число 21 равны 10 корням. Найти корень»

(подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

5. Квадратные уравнения в Европе XIII — XVII вв.

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

6. О теореме Виета.

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A — A 2 , равно BD , то A равно В и равно D ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

(а + b)х — х 2 = ab, т.е.

х 2 — (а + b)х + аb = 0, то

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

II. Способы решения квадратных уравнений

Квадратные уравнения — это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Многие практические задачи решаются с их помощью.

В школе изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. В математической литературе я нашла десять способов решения квадратных уравнений и в своей работе я разобрала каждый из них

  1. Разложение левой части уравнения на множители.

Решим уравнение х 2 + 10х — 24 = 0 .

Разложим левую часть на множители:

х 2 + 10х — 24 = х 2 + 12х — 2х — 24 = х(х + 12) — 2(х + 12) = (х + 12)(х — 2).

Следовательно, уравнение можно переписать так: (х + 12)(х — 2) = 0

Произведение множителей равно нулю, если по крайней мере, один из его множителей равен нулю. х + 12= 0 или х – 2=0 х=-12 х=2 Ответ: -12; 2.

  1. Метод выделения полного квадрата.

Решим уравнение х 2 + 6х — 7 = 0 .

Выделим в левой части полный квадрат:

х 2 + 6х — 7 = х 2 + 2• х • 3 + 3 2 — 3 2 — 7 = (х + 3) 2 — 9 — 7 = (х + 3) 2 — 16.

тогда, данное уравнение можно записать так (х + 3) 2 — 16 =0, (х + 3) 2 = 16, х + 3=4 или х + 3 = -4 х 1 = 1 х 2 = -7 Ответ: 1; -7.

  1. Решение квадратных уравнений по формулам.

а) Решим уравнение:

D = b 2 — 4ac = 7 2 — 4 • 4 • 3 = 49 — 48 = 1,D > 0, уравнение имеет два различных корня;

б) Решим уравнение:

а = 4, b = — 4, с = 1,

D = b 2 — 4ac = (-4) 2 — 4 • 4 • 1= 16 — 16 = 0, D = 0, уравнение имеет один корень;

в) Решим уравнение: 2х 2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b 2 — 4ac = 3 2 — 4 • 2 • 4 = 9 — 32 = — 13 , D

Данное уравнение корней не имеет.

Ответ: корней нет.

  1. Решение уравнений с использованием теоремы Виета.

Приведенным квадратным уравнением называется уравнение вида где старший коэффициент равен единице.

Корни приведенного квадратного уравнения можно найти по следующей формуле:

Чтобы квадратное уравнение привести к приведенному виду, нужно все его члены разделить на a, , тогда

Если обозначить , то мы получим уравнение вида .

Таким образом: сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

По коэффициентам p и q можно предсказать знаки корней.

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента:

-если р , то оба корня положительные;

-если р > 0 , то оба корня отрицательные.

x 2 – 3x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = — 3

x 2 + 8x + 7 = 0; x 1 = — 7 и x 2 = — 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q 0 .

x 2 – 8x – 9 = 0; x 1 = 9 и x 2 = — 1, так как q = — 9 и p = — 8

x 2 + 4x – 5 = 0; x 1 = — 5 и x 2 = 1, так как q= — 5 и p = 4 > 0.

  1. Решение уравнений способом «переброски».

Рассмотрим квадратное уравнение

ах 2 + bх + с = 0, где а ≠ 0.

Умножая обе его части на а, получаем уравнение а 2 х 2 + аbх + ас = 0.

Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению у 2 + by + ас = 0,

Его корни у 1 и у 2 найдем с помощью теоремы Виета и окончательно:

х 1 = у 1 /а и х 1 = у 2 /а .

При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски» . Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

у 2 – 11у + 30 = 0.

Согласно теореме Виета

у 1 = 5 , х 1 = 5/2 , x 1 = 2,5

у 2 = 6; x 2 = 6/2; x 2 = 3. Ответ: 2,5; 3.

  1. Свойства коэффициентов квадратного уравнения.

