Алгебра 10 11 класс логарифмические уравнения

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Логарифмические уравнения и системы

п.1. Методы решения логарифмических уравнений

При решении логарифмических уравнений используются следующие основные методы:
1) переход от логарифмического уравнения к равносильному уравнению \(f(x)=g(x)\) с системой неравенств, описывающих ОДЗ;
2) графический метод;
3) замена переменной.

п.2. Решение уравнений вида \(\log_a f(x)=\log_a g(x)\)

Неравенства \( \begin f(x)\gt 0\\ g(x)\gt 0 \end \) в системе соответствуют ограничению ОДЗ для аргумента логарифмической функции.

Решать логарифмическое уравнение принято в таком порядке:
1) решить систему неравенств и получить промежутки допустимых значений для \(x\) в явном виде;
2) решить уравнение \(f(x)=g(x)\);
3) из полученных корней выбрать те, что входят в промежутки допустимых значений. Записать ответ.

Однако, если выражения \(f(x)\) и \(g(x)\) слишком сложны для явного решения, возможен другой порядок действий:
1) решить уравнение \(f(x)=g(x)\);
2) провести подстановку: полученные корни подставить в выражения для \(f(x)\) и \(g(x)\), и проверить, получатся ли положительные значения для этих функций;
3) из корней выбрать те, для которых подстановка оказалась успешной. Записать ответ.

Например:
Решим уравнение \(\lg(2x+3)+\lg(x+4)=\lg(1-2x)\)
Найдем ОДЗ в явном виде:
\( \begin 2x+3\gt 0\\ x+4\gt 0\\ 1-2x\gt 0 \end \Rightarrow \begin x\gt-\frac32\\ x\gt-4\\ x\lt\frac12 \end \Rightarrow -\frac32\lt x\lt\frac12\Rightarrow x\in\left(-\frac32;\frac12\right) \)
Решаем уравнение:
\(\lg\left((2x+3)(x+4)\right)=\lg(1-2x)\)
\((2x+3)(x+4)=1-2x\)
\(2x^2+11x+12-1+2x=0\)
\(2x^2+13x+11=0\)
\((2x+11)(x+1)=0\)
\( \left[ \begin x_1=-5,5\\ x_2=-1 \end \right. \)
Корень \(x_1=-5,5\notin \left(-\frac32;\frac12\right),\) т.е. не подходит.
Корень \(x_2=-1\in \left(-\frac32;\frac12\right)\) — искомое решение.
Ответ: -1

п.3. Решение уравнений вида \(\log_ f(x)=\log_ g(x)\)

Как и в предыдущем случае, можно сначала найти ОДЗ, а потом решать уравнение.
Или же, можно решить уравнение, а потом проверить требования ОДЗ прямой подстановкой полученных корней.

Например:
Решим уравнение \(\log_(x^2-4)=\log_(2-x)\)
Найдем ОДЗ в явном виде:
\( \begin x^2-4\gt 0\\ 2-x\gt 0\\ x+5\gt 0\\ x+5\ne 1 \end \Rightarrow \begin x\lt -2\cup x\gt 2\\ x\lt 2\\ x\gt -5\\ x\ne -4 \end \Rightarrow \begin -5\lt x\lt -2\\ x\ne -4 \end \Rightarrow x\in (-5;-4)\cup(-4;-2) \)
Решаем уравнение:
\(x^2-4=2-x\)
\(x^2+x-6=0\)
\((x+3)(x-2)=0\)
\( \left[ \begin x_1=-3\\ x_2=2 — \ \text <не подходит>\end \right. \)
Ответ: -3

В логарифмическом уравнении перед отбрасыванием логарифмов основания обязательно должны быть равны. Не забывайте это проверять!

