Алгебра 10 класс решение линейных уравнений

Решение систем линейных алгебраических уравнений. 10 класс.

Исследовательская работа по теме «Решение систем линейных алгебраических уравнений». 10 класс. Алгебра и начала анализа.

Скачать:

ВложениеРазмер
nou._reshenie_sistem_lineynykh_algebraicheskikh_uravneniy.doc515 КБ

Предварительный просмотр:

Муниципальное бюджетное образовательное учреждение

Средняя общеобразовательная школа № 81

Сормовского района г. Н. Новгорода

Научное общество учащихся

«Решение систем линейных алгебраических уравнений»

Выполнил: Тихонов Никита,

ученик 10 «а» класса

Капочкина Антонина Николаевна,

1.Системы линейных алгебраических уравнений

2. Решение систем линейных алгебраических уравнений методом Крамера.

2.1. Основные понятия.

2.2 Определители второго порядка и их свойства.

2.3 Определители третьего порядка и их свойства.

2.4. Решение СЛАУ методом Крамера.

3. Матрицы и действия над ними.

3.2. Действия над матрицами.

3.3.Обратная матрица. Матричный метод решения СЛАУ.

4. Решение систем линейных алгебраических уравнений методом Гаусса.

4.1. Совместность СЛАУ.

4.2. Решение СЛАУ методом Гаусса.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений и их систем. Овладевая способами их решения, учащиеся находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т.д.).

Многие теоритические и практические вопросы, приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными.

Способы решения систем линейных уравнений – очень интересная и важная тема в школьном курсе математики, задания из данной темы были представлены на экзамене в 9 классе, а также входят в состав заданий для ЕГЭ.

С решением систем линейных уравнений мы познакомились в седьмом классе. Тогда мы решали системы линейных уравнений двумя способами:

  1. метод подстановки;
  2. метод сложения.

Нужно заметить, что не все методы решения системы линейных алгебраических уравнений рассматриваются в школьном курсе математики. Существуют и другие методы, например, такие, как: метод Крамера , Гаусса (исключение неизвестных), матричный способ.

С этими способами решения систем линейных уравнений мы познакомимся в данной исследовательской работе.

В процессе работы приобретаются навыки, с помощью которых последующее решение систем линейных уравнений станет намного проще и быстрее.

Рассмотреть решение систем линейных алгебраических уравнений методом Крамера, методом Гаусса и матричным методом.

  1. Познакомится с понятием определителя и методами его вычисления.
  2. Рассмотреть метод Крамера решения систем линейных алгебраических уравнений.
  3. Познакомиться с понятием матрицы, элементами матриц, и их элементарными преобразованиями.
  4. Рассмотреть решение систем линейных алгебраических уравнений матричным методом.
  5. Рассмотреть решение систем линейных алгебраических уравнений методом Гаусса.

1.Системы линейных алгебраических уравнений

1.1 Основные понятия и определения

Система m линейных уравнений с n переменными имеет вид:

где a ij, b i (i = 1,2,…,m; j = 1,2,…,n) – произвольные числа, называемые соответственно коэффициентами при переменных и свободными членами уравнений.

В более краткой записи с помощью знаков суммирования систему можно записать в виде:

Решением системы (1.1) называется такая совокупность n чисел ( x 1 = k 1, x 2 = k 2 ,…, x n = k n ), при подстановке которых каждое уравнение системы обращается в верное равенство.

Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если она не имеет решений.

Совместная система уравнений называется определенной , если она имеет единственное решение, и неопределенной , если она имеет более одного решения. Например, система уравнений – совместная и определенная, так как имеет единственное решение (10;0); система – несовместная; а система уравнений – совместная и неопределенная, так как имеет более одного, а точнее бесконечное множество решений ( x 1 = c, x 2 = 20-c, где с – любое число).

Две системы уравнений называются равносильными , или эквивалентными , если они имеют одно и то же множество решений. С помощью элементарных преобразований системы уравнений получается система (1.1), равносильная данной.

2. Решение систем линейных алгебраических
уравнений методом Крамера.