1. Пусть дано квадратное уравнение ах 2 + bх + с = 0, где а ≠ 0.

  1. Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю),

то х 1 = 1, х 2 = с/а.

  1. Если a – b + c=0, то х 2 =-1, х 2 = -с/а
  1. Решим уравнение 345х 2 – 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то

х 1 = 1, х 2 = c/a = -208/345.

2) Решим уравнение 2х 2 + 3х +1= 0. Так как 2 — 3+1=0, значит х 1 = — 1, х 2 = -с/а= -1/2

Ответ: х 1 =-1, х 2 =-1/2.

Данный метод удобно применять к квадратным уравнениям с большими коэффициентами.

  1. Графическое решение квадратного уравнения.

Используя знания о квадратичной и линейной функциях и их графиках, можно решить квадратное уравнение так называемым функционально-графическим методом. Причем некоторые квадратные уравнения можно решить различными способами, рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение =0

1способ . Построим график функции , воспользовавшись алгоритмом.

Значит, вершиной параболы служит точка (1;-4), а осью параболы – прямая x=1

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки рис.1

х= -1 и х=3, тогда f(-1)=f(3)=0.

3) Через точки (-1;0) , (1;-4), (3;0) проводим параболу (рис 2).

Корнями уравнений являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения

Преобразуем уравнения к виду .

Построим в одной системе координат графики функций и (рис.4) Они пересекаются в двух точках A(-1;-2) и В (3;6). Корнями уравнения являются абсциссы точек А и В, поэтому . Рис

Разделим почленно обе части уравнения на x, получим:

; . Построим в одной системе координат гиперболу и прямую (рис.6). Они пересекаются в двух точках А(-1;-3) и В(3;1). Корнями уравнений являются абсциссы точек А и В, следовательно, . Рис.3

Графические способы решения квадратных уравнений красивы, но не дают стопроцентной гарантии решения любого квадратного уравнения.

  1. Решение квадратных уравнений с помощью циркуля и линейки.

Предлагаю следующий способ нахождения корней квадратного уравнения ах 2 + bх + с = 0 с помощью циркуля и линейки (рис.7 ).

Допустим, что искомая окружность пересекает ось

абсцисс в точках В(х 1 ; 0 ) и D (х 2 ; 0), где х 1 и х 2 — корни уравнения ах 2 + bх + с = 0 , и проходит через точки

А(0; 1) и С(0; c/a) на оси ординат. Тогда по теореме о секущих имеем OB • OD = OA • OC , откуда OC = OB • OD / OA= х 1 х 2 / 1 = c/a.

Центр окружности находится в точке пересечения перпендикуляров SF и SK , восстановленных в серединах хорд AC и BD , поэтому

1) построим точки (центр окружности) и A(0; 1) ;

2) проведем окружность с радиусом SA ;

3) абсциссы точек пересечения этой окружности с осью Ох являются корнями исходного квадратного уравнения.

При этом возможны три случая.

Решим уравнение х 2 — 2х — 3 = 0 (рис.9).

Решение. Определим координаты точки центра окружности по формулам:

Проведем окружность радиуса SA, где А (0; 1).

Ответ: х 1 = — 1; х 2 = 3.

  1. Решение квадратных уравнений с помощью номограммы.

Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — М., Просвещение, 1990.

Таблица XXII. Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициен-

там определить корни уравнения.

Криволинейная шкала номограммы построена

по формулам (рис.10):

Полагая ОС = р, ED = q, ОЕ = а (все в см.), из подобия треугольников САН и CDF получим пропорцию

откуда после подстановок и упрощений вытекает уравнение z 2 + pz + q = 0,

причем буква z означает метку любой точки криволинейной шкалы.

1) Для уравнения z 2 — 9z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0 (рис. 11).

2) Для уравнения z 2 — 25z + 66 = 0 коэффициенты p и q выходят за пределы шкалы, выполним подстановку z = 5t , получим уравнение t 2 — 5t + 2,64 = 0,

которое решаем посредством номограммы и получим t 1 = 0,6 и t 2 = 4,4, откуда z 1 = 5t 1 = 3,0 и z 2 = 5t 2 = 22,0. Ответ: 3; 22.