Например:
Решим уравнение \(\log_<2>(x+1)=\log_<4>(x+3)\)
Основания \(2\ne 4\), и нельзя сразу написать \(x+1=x+3\).
Нужно привести к одному основанию, преобразовав левую часть:
\(\log_2(x+1)=\log_<2^2>(x+1)^2=\log_4(x+1)^2\)
Тогда исходное уравнение примет вид: \(\log_4(x+1)^2=\log_4(x+3)\)
И теперь: \((x+1)^2=x+3\)
\(x^2+x-2=0\)
\((x+2)(x-1)=0\)
\( \left[ \begin x_1=-2\\ x_2=1 \end \right. \)
Что касается ОДЗ, то её нужно искать для исходного уравнения:
\( \begin x+1\gt 0\\ x+3\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt -3 \end \Rightarrow x\gt -1 \)
Корень \(x_1=-2\lt -1\) — не подходит.
Ответ: 1

Преобразования могут расширить первоначальную область допустимых значений (например, при возведении в квадрат), и вы включите в решение лишние корни.
Преобразования также могут сузить ОДЗ (например, при взятии корня), и некоторые решения окажутся потеряны.
Поэтому ОДЗ определяется для исходного уравнения (выражения, неравенства), а не того, которое получено после преобразований.

п.4. Примеры

Пример 1. Решите уравнения:
a) \( \log_2(x+1)-\log_2(x-1)=1 \)
ОДЗ: \( \begin x+1\gt 0\\ x-1\gt 0 \end \Rightarrow \begin x\gt -1\\ x\gt 1 \end \Rightarrow x\gt 1 \)
\(\log_2\left((x+1)(x-1)\right)=\log_22\)
\(x^2-1=2\Rightarrow x^2 =3\)
\( \left[ \begin x_1=-\sqrt<3>\lt 2 — \text<не подходит>\\ x_2=\sqrt <3>\end \right. \)
Ответ: \(\sqrt<3>\)

б) \( 2\log_5(x-1)=\log_5(1,5x+1) \)
ОДЗ: \( \begin x-1\gt 0\\ 1,5x+1\gt 0 \end \Rightarrow \begin x\gt 1\\ x\gt-\frac23 \end \Rightarrow x\gt 1 \)
Преобразуем: \(2\log_5(x-1)=\log_5(x-1)^2\)
Получаем: \(\log_5(x-1)^2=\log_5(1,5x+1)\)
\((x-1)^2=1,5x+1\)
\(x^2-2x+1-1,5x-1=0\Rightarrow x^2-3,5x=0\Rightarrow x(x-3,5)=0\)
\( \left[ \begin x_1=0\lt 1 — \text<не подходит>\\ x_2=3,5 \end \right. \)
Ответ: 3,5

в) \( \log_3(3-x)+\log_3(4-x)=1+2\log_3 2 \)
ОДЗ: \( \begin 3-x\gt 0\\ 4-x\gt 0 \end \Rightarrow \begin x\lt 3\\ x\lt 4 \end \Rightarrow x\lt 3 \)
Преобразуем: \(1+2\log_3 2=\log_3 3+\log_3 2^2=\log_3(3\cdot 4)=\log_3 12\)
Получаем: \(\log_3\left((3-x)(4-x)\right)=\log_3 12\)
\((3-x)(4-x)=12\Rightarrow 12-7x+x^2=12\Rightarrow x(x-7)=0\)
\( \left[ \begin x_1=0\\ x_2=7\gt 3 — \text <не подходит>\end \right. \)
Ответ: 0

г) \( \log_2^2x+\log_2 x^2+1=0 \)
ОДЗ: \(x\gt 0\)
\(\log_2x^2=2\log_2x\)
Получаем: \(\log_2^2x+2\log_2x+1=0\)
Замена: \(t=\log_2 x\)
\(t^2+2t+1=0\Rightarrow(t+1)^2=0\Rightarrow t=-1\)
Возвращаемся к исходной переменной: \(\log_2x=-1\)
\(x=2^<-1>=\frac12\)
Ответ: \(\frac12\)

д) \( x^<\lg x>=10 \)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg ⁡x\). Тогда \(x=10^t\)
Подставляем:
\((10^t)^t=10\Rightarrow 10^=10^1\Rightarrow t^2=1\Rightarrow t=\pm 1\)
Возвращаемся к исходной переменной:
\( \left[ \begin \lg x=-1\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-1>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,1\\ x_2=10 \end \right. \)
Оба корня подходят.
Ответ:

e) \( \sqrt\cdot \log_5(x+3)=0 \)
ОДЗ: \( \begin x\geq 0\\ x+3\gt 0 \end \Rightarrow \begin x\geq 0\\ x\gt -3 \end \Rightarrow x\geq 0 \)
\( \left[ \begin \sqrt=0\\ \log_5(x+3)=0 \end \right. \Rightarrow \left[ \begin x=0\\ x+3=5^0=1 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=-2\lt 0 — \text <не подходит>\end \right. \)
Ответ: 0