2.1. Основные понятия.

Определителем n-го порядка называется число  n , составленное по определенному правилу и записываемое в виде квадратной таблицы

Определитель вычисляется согласно указанному ниже правилу, по заданным числам ( ), которые называются элементами определителя (всего их n 2 ). Индекс i указывает номер строки, j – номер столбца квадратной таблицы (1), на пересечении которых находится элемент . Любую строку или столбец этой таблицы будем называть рядом.

Главной диагональю определителя называется совокупность элементов , , …, определителя (1).

Побочной диагональю определителя называется совокупность элементов , , …, определителя (1).

Минором M ij элемента a ij называется определитель (n–1)–го порядка  n–1 , полученный из определителя n–го порядка  n вычеркиванием i-й строки и jстолбца.

Алгебраическое дополнение A ij элемента a ij определяется равенством

A ij = (–1) i+j  M ij (2)

Значение определителя  n находится по следующему правилу.

Для n = 3 в определителе выбирается разрешающая строка или столбец, относительно которой или которого вычисляются определители 2-го порядка

Здесь в качестве разрешающей была выбрана первая строка определителя (4), однако, без ограничения общности, в качестве разрешающей может быть выбрана любая другая строка либо столбец.

В дальнейшем в качестве разрешающей будем рассматривать первую строку определителя.

Величины A 11 , A 12 , A 13 – алгебраические дополнения, а M 11 , M 12 , M 13 – миноры, соответствующие элементам a 11 , a 12 , a 13 определителя  3 . Эти миноры являются определителями второго порядка, получаемыми из определителя  3 вычеркиванием первой строки и соответствующих столбцов. Например, чтобы найти минор M 13 , следует в определителе  3 вычеркнуть первую строку и третий столбец, а из оставшихся элементов составить определитель второго порядка.

Для произвольного n

где A 1k = (–1) 1+k M 1k , а миноры M 1k , являющиеся определителями (n–1)-го порядка, получаются из  n вычеркиванием первой строки и k-го столбца.

2.2 Определители второго порядка и их свойства.

Определителем второго порядка называется число

Приведем основные свойства определителей второго порядка.

  1. Величина определителя не изменится, если его строки поменять местами соответственными столбцами.
  2. При перестановке двух строк (столбцов) абсолютная величина определителя сохранится, а знак изменится на противоположный.
  3. Если определитель содержит две одинаковые строки (два одинаковых столбца), то его величина равна нулю.
  4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.
  5. Если все элементы какой – либо строки (столбца) определителя равны нулю, то величина определителя равна нулю.
  6. Если к элементам какой – либо строки (столбца) определителя прибавить соответственные элементы другой строки (столбца), умноженные на одно то же число, то величина определителя не изменится.

Пример 1. Вычислить определитель ∆= .

Решение. По формуле (1) находим

Пример 2. Вычислить определитель ∆= .

Решение. Вынесем за знак определителя общие элементов 1-й и 2-й строк, т.е. числа 125 и 4:

Вынося за знак определителя общий множитель элементов 2-ого столбца, равный 4, получим

2.3 Определители третьего порядка и их свойства.

Определителем третьего порядка называется число

Свойства определителей третьего порядка аналогичны свойствам определителей второго порядка.

Пример 1. Вычислить определитель

Решение. По формуле (1) находим

Пример 2. Вычислить определитель

Решение. Вынося за знак определителя общие множители элементов 1, 2 и 3-й строк, получим

∆=3∙6∙2∙ =36∙ — 2 + 3 =36(4(1-5)-2∙0+3(5-

Пример 3. Вычислить определитель

Решение. Вынесем общий множитель элементов 2-й строки за знак определителя:

Вычтем из элементов 3-й строки соответственные элементы 1-й строки:

Так как определитель с двумя равными строками равен нулю, то ∆=7∙0=0.

Для вычисления определителя третьего порядка  3 часто пользуются привилом Сарруса (правило треугольников):

 3 = a 11 a 22 a 33 + a 12 a 23 a 31 + a 21 a 32 a 13 – (a 13 a 22 a 31 + a 12 a 21 a 33 + a 23 a 32 a 11 )

Схематическая запись этого правила приведена ниже:

Пример 4. Вычислить определить 4-го порядка.