  1. Геометрический способ решения квадратных уравнений.

В древности, когда геометрия была более развита, чем алгебра, квадратные уравнения решали не алгебраически, а геометрически. Приведу ставший знаменитым пример из «Алгебры» ал — Хорезми.

1) Решим уравнение х 2 + 10х = 39.

В оригинале эта задача формулируется следующим образом : «Квадрат и десять корней равны 39» (рис.12).

Решение. Рассмотрим квадрат со стороной х, на его сторонах строятся прямоугольники так, что другая сторона каждого из них равна 2,5, следовательно, площадь каждого равна 2,5х. Полученную фигуру дополняют затем до нового квадрата ABCD, достраивая в углах четыре равных квадрата , сторона каждого их них 2,5, а площадь 6,25.

Площадь S квадрата ABCD можно представить как сумму площадей: первоначального квадрата х 2 , четырех прямоугольников (4• 2,5х = 10х ) и четырех пристроенных квадратов (6,25• 4 = 25) , т.е. S = х 2 + 10х + 25. Заменяя

х 2 + 10х числом 39 , получим, что S = 39 + 25 = 64 , откуда следует, что сторона квадрата ABCD , т.е. отрезок АВ = 8 . Для искомой стороны х первоначального квадрата получим

2) А вот, например, как древние греки решали уравнение у 2 + 6у — 16 = 0 .

Решение представлено на рис 13. где

у 2 + 6у = 16, или у 2 + 6у + 9 = 16 + 9.

Решение. Выражения у 2 + 6у + 9 и 16 + 9 геометрически представляют собой

один и тот же квадрат, а исходное уравнение у 2 + 6у — 16 + 9 — 9 = 0 — одно и то же уравнение. Откуда и получаем, что у + 3 = ± 5, или у 1 = 2, у 2 = — 8

В ходе выполнения своей исследовательской работы я считаю, что с поставленной целью и задачами я справилась, мне удалось обобщить и систематизировать изученный материал по выше указанной теме.

Способов решения квадратных уравнений очень много. Я нашла 10 способов решения квадратных уравнений. Нужно отметить, что не все они удобны для решения, но каждый из них по-своему уникален. Некоторые способы решения помогают сэкономить время, что немаловажно при решении заданий на контрольных работах и экзаменах. При работе над темой я ставила задачу выяснить какие методы являются стандартными, а какие нестандартными.

Итак, стандартные методы (используются чаще при решении квадратных уравнений):

  • Решение квадратных уравнений по формулам
  • Теорема Виета
  • Графическое решение уравнений
  • Разложение левой части на множители
  • Выделение полного квадрата
  • Решение способом переброски коэффициентов
  • Свойства коэффициентов квадратного уравнения
  • Решение квадратных уравнений, с помощью циркуля и линейки.
  • Решение с помощью номограммы
  • Геометрический способ

При решении квадратных уравнений для себя я сделала следующие выводы: Для того, чтобы хорошо решать любое квадратные уравнения необходимо знать:

  • формулу нахождения дискриминанта;
  • формулу нахождения корней квадратного уравнения;
  • алгоритмы решения уравнений данного вида.
  • решать неполные квадратные уравнения;
  • решать полные квадратные уравнения;
  • решать приведенные квадратные уравнения;
  • находить ошибки в решенных уравнениях и исправлять их;
  • делать проверку.

Думаю, что моя работа будет интересна учащимся 8-9 классов, а также тем, которые хотят научиться решать рационально квадратные уравнения и хорошо подготовиться к выпускным экзаменам. На уроках математики я рассказала своим одноклассникам методы решения квадратных уравнений, ребятам они понравились.