ж) \( \log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(x+1) \)
ОДЗ: \( \begin x\gt 0\\ x+1\gt 0\\ 5x-2\gt 0\\ 5x-2\ne 1 \end \Rightarrow \begin x\gt 0\\ x\gt -1\\ x\gt\frac25\\ x\ne\frac35 \end \Rightarrow \begin x\gt\frac25\\ x\ne\frac35 \end \)
Преобразуем: \(\log_<5x-2>2+2\log_<5x-2>x=\log_<5x-2>(2x^2)\)
Подставляем: \(\log_<5x-2>(2x^2)=\log_<5x-2>(x+1)\)
\( 2x^2=x+1\Rightarrow 2x^2-x-1=0\Rightarrow (2x+1)(x-1)=0 \Rightarrow \left[ \begin x_1=-\frac12 — \text<не подходит>\\ x_2=1 \end \right. \)
Ответ: 1

Пример 2*. Решите уравнения:
a) \( \log_4\log_2\log_3(2x-1)=\frac12 \)
ОДЗ: \( \begin 2x-1\gt 0\\ \log_3(2x-1)\gt 0\\ \log_2\log_3(2x-1)\gt 0 \end \Rightarrow \begin x\gt\frac12\\ 2x-1\gt 3^0\\ \log_3(2x-1)\gt 2^0 \end \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ 2x-1\gt 3^1 \end \Rightarrow \)
\( \Rightarrow \begin x\gt\frac12\\ x\gt 1\\ x\gt 2 \end \Rightarrow x\gt 2 \)
Решаем:
\(\log_2\log_3(2x-1)=4^<1/2>=2\)
\(\log_3(2x-1)=2^2=4\)
\(2x-1=3^4=81\)
\(2x=82\)
\(x=41\)
Ответ: 41

б) \( \log_2(9-2^x)=25^<\log_5\sqrt<3-x>> \)
ОДЗ: \( \begin 9-2x\gt 0\\ 3-x\gt 0 \end \Rightarrow \begin 2^x\lt 9\\ x\lt 3 \end \Rightarrow \begin x\lt\log_2 9\\ x\lt 3 \end \Rightarrow x\lt 3 \)
Преобразуем: \(25^<\log_5\sqrt<3-x>>=25^<\log_<5^2>(\sqrt<3-x>)^2>=25^<\log_<25>(3-x)>=3-x\)
Подставляем: \(\log_2(9-2^x)=3-x\)
\(9-2^x=2^<3-x>\)
\(9-2^x-\frac<8><2^x>=0\)
Замена: \(t=2^x\gt 0\)
\( 9-t-\frac8t=0\Rightarrow \frac<-t^2+9t-8>=0\Rightarrow \begin t^2-9t+8\gt 0\\ t\ne 0 \end \Rightarrow \begin (t-1)(t-8)=0\\ t\ne 0 \end \Rightarrow \left[ \begin t_1=1\\ t_2=8 \end \right. \)
Возвращаемся к исходной переменной:
\( \left[ \begin 2^x=1\\ 2^x=8 \end \right. \Rightarrow \left[ \begin 2^x=2^0\\ 2^x=2^3 \end \right. \Rightarrow \left[ \begin x_1=0\\ x_2=3 \end \right. \)
По ОДЗ \(x\lt 3\), второй корень не подходит.
Ответ: 0

в) \( \lg\sqrt+\lg\sqrt<2x-3>+1=\lg 30 \)
ОДЗ: \( \begin x-5\gt 0\\ 2x-3\gt 0 \end \Rightarrow \begin x\gt 5\\ x\gt\frac32 \end \Rightarrow x\gt 5 \)
Преобразуем: \(\lg 30-1=\lg 30-\lg 10=\lg\frac<30><10>=\lg 3\)
Подставляем: \(\lg\sqrt+\lg\sqrt<2x-3>=\lg 3\)
\(\frac12\lg(x-5)+\frac12\lg(2x-3)=\lg 3\ |\cdot 2\)
\(\lg(x-4)+\lg(2x-3)=2\lg 3\)
\(\lg\left((x-5)(2x-3)\right)=\lg 3^2\)
\((x-5)(2x-3)=9\Rightarrow 2x^2-13x+15-9=0 \Rightarrow 2x^2-13x+6=0\)
\( (2x-1)(x-6)=0\Rightarrow \left[ \begin x_1=\frac12\lt 5 — \ \text<не подходит>\\ x_2=6 \end \right. \)
Ответ: 6