2.4. Решение СЛАУ методом Крамера.

Пусть задана система линейных алгебраических уравнений в следующем виде:

Пусть определитель матрицы A коэффициентов системы отличен от нуля, т.е. det A  0. Тогда справедливы формулы Крамера для вычисления неизвестных :

где , а являются определителями n-го порядка, которые получаются из путем замены в нем i-го столбца столбцом свободных членов исходной системы.

Пример 1. Решить систему уравнений с помощью формул Крамера:

= 56 – 18 + 20 + 21 = 79.

Последовательно заменяя в  3 первый, второй и третий столбцы столбцом свободных членов, получим

Пример 2. Решить систему уравнений

Найдем определитель системы =5. Так как то по теореме Крамера система имеет единственное решение.

Вычислим определители , , , полученных из матрицы А, заменой соответственно первого, второго и третьего столбцов столбцом свободных членов:

Теперь по формулам Крамера (1.8)

x 1 = ; x 2 = ; x 3 =

т. е. решение системы (4; 2; 1).

Пример 3. Решить систему уравнений

Система уравнений имеет одно решение, так как определитель отличен от нуля.

Остальные определители получим путем замены соответствующего столбца исходного определителя на столбец свободных членов системы уравнений.

Решения находим по формулам:

3. Матрицы и действия над ними.

Матрица размерами m × n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

2 5 2

А = 3 10 7 — матрица. (1)

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n (2)

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n, то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [a ij ] и В = [b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j.

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной матрицы порядка n ,сумма индексов каждого из которых равна n+1, – побочную диагональ.

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0 (4)

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ; (5)

a n1 a n2 … a nn

то

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 . (6)

a 1n a 2n … a nn

Определитель n-го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk (7)

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

  1. При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

  1. Определитель, содержащий две одинаковые строки, равен нулю.
  2. Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.
  3. Определитель, содержащий две пропорциональные строки, равен нулю.
  4. Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

  1. Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

3.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ……………………… (10)

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

  1. А + В = В + А ; (коммутативность)
  2. А + (В + С) = (А + В) + С ; (ассоциативность)
  3. А + О = А .

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

A = ………… , то λA = ……………… (11)

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj, (12)

где i = 1,2, …, m; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (13)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (14)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (13). Перемножив их в обратном порядке, получим:

39 54 69

ВА = 49 68 87 (15)

Сравнив правые части выражений (14) и (15), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

  1. А(ВС) = (АВ)С ; (ассоциативность)
  2. λ(АВ) = (λА)В = А(λВ);
  3. А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

3.3.Обратная матрица. Матричный метод решения СЛАУ.

Пусть дана квадратная матрица

a 11 … a 1n

A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Пример 1. Найти матрицу обратную матрице

1 2 3

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = – –3 1 = –1;

1 –1 2 –1

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

2 1 1 –1

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

2 –1 2 1

А 31 = 2 3 = 5; А 32 = — 1 3 = –10;

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

0 5 5

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

А = 2 3 ; В = 3 4 .

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

Пример1. Решите систему алгебраических линейных уравнений матричным методом.

А= 1 -1 4 ; Х= у ; В= -5

Найдём обратную матрицу А -1 :

∆ = 1 -1 4 = 4*(-1)*1 + 1*1*1 + 1*2*4 – 4*(-1)*1 – 1*1*4 – 1*

4 1 -4 *2*1 = -4+1+8+4-4-2=9-6=3 =0

Следовательно обратная матрица существует. Построим её:

Составим алгебраические дополнения к элементам матрицы А:

А 11 = (-1) 2 -1 2 = -6 А 12 = (-1) 3 1 2 =4 А 13 = (-1) 4 1 -1 = 5

А 21 = (-1) 3 1 1 = -3 А 22 = (-1) 4 1 1 =0 А 23 = (-1) 5 1 1 =3

А 31 = (-1) 4 1 1 =3 А 32 = (-1) 5 1 1 =-1 А 33 = (-1) 6 1 1 =-2

Составим матрицу из алгебраических дополнений:

Транспонируем полученную матрицу:

Умножим полученную матрицу на число, обратное определителю матрицы А т.е на 1/3:

А -1 = 4/3 0/3 -1/3 = 4/3 0 -1/3

5/3 3/3 -2/3 5/3 1 4/3

Х= 4/3 0 -1/3 * -5 = 4/3+2/3 = 2

5/3 1 4/3 -2 5/3-5+4/3 -2

Таким образом, х=1,у= 2, z= -2

Ответ: х=1,у= 2, z= -2

Найдем алгебраические дополнения

Отсюда получаем x = 2, y = 3, z =1.

4 . Решение систем линейных алгебраических
уравнений методом Гаусса.

4.1. Совместность СЛАУ.

Одним из ключевых понятий при решении систем линейных алгебраических уравнений является понятие ранга матрицы. Введем это понятие. Выделим в матрице A размерности m  n k строк и k столбцов, где k – число, меньшее или равное меньшему из чисел m и n. Определитель порядка k, составленный из элементов, стоящих на пересечении выделенных k строк и k столбцов, называется минором или определителем , порожденным матрицей A. Например, для матрицы

при k = 2 определители

будут порожденными данной матрицей.

Рангом матрицы A (обозначается rang A) называется наибольший порядок порожденных ею определителей, отличных от нуля. Если равны нулю все определители порядка k, порожденные данной матрицей, то rang A

Теорема 1. Ранг матрицы не изменится, если

  1. Поменять местами любые два параллельных ряда.
  2. Умножить каждый элемент ряда на один и тот же множитель   0.
  3. Прибавить к элементам ряда соответствующие элементы другого параллельного ряда, умноженные на один и тот же множитель.

Преобразования 1–3 называются элементарными . Две матрицы называются эквивалентными, если одна матрица получается из другой с помощью элементарных преобразований.

Базисным минором матрицы называется всякий отличный от нуля минор, порядок которого равен рангу данной матрицы.

Минор M k+1 порядка k+1, содержащий в себе минор M k порядка k, называется окаймляющим минором M k . Если у матрицы A существует минор M k  0, а все окаймляющие его миноры M k+1 = 0, то rang A = k.

Пример. Найти ранг матрицы

Имеем . Для M 2 окаймляющими будут только два минора:

каждый из которых равен нулю. Поэтому rang A = 2, а указанный минор M 2 может быть принят за базисный.

Теорема 2 (Кронекера-Капелли). Для того, чтобы система m линейных алгебраических уравнений относительно n неизвестных x 1 , x 2 , …, x n

была совместна (имела решение), необходимо и достаточно, чтобы ранг основной матрицы

системы и ранг так называемой расширенной матрицы

системы были равны, т.е. rang A = rang B = r.

Далее, если rang A = rang B и r = n, то система имеет единственное решение; если r

Система называется однородной, если все ее свободные члены b i (i = 1, m) равны нулю. Если хотя бы одно из чисел отлично от нуля, то система называется неоднородной. Для однородной системы уравнений rang A = rang B, поэтому она всегда совместна.

4.2. Решение СЛАУ методом Гаусса.

Метод Гаусса – метод последовательного исключения переменных – заключается в том, что с помощью элементарных преобразований система уравнений приводится к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находится все остальные переменные.

Пусть задана система линейных алгебраических уравнений в следующем виде:

(1)

Пусть все хотя бы один из свободных членов системы уравнений отличен от нуля, т.е. система неоднородна. Если основная матрица A системы имеет ранг r = n, то расширенная матрица B этой системы с помощью элементарных преобразований строк и перестановок столбцов всегда может быть приведена к треугольному виду, где на главной диагонали матрицы располагаются единицы, а все элементы ниже главной диагонали равны нулю:

Эта матрица является расширенной матрицей системы

которая эквивалентна исходной системе (т.е. имеет те же самые решения, что и исходная система). Если хотя бы одно из чисел отлично от нуля, то система (2) и исходная система (1) несовместны. Если же , то система (1) совместна, а из системы (2) можно последовательно выразить в явном виде базисные переменные через свободные переменные . Если r = n, то решение этой системы единственно. В дальнейшем будем рассматривать последний случай, т.е. когда r = n.