  1. Брадис, В.М. Четырехзначные математические таблицы для средней школы/ В.М, Брадис-М.: Просвещение, 1990-
  2. Глейзер, Г.И. История математики в школе/ Г.И. Глейзер.-М.: Просвещение, 1982- 340с.
  3. Гусев, В.А. Математика. Справочные материалы/ В.А. Гусев, А.Г. Мордкович — М.: Просвещение, 1988, 372с.
  4. Квадратные уравнения– Режим доступа: http://revolution.allbest.ru/pedagogics/00249255_0.html ( (Internet)).
  5. Мордкович, А. Г. Алгебра.8 класс. Учебник для общеобразовательных учреждений/ А.Г. Мордкович.-М. : Мнемозина 2015.-260с.
  6. Мордкович, А.Г. Алгебра.8 класс. Задачник для общеобразовательных учреждений/ А.Г. Мордкович.-М. : Мнемозина 2015.-270с.
  7. Теорема Виета– Режим доступа:. http://phizmat.org.ua/2009-10-27-13-31-30/817-stihi-o-fransua-vieta / Теорема Виета (Internet)).
Предварительный просмотр:

Подписи к слайдам:

Способы решения квадратных уравнений Выполнила :ученица 9 класса МБОУ « Талецкая сош » Швалова Диана

Немного из истории Квадратные уравнения в Древнем Вавилоне Уже во втором тысячелетии до нашей эры знали в Древнем Вавилоне, как решать квадратные уравнения. Решение их было тесно связано с практическими задачами : как измерение площади земельных участков, земельные работы, связанные с военными нуждами; наличие этих познаний также обусловлено развитием математики и астрономии вообще. Были известны способы решения как полных, так и неполных квадратных уравнений. Правила решения квадратных уравнений во многом аналогичны современным, однако в вавилонских текстах не зафиксированы рассуждения, путём которых эти правила были получены.

Диофант Александрийский Д ревнегреческий математик , живший предположительно в III веке н. э. Нередко упоминается как «отец алгебры ». Автор «Арифметики» — книги, посвящённой нахождению положительных рациональных решений . Уравнения в книге сейчас называются « диофантовыми уравнениями ». Метод для их решения известен как Диофантов анализ . Большая часть задач Арифметики ведёт к квадратичным уравнениям . Немного из истории

В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму. Вот одна из задач знаменитого индийского математика XII в. Бхаскары . Задача. «Обезьянок резвых стая А двенадцать по лианам… Власть поевши, развлекалась. Стали прыгать, повисая… Их в квадрате часть восьмая Сколько ж было обезьянок, На поляне забавлялась. Ты скажи мне, в этой стае?» Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнении Бхаскара — крупнейший индийский математик и астроном XII века. Немного из истории

Немного из истории Леонардо Фибоначчи Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Страница из Книги абака

Способы решения квадратных уравнений 1 . Разложение левой части уравнения на множители 2. Метод выделения полного квадрата. 3. Решение квадратных уравнений по формулам 4. Решение уравнений с использованием теоремы Виета 5. Решение уравнений способом переброски»… 6. Свойства коэффициентов квадратного уравнения 7. Графическое решение квадратного уравнения 8. Решение квадратных уравнений с помощью циркуля и линейки. 9. Решение квадратных уравнений с помощью номограммы 10. Геометрический способ решения квадратных уравнений

Рассмотрим квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а 2 х 2 + а b х + ас = 0. Пусть ах = у, откуда х = у/а; тогда приходим к уравнению у 2 + by + ас = 0, равносильно данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета: х 1 = у 1 /а и х 2 = у 2 /а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Решение уравнений способом «переброски».

Решим уравнение 2х 2 – 11х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у 2 – 11у + 30 = 0. Согласно теореме Виета у 1 = 5 , х 1 = 5/2 , x 1 = 2,5 у 2 = 6; x 2 = 6/2; x 2 = 3. Ответ: 2,5; 3.

Свойства коэффициентов квадратного уравнения. Пусть дано квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0. Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю ) то х 1 = 1, х 2 = с/а. 2) Если a – b + c =0, то х 1 =-1, х 2 = -с/а Пример. Решим уравнение 345х 2 – 137х – 208 = 0. Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то х 1 = 1, х 2 = c / a = -208/345. Ответ : 1; -208/345.