г) \( \frac<1><\lg x>+\frac<1><\lg 10x>+\frac<3><\lg 100x>=0 \)
ОДЗ: \( \begin x\gt 0\\ \lg x\ne 0\\ \lg 10x\ne 0\\ \lg 100x\ne 0 \end \Rightarrow \begin x\gt 0\\ x\ne 1\\ 10x\ne 1\\ 100x\ne 1 \end \Rightarrow \begin x\gt 0\\ x\ne\left\<\frac<1><100>;\frac<1><10>;1\right\> \end \)
Преобразуем: \(\lg 10x=\lg 10+\lg x=1+\lg 10\)
\(\lg 100x=\lg 100+\lg x=2+\lg x\)
Подставляем: \(\frac<1><\lg x>+\frac<1><1+\lg x>+\frac<3><2+\lg x>=0\)
Замена: \(t=\lg x\)
\begin \frac1t+\frac<1><1+t>+\frac<3><2+t>=0\Rightarrow \frac1t+\frac<1><1+t>=-\frac<3><2+t>\Rightarrow \frac<1+t+t>=-\frac<3><2+t>\Rightarrow (1+2t)(2+t)=(1+t)\\ 2_5t+2t^2=-3t-3t^2\Rightarrow 5t^2+8t+2=0\\ D=8^2-4\cdot 5\cdot 2=24,\ \ t=\frac<-8\pm 2\sqrt<6>><10>=\frac<-4\pm \sqrt<6>> <5>\end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=\frac<-4- \sqrt<6>><5>\\ \lg x=\frac<-4+ \sqrt<6>> <5>\end \right. \Rightarrow \left[ \begin x=10\frac<-4- \sqrt<6>><5>\\ x=10\frac<-4+ \sqrt<6>> <5>\end \right. $$ Оба корня подходят.
Ответ: \(\left\<10\frac<-4\pm\sqrt<6>><5>\right\>\)

e) \( x^<\frac<\lg x+7><4>>=10^ <\lg x+1>\)
ОДЗ: \(x\gt 0\)
Замена: \(t=\lg x.\) Тогда \(x=10^t\)
Подставляем: \begin (10^t)^<\frac<4>>=10^\\ \frac<4>=t+1\Rightarrow t(t+7)=4(t+1)\Rightarrow t^2+7t-4t-4=0\\ t^2+3t-4=0\Rightarrow (t+4)(t-1)=0\Rightarrow \left[ \begin t_1=-4\\ t_2=1 \end \right. \end Возвращаемся к исходной переменной:
$$ \left[ \begin \lg x=-4\\ \lg x=1 \end \right. \Rightarrow \left[ \begin x=10^<-4>\\ x=10 \end \right. \Rightarrow \left[ \begin x_1=0,0001\\ x_2=10 \end \right. $$ Оба корня подходят.
Ответ: \(\left\<0,0001;\ 10\right\>\)

ж) \( 4^<\log_3(1-x)>=(2x^2+2x+5)^ <\log_3 2>\)
ОДЗ: \( \begin 1-x\gt 0\\ 2x^2+2x+5\gt 0 \end \Rightarrow \begin x\lt 1\\ D\lt 0,\ x\in\mathbb \end \Rightarrow x\lt 1 \)
По условию: \begin \log_3(1-x)=\log_4\left((2x^2+2x+5)^<\log_32>\right)\\ \log_3(1-x)=\log_32\cdot\log_4(2x^2+2x+5) \end Перейдем к другому основанию: $$ \frac<\lg(1-x)><\lg 3>=\frac<\lg 2><\lg 3>\cdot\frac<\lg(2x^2+2x+5)><\lg 4>\ |\cdot\ \lg 3 $$ \(\frac<\lg 2><\lg 4>=\frac<\lg 2><\lg 2^2>=\frac<\lg 2><2\lg 2>=\frac12\) \begin \lg(1-x)=\frac12\cdot\lg(2x^2+2x+5)\ |\cdot 2\\ 2\lg(1-x)=\lg(2x^2+2x+5)\\ \lg(1-x)^2=\lg(2x^2+2x+5)\\ (1-x)^2=2x^2+2x+5\\ 1-2x+x^2=2x^2+2x+5\\ x^2+4x+4=0\\ (x+2)^2=0\\ x=-2 \end Ответ: -2