Пример 1. Решить систему уравнений:

Р е ш е н и е. Расширенная матрица системы имеет вид:

Шаг 1. Так как a 0, то умножая вторую, третью и четвертую строки матрицы на числа (-2), (-3), (-2) и прибавляя полученные соответственно ко второй, третьей, четвертой строкам, исключим переменную x 1 из всех строк, начиная со второй. Поменяем местами вторую и третью строки:

Шаг 2. Умножая вторую строку на (-7/4) и прибавляя полученную строку к четвертой, исключим переменную x 2 из всех строк, начиная с третьей:

Шаг 3. Умножаем третью строку на 13,5/8=27/16, и прибавляя строку к четвертой, исключим из нее переменную x 3 . Получим систему уравнений

откуда, используя обратный ход метода Гаусса, найдем из четвертого уравнения x 4 =-2; из третьего x 3 = = =-1; из второго x 2 = = =2 и из первого уравнения x 1 =6+2 x 4 -3 x 3 — -2 x 2 =6+2(-2)-3(-1)-2·2=1, т.е. решение системы (1; 2; -1; 2).

Пример 2. Методом Гаусса решить систему уравнений:

Р е ш е н и е. Преобразуем расширенную матрицу системы

Итак, уравнение, соответствующее третьей строке последней матрицы, противоречиво – оно привелось к неверному равенству 0=-1, следовательно, данная система несовместна.

Пример3. С помощью метода последовательных исключений Гаусса решить вопрос о совместности данной системы и в случае совместности решить ее.

Составим расширенную матрицу B и проведем необходиые элементарные преобразования строк:

Последней матрице соответствует система, эквивалентная исходной

Из нее, двигаясь снизу вверх, последовательно находим: x 4 = –1, x 3 = 1, x 2 = 0, x 1 = –2.

Пример 4. . Методом Гаусса решить систему уравнений:

Запишем расширенную матрицу коэффициентов системы уравнений

Произведем элементарные преобразования со строками расширенной матрицы.

Разделим все элементы первой строки расширенной матрицы на 2.

Вычтем из второй строки первую, умноженную на 3.

Вычтем из третьей строки первую, умноженную на 1.

Теперь умножим все элементы второй строки расширенной матрицы на -2/11.

Вычтем из третьей строки вторую, умноженную на ½.

Теперь умножим все элементы третьей строки расширенной матрицы на -11/16

Произведенные выше элементарные преобразования – это прямой ход в метода Гаусса

Теперь нужно провести алгебраические преобразования в обратном порядке:

сначала с элементами третьего столбца, а затем второго столбца расширенной матрицы

Вычтем из второй строки третью, умноженную на (-1/11), а из первой строки третью, умноженную на 1/2

Вычтем из первой строки вторую, умноженную на 3/2

В результате последнего преобразования было получено решение системы уравнений:

Работа над это темой была очень интересной.

− в процессе работы я узнал много нового;

− я научился пользоваться научной литературой, сопоставлять и сравнивать различные точки зрения, выделять главное;

− теперь я знаю, какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, и ещё в своей работе я изучила многие другие теоретические вопросы;

− также весь материал я исследовал не только теоретически, но и практически, приводя некоторые примеры в тексте.

Тема решения систем линейных уравнений предлагается на выпускных экзаменах, поэтому умение их решать очень важно.

Исследовательская работа может использоваться учащимися, как пособие для самостоятельного изучения по теме „Методы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

  1. Кремер Н. Ш. Высшая математика для экономистов: Учебное пособие для ВУЗов.- М.: Издательское объединение «ЮНИТИ», 1997.
  2. Апанасов П. Т., Орлов М. И. Сборник задач по математике: Учебное пособие для техникумов. — М.: Высшая школа, 1987.
  3. Демин