Решение квадратных уравнений с помощью циркуля и линейки. Если окружность пересекает ось абсцисс в точках В(х 1 ;0) и D (х 2 ;0), где х 1 и х 2 — корни уравнения , и проходит через точку А(0; 1). Тогда по теореме о секущих , откуда Центр окружности находится в точке пересечения перпендикуляров SF и SK, восстановленных в серединах хорд AC и BD, поэтому Ц ентр окружности имеет координаты: .

Решим уравнение х 2 — 3х — 4 = 0 . Решение . Определим координаты точки центра окружности по формулам: Проведем окружность радиуса SA с центром в точке S, где А (0; 1), S (1,5; -1,5). Окружность имеет две точки пересечения с осью Ох (рис. 7), значит данное уравнение имеет два корня. Абсциссы точек пересечения окружности с осью Ох будут корнями исходного уравнения. Ответ: х 1 = — 1; х 2 = 4.

Решение квадратных уравнений с помощью номограммы. Это старый и в настоящее время забытый способ решения квадратных уравнений, помещенный на с.83 сборника: Брадис В.М. Четырехзначные математические таблицы. — Таблица XXII . Номограмма для решения уравнения z 2 + pz + q = 0 . Эта номограмма позволяет, не решая квадратного уравнения, по его коэффициентам определить корни уравнения. Примеры. 1) Для уравнения z 2 — 9 z + 8 = 0 номограмма дает корни z 1 = 8,0 и z 2 = 1,0 (рис. 11 ). р=-9, q=8 Ответ: 8,0 ; 1,0.

Вопросы анкетирования: Какой способ показался вам более легким (удобным): Разложение левой части уравнения на множители. Метод выделения полного квадрата Решение квадратных уравнений по формуле Решение уравнений с использованием теоремы Виета. Решение уравнений способом «переброски». Графическое решение квадратного уравнения. Решение квадратных уравнений с помощью циркуля и линейки . ІІ. Какой нестандартный способ решения квадратных уравнений, вы бы включили в школьную программу.

Квадратные уравнения играют огромную роль в развитии математики. А моя работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика. В своей работе я постаралась показать, что процесс решения квадратных уравнений может быть очень интересным, увлекательным занятием . Любой из рассмотренных способов по своему уникален. Я хотела показать разнообразие математических методов, неординарность, красоту и простоту (доступность) некоторых способов решения.

Исследовательская работа на тему»10 способов решения квадратных уравнений»

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Просмотр содержимого документа
«Исследовательская работа на тему»10 способов решения квадратных уравнений»»

Муниципальное учреждение «Отдел образования администрации муниципального района Мишкинский район

Муниципальное Бюджетное Общеобразовательное

Учреждение Лицей № 1 им. Флорида Булякова с. Мишкино

Тема: 10 способов решения квадратных уравнений

Выполнила: ученица 9 В класса

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Руководитель: учитель математики

МБОУ Лицей № 1 им. Флорида Булякова с. Мишкино

Алексеева Гузель Фанавиевна

Мишкино 2017 год

Исторические сведения о квадратных уравнениях……………………..стр.4

Определение квадратного уравнения………………………………. стр.7

Способы решения квадратных уравнений…………………………. стр.8

Разложение на множители левой части……………………………. стр.10

Метод выделения полного квадрата…………………………………стр.10

Решение квадратных уравнений по формуле…………………. стр.11

Решение уравнений с использованием теоремы Виета………. стр.11

Решение уравнений способом «переброски»…………………. стр.12

Свойства коэффициентов квадратного уравнения………………….стр.13

Графическое решение квадратного уравнения……………………. стр.13

Решение квадратных уравнений с помощью циркуля и линейки….стр.14

Уменьшение степени уравнения (использование теоремы Безу)….стр.15

Геометрический способ решения квадратных уравнений…………стр.15

Тренировочные задания для отработки различных способов решения квадратных уравнений…………………………………………………. стр.16

Теория уравнений занимает ведущее место в алгебре и математике в целом. Значимость ее заключается не только в теоретическом значении для познания естественных законов, но и служит практическим целям. Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

В школьной программе рассматривается только 3 способа их решения. Готовясь к предстоящим экзаменам, я заинтересовался другими способами их этих уравнений. Поэтому я выбрала тему «10 способов решения квадратных уравнений».