Пример 3. Решите систему уравнений:
a) \( \begin \lg x+\lg y=\lg 2\\ x^2+y^2=5 \end \)
ОДЗ: \( \begin x\gt 0\\ y\gt 0 \end \)
Из первого уравнения: \(\lg(xy)=\lg 2\Rightarrow xy=2\)
Получаем: \( \begin xy=2\\ x^2+y^2=5 \end \Rightarrow \begin y=\frac2x\\ x^2+\left(\frac2x\right)^2-5=0 \end \)
Решаем биквадратное уравнение: \begin x^2+\frac<4>-5=0\Rightarrow\frac=0\Rightarrow \begin x^4-5x^2+4=0\\ x\ne 0 \end \\ (x^2-4)(x^2-1)=0\Rightarrow \left[ \begin x^2=4\\ x^2=1 \end \right. \Rightarrow \left[ \begin x=\pm 2\\ x=\pm 1 \end \right. \end Согласно ОДЗ, оставляем только положительные корни.
Получаем две пары решений: \( \left[ \begin \begin x=1\\ y=\frac2x=2 \end \\ \begin x=2\\ y=\frac22=1 \end \end \right. \)
Ответ: \(\left\<(1;2),(2,1)\right\>\)

б) \( \begin x^=27\\ x^<2y-5>=\frac13 \end \)
ОДЗ: \(x\gt 0,\ x\ne 1\)
Логарифмируем: \( \begin y+1=\log_x27=\log_x3^3=3\log_x3\\ 2y-5=\log_x\frac13=\log_x3^<-1>=-\log_x3 \end \)
Замена: \(z=\log_x3\) \begin \begin y+1=3z\\ 2y-5=-z\ |\cdot 3 \end \Rightarrow \begin y+1=3z\\ 6y-15=-3z \end \Rightarrow \begin 7y-14=0\\ z=5-2y \end \Rightarrow \begin y=2\\ z=1 \end \end Возвращаемся к исходной переменной: $$ \begin y=2\\ \log_x3=1 \end \Rightarrow \begin x^1=3\\ y=2 \end \Rightarrow \begin x=3\\ y=2 \end $$
Ответ: (3;2)

в*) \( \begin 3(\log_y x-\log_x y)=8\\ xy=16 \end \)
ОДЗ: \( \begin x\gt 0,\ x\ne 1\\ y\gt 0,\ y\ne 1 \end \)
Сделаем замену \(t=\log_x y\). Тогда \(\log_y x=\frac<1><\log_x y>=\frac1t\)
Подставим в первое уравнение и решим его: \begin 3\left(\frac1t-t\right)=8\Rightarrow\frac<1-t^2>=\frac83\Rightarrow \begin 3(1-t^2)=8t\\ t\ne 0 \end\\ 3t^2+8t-3=0\Rightarrow (3t-1)(t+3)=0\Rightarrow \left[ \begin t_1=\frac13\\ t_2=-3 \end \right. \end Прологарифмируем второе уравнение по \(x\): $$ \log_x(xy)=\log_x16\Rightarrow 1+\log_x y=\log_x16\Rightarrow 1+t=\log_x 16 $$ Получаем: \begin \left[ \begin \begin t=\frac13\\ \log_x16=1+t=\frac43 \end \\ \begin t=-3\\ \log_x16=1+t=-2 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x^<\frac43>=16 \end \\ \begin t=-3\\ x^<-2>=16 \end \end \right. \Rightarrow \left[ \begin \begin t=\frac13\\ x=(2^4)^<\frac34>=2^3=8 \end \\ \begin t=-3\\ x=(16)^<-\frac12>=\frac14 \end \end \right. \end Возвращаемся к исходной переменной: \begin \left[ \begin \begin x=8\\ \log_x y=\frac13 \end \\ \begin x=\frac14\\ \log_x y=-3 \end \end \right. \Rightarrow \left[ \begin \begin x=8\\ y=8^<\frac13>=2 \end \\ \begin x=\frac14\\ y=\left(\frac14\right)^<-3>=64 \end \end \right. \end
Ответ: \(\left\<(8;2),\left(\frac14; 64\right)\right\>\)

г*) \( \begin (x+y)\cdot 3^=\frac<5><27>\\ 3\log_5(x+y)=x-y \end \)
ОДЗ: \(x+y\gt 0\)
Прологарифмируем первое уравнение по 3: \begin \log_3\left((x+y)\cdot 3^\right)=\log_3\frac<5><27>\\ \log_3(x+y)+(y-x)=\log_3\frac<5><27>\\ \log_3(x+y)-\log_3\frac<5><27>=x-y \end Получаем:\(x-y=3\log_5(x+y)=\log_3(x+y)-\log_3\frac<5><27>\)
Решим последнее уравнение относительно \(t=x+y\) \begin 3\log_5 t=\log_3 t-\log_3\frac<5><27>\\ 3\cdot\frac<\log_3t><\log_35>-\log_3t=-\log_3\frac<5><27>\\ \log_3t\cdot\left(\frac<3><\log_35>-1\right)=-\log_3\frac<5><27>\\ \log_3t=-\frac<\log_3\frac<5><27>><\frac<3><\log_35>-1>=-\frac<(\log_35-3)\log_35><3-\log_35>=\log_35\\ t=5 \end Тогда: \(x-y=3\log_5t=3\log_55=3\)
Получаем систему линейных уравнений: \begin \begin x+y=5\\ x-y=3 \end \Rightarrow \begin 2x=5+3\\ 2y=5-3 \end \Rightarrow \begin x=4\\ y=1 \end \end Требование ОДЗ \(x+y=4+1\gt 0\) выполняется.
Ответ: (4;1)

Методическая разработка на тему «Логарифмические уравнения». 10-11 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Среднее общеобразовательная школа №2

города Ханабада, Андижанской области,

Алгебра и начало математического анализа

Методическая разработка по теме

Подготовил учитель математики

Нуманходжаев Абдилбосит Сайдуллаевич

Основные понятия и определения

Определение: Логарифмом положительного числа пос основанию , где называется показатель степениб в которую надо возвести число чтоб ы получить

Определение логарифма можно записать так: =.

Это равенство справедливо при

Определение: Уравнение, в котором неизвестное является аргументом логарифмической функции, называется логарифмическим уравнением.

Решить логарифмическое уравнение – это значит найти все его корни или доказать что их не существует.

Корнем логарифмического уравнения называется значение переменной, которое принадлежит области допустимых значений уравнения и при подстановке обращает его в тождество.

Для решения логарифмических уравнений необходимо знать определение логарифма, свойства логарифмической функции, знать и уметь применять основные свойства логарифмов.

Основные свойства логарифмов

Применение свойств логарифмов может привести к потере корней, если их использовать в сторону логарифмирования, или к приобретению посторонних, если свойства использовать в сторону потенцирования. Это происходит за счет того, что в формулах 1 − 12 левая и правая части определены для разных значений х. Поэтому, приступая к решению логарифмического уравнения необходимо установить О.Д.З. и следить за равносильностью совершаемых преобразований, или сделать проверку полученных корней.

Например, для свойства 4 можно записать равносильное преобразование:

Методы решения логарифмических уравнений

1. Простейшее логарифмическое уравнение.

Простейшее логарифмическое уравнение имеет вид:

Всегда имеет единственное решение:

2. Логарифмические уравнения, решаемые потенцированием.

Этим методом решается большинство логарифмических уравнений. Если уравнение, в котором содержатся логарифмические функции различных аргументов, с помощью равносильных преобразований приводится к виду:

то оно решается потенцированием. Учитывая ОДЗ каждой логарифмической функции, входящей в уравнение, потенцируем:

Т.е. от логарифмического уравнения переходим к уравнению с аргументами логарифмических функций левой и правой частей уравнения, полученных в результате равносильных преобразований .

3. Логарифмические уравнения, решаемые введением новой переменной.