Актуальность темы: на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно, и рационально решать квадратные уравнения, что также пригодится и при решении более сложных задач, в том числе и при сдаче экзаменов. Плюс выбранная тема мне очень интересна.

Цель работы: выявить способы решения уравнений второй степени и рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.

1) Проследить историю развития теории и практики решения квадратных уравнений;

2) Описать технологии различных существующих способов решения квадратных уравнений;

3) Выявить наиболее удобные способы решения квадратных уравнений;

4) Подобрать тренировочные задания для отработки изученных приемов;

5) Провести кружок для одноклассников.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами.

Объект исследования: квадратные уравнения.

Предмет исследования: способы решения квадратных уравнений.

теоретические: изучение литературы по теме исследования, изучение тематических Интернет-ресурсов;

анализ полученной информации;

сравнение способов решения квадратных уравнений на удобство и рациональность.

Время исследования: с 12 октября 2016 года по 20 декабря 2016 года.

Исторические сведения о квадратных уравнениях.

Уравнения второй степени умели решать еще в древнем Вавилоне. Математики Древней Греции решали квадратные уравнения геометрически; например, Евклид — при помощи деления отрезка в среднем и крайнем отношениях. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактах.

Вывод формулы решения квадратного уравнения в общем, виде имеется у Виета. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

Квадратные уравнения в древнем Вавилоне

В математических текстах, выполненных клинописью на глиняных пластинках, есть квадратные и биквадратные уравнения, системы уравнений с двумя неизвестными и даже простейшие кубические уравнения. При этом вавилоняне также не использовали букв, а приводили решение «типовых» задач, из которых решение аналогичных задач получались заменой числовых данных.

Необходимость решать квадратные уравнения возникла ещё в древности, была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются кроме неполных квадратных уравнений и полные уравнения. Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствует понятие отрицательного числа и общее методы решения квадратных уравнений.

Квадратные уравнения у ал-Хорезми

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений. Основная идея для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-Джабр и ал-Мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII века., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

XIII-XVII ввКвадратные уравнения в Европе . Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардо Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI-XVII вв. и частично XVIII в.

Квадратные уравнения в ИНДИИ

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «АРИАБХАТТИАМ», составленном в 499г. индийским математиком и астрономом АРИБХАТТОЙ. Другой индийский ученый, БРАХМАГУПТА VII век, изложил общее правило решения квадратных уравнений приведенных к единой канонической форме. В уравнении коэффициенты, кроме положительных, могут быть и отрицательными. Правило БРАХМАГУПТЫ по существу совпадает с современным решением. В древней ИНДИИ были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующие: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Одна из задач знаменитого индийского математика XIIв. Бхаскары:

Обезьянок резвых стая

Всласть поевши, развлекалась.

Их в квадрате часть восьмая

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать повисая…

Сколько было обезьянок

Ты скажи мне, в этой стае?

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений.

Часть страницы из алгебры Бхаскары (вычисление корней).

2.Определение квадратного уравнения

Квадратным уравнением называют уравнение вида ах²+bх+с=0, где коэффициенты а, b, с — любые действительные числа, причем, а≠0. Коэффициенты а, b, с, различают по названиям: а – первый или старший коэффициент; b – второй или коэффициент при х; с – свободный член, свободен от переменной х.

Квадратное уравнение также называют уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение называют приведенным, если старший коэффициент равен 1; квадратное уравнение называют неприведенным, если старший коэффициент отличен от 1.

х²+рх+q=0 – стандартный вид приведенного квадратного уравнения

Кроме приведенных и неприведенных квадратных уравнений различают также полные и неполные уравнения.

Полное квадратное уравнение – это квадратное уравнение, в котором присутствуют все три слагаемых; иными словами, это уравнение, у которого коэффициенты b и с отличны от нуля.

Неполное квадратное уравнение – это уравнение, в котором присутствуют не все три слагаемых; иными словами, это уравнение, у которого хотя бы один из коэффициентов b и с равен нулю.

Корнем квадратного уравнения ах²+вх+с=0 называют всякое значение переменной х, при котором квадратный трехчлен ах²+bх+с обращается в нуль.

Можно сказать и так: корень квадратного уравнения – это такое значение х, подстановка которого в уравнение обращает уравнение в верное числовое равенство (0=0).

Решить квадратное уравнение – найти все его корни или установить, что их нет.

3.Способы решения квадратных уравнений

Сначала математики научились решать неполные квадратные уравнения, поскольку для этого не пришлось, как говорится, ничего изобретать.

Научно — исследовательская работа по математике на тему «Различные способы решения квадратных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное бюджетное общеобразовательное учреждение

средняя школа №12

городского округа город Выкса Нижегородской области

Различные способы решения квадратных уравнений

Естественно – научное отделение

Ученица 9 класса

Беспалова Галина Алексеевна

городской округ г. Выкса

Глава 1. Обзор литературы

1.1 История развития квадратных уравнений……………………………. 6

1.1.1 Квадратные уравнения в Древнем Вавилоне……………………………. 6

1.1.2 Как составлял и решал Диофант квадратные уравнения…………………6

1.1.3 Квадратные уравнения в Индии……………………………………………7

1.1.4 Квадратные уравнения ал- Хорезми ……………………………………. 8

1.1.5 Квадратные уравнения в Европе XIII — XVII в.в………………. 9

Глава 2. Материалы и методы исследования

Способы решения квадратных уравнений ………………………. 12

Разложение левой части уравнения на множители………………. 12

Метод выделения полного квадрата.……………………….……. 13

Решение квадратных уравнений по формулам …………………..…… 13

Решение уравнений с использованием теоремы Виета……………. 14

2.1.5 Решение уравнений способом «переброски»…………………………. 16

2.1.6 Свойства коэффициентов квадратного уравнения……………………. 17

2.1.7 Графическое решение квадратного уравнения……………………..…. 17

2.1.8 Решение квадратных уравнений с помощью циркуля и линейки……. 19

2.1.9 Решение квадратных уравнений с помощью номограммы…………….21

2.1.10 Геометрический способ решения квадратных уравнений……………..22

2.2. Исследование. Решение квадратных уравнений учащимися 9,11 классов……………………………………………………………………………23

Глава 3. Результаты и их обсуждения…………………………………………..24

Большинство жизненных задач сводится к решению различных видов уравнений, и чаще это уравнения квадратного вида.

Изучив решение квадратных уравнений, мне захотелось узнать, можно ли еще другими способами решить уравнение и в дальнейшем использовать различные способы при решении уравнений.

Цель работы : изучить способы решения квадратного уравнения, которые мы не изучаем на уроке. Научиться использовать эти способы.

Для достижения поставленной цели были намечены следующие задачи:

Изучить историю развития квадратных уравнений.

Найти информацию о способах решения квадратного уравнения.

Решить квадратное уравнение различными способами и выяснить, какой способ удобен для решения этого уравнения.

При решении сформулированных задач была изучена специальная литература, собрана информация статистических данных для последующего использования в работе, проведено исследование по решению квадратного уравнения учащимися 9 и 11 классов с целью выявления различных способов решения квадратного уравнения.

Результаты исследований показали, что учащиеся используют при решении квадратных уравнений методы, изученные по школьной программе.

Я считаю эту тему актуальной, т. к. она может пригодиться нам не только во время обучения в школе, а впоследствии и в ВУЗе, и на протяжении всей жизни.

Описание новизны и практической значимости : решение одного квадратного уравнения несколькими способами и выбор более рационального способа.

Человеку, изучающему алгебру, часто полезнее решить одну и ту же задачу тремя различными способами, чем решить три-четыре различные задачи. Решая одну задачу различными методами, можно путем сравнений выяснить, какой из них короче и эффективнее. Так вырабатывается опыт»

Теория уравнений в школьном курсе алгебры занимает ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Это связано с тем, что большинство жизненных задач сводится к решению различных видов уравнений.