Уравнение, в котором проводятся алгебраические действия над одной и той же логарифмической функцией, решается заменой переменной и сводится к решению простейших логарифмических уравнений. Н апример, квадратное уравнение:

Решается полученное квадратное уравнение

Затем производится обратная замена, и решаются простейшие логарифмические уравнения.

4. Логарифмические уравнения, решаемые логарифмированием.

Рассмотрим логарифмическое уравнение вида

Логарифмированием обеих частей уравнения по данному основанию а уравнение такого вида сводится к уравнению относительно одной логарифмической функции и решается с помощью замены переменной. При решении такого вида логарифмических уравнений необходимо правильно устанавливать ОДЗ.

Логарифмируем обе части уравнения по основанию а и используем свойства логарифмов:

После дальнейших преобразований получится логарифмическое уравнение, решаемое заменой переменной.

6. Графическое решение логарифмических уравнений.

Решить графически логарифмическое уравнение, значит в одной системе координат построить графики левой и правой частей уравнения. Корнями уравнения являются абсциссы точек пересечения построенных графиков функций.

Примеры

1. Решить уравнение

Устанавливаем О.Д.З.: Рассмотрим решения.

2. Решить уравнение :

Используем свойства логарифмов и приводим уравнение к виду, в котором можно потенцировать.

3. Решить уравнение

Приводим уравнение к виду, в котором можно потенцировать. Для этого прологарифмируем правую часть уравнения по основанию :

О.Д.З., т.е. не является корнем исходного уравнения, О.Д.З.

4. Решить уравнение .

В это уравнение входит одна и та же логарифмическая функция .

Делаем замену , тогда получаем =.

Получаем квадратное уравнение:

Решая квадратное уравнение получаем

Делаем обратную замену и находим корни логарифмического уравнения:

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Решить уравнения 1 – 1 0:

Найти произведение корней уравнений 1 1 − 1 5:

Найти сумму корней уравнений 1 6 − 18 :

Учебник по “Алгебра и начало математического анализа”.Ш.А.Алимов и др.

Учебник по математике для 10 классов «Основы алгебры и анализа» II – часть. М.А.Мирзаахмедов и др.

«Нестандартные задачи по математике» Е.В.Галкин

«Методическое пособие по математике для поступающих в ВУЗы. Х.Х.Рузимур а дов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 930 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 687 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 304 человека из 68 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 593 340 материалов в базе

Материал подходит для УМК

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

§ 19. Логарифмические уравнения

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

«Психологические методы развития навыков эффективного общения и чтения на английском языке у младших школьников»

Свидетельство и скидка на обучение каждому участнику

Другие материалы

  • 02.05.2020
  • 3749
  • 11

  • 28.02.2020
  • 234
  • 4

  • 26.02.2020
  • 1237
  • 144

  • 10.02.2020
  • 530
  • 41

  • 01.02.2020
  • 7313
  • 367

  • 30.01.2020
  • 142
  • 2

  • 23.01.2020
  • 1370
  • 60

  • 12.12.2019
  • 380
  • 3

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 25.06.2020 155
  • DOCX 66.7 кбайт
  • 2 скачивания
  • Оцените материал:

Настоящий материал опубликован пользователем Нуманходжаев Абдилбосит Сайдуллаевич. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 1 год и 8 месяцев
  • Подписчики: 0
  • Всего просмотров: 1676
  • Всего материалов: 5

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В Белгородской области отменяют занятия в школах и детсадах на границе с Украиной

Время чтения: 0 минут

В приграничных пунктах Брянской области на день приостановили занятия в школах

Время чтения: 0 минут

Университет им. Герцена и РАО создадут портрет современного школьника

Время чтения: 2 минуты

Курские власти перевели на дистант школьников в районах на границе с Украиной

Время чтения: 1 минута

Студенты российских вузов смогут получить 1 млн рублей на создание стартапов

Время чтения: 3 минуты

Новые курсы: функциональная грамотность, ФГОС НОО, инклюзивное обучение и другие

Время чтения: 15 минут

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.


источники:

http://reshator.com/sprav/algebra/10-11-klass/logarifmicheskie-uravneniya-i-sistemy/

http://infourok.ru/metodicheskaya-razrabotka-na-temu-logarifmicheskie-uravneniya-10-11-klass-4370459.html