В учебнике алгебры для 8 класса мы знакомились с несколькими видами квадратных уравнений, и отрабатывали их решение по формулам. У меня возник вопрос «Существуют ли другие способы решения квадратных уравнений? Насколько сложны данные способы и можно ли ими пользоваться на практике?» Поэтому я выбрала тему исследования, связанную с квадратными уравнениями, в ходе работы она получила название «Различные способы решения квадратных уравнений». Актуальность этой темы заключается в том, что на уроках алгебры, геометрии, физики мы очень часто встречаемся с решением квадратных уравнений. Поэтому каждый ученик должен уметь верно и рационально решать квадратные уравнения, это также может мне пригодится при решении более сложных задач, в том числе и в 10-11 классах, и при сдаче ОГЭ и ЕГЭ.

Цель работы: изучить различные способы решения квадратных уравнений, научиться применять их при решении и выбрать наиболее рациональныйспособ решения.

Исходя из данной цели, мною были поставлены следующие задачи:

— изучить историю развития квадратных уравнений;

— рассмотреть стандартные и нестандартные методы решения квадратных уравнений;

— выявить наиболее рациональные способы решения квадратных уравнений;

— научиться решать квадратные уравнения различными способами.

Объект исследования : квадратные уравнения.

Предмет исследования : способы решения квадратных уравнений.

Теоретические: изучение литературы по теме исследования;

Анализ: информации, полученной при изучении литературы; результатов полученных при решении квадратных уравнений различными способами.

Сравнение: способов на рациональность их использования при решении квадратных уравнений.

Гипотеза: существуют различные рациональные способы решения квадратных уравнений

Глава 1. Обзор литературы.

1.1 История развития квадратных уравнений .

1.1.1 Квадратные уравнения в Древнем Вавилоне .

Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

1.1.2 Квадратные уравнения в Греции или как составлял и решал Диофант квадратные уравнения.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение — 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х , другое же меньше, т.е. 10 — х . Разность между ними .

Отсюда х = 2 . Одно из искомых чисел равно 12 , другое 8 . Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

1.1.3 Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхатой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах 2 + b х = с, а> 0.(1)

В уравнении (1) коэффициенты, кроме а , могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

« Обезьянок резвых стая А двенадцать по лианам…

Власть поевши, развлекалась. Стали прыгать, повисая…

Их в квадрате часть восьмая Сколько ж было обезьянок,

На поляне забавлялась. Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис.).

Соответствующее задаче уравнение:

Бхаскара пишет под видом: х 2 — 64х = -768

и, чтобы дополнить левую часть этого

уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем: х 2 — 64х + 32 2 = -768 + 1024,

1.1.4 Квадратные уравнения ал — Хорезми.

В алгебраическом трактате ал — Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корнями», т.е. ах 2 + с = b х.

2) «Квадраты равны числу», т.е. ах 2 = с.

3) «Корни равны числу», т.е. ах = с.

4) «Квадраты и числа равны корням», т.е. ах 2 + с = b х.

5) «Квадраты и корни равны числу», т.е. ах 2 + bx = с.

6) «Корни и числа равны квадратам», т.е. bx + с = ах 2 .

Для ал — Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал — джабр и ал — мукабала. Его решения, конечно, не совпадает полностью с современным решением. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал — Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал — Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.

Задача . «Квадрат и число 21 равны 10 корням. Найти корень»

(подразумевается корень уравнения х 2 + 21 = 10х).

Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат ал — Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

1.1.5 Квадратные уравнения в Европе XIII XVII в.в.

Формулы решения квадратных уравнений по образцу ал — Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из

« Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х 2 + bx = с,

при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

1.1.6. О теореме Виета

Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D , умноженное на A A 2 , равно BD , то A равно В и равно D ».

Чтобы понять Виета, следует вспомнить, что А , как и всякая гласная буква, означало у него неизвестное (наше х ), гласные же В, D — коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.


источники:

http://multiurok.ru/files/issliedovatiel-skaia-rabota-na-tiemu-10-sposobov-r.html

http://infourok.ru/nauchno-issledovatelskaya-rabota-po-matematike-na-temu-razlichnie-sposobi-resheniya-kvadratnih-uravneniy-1358076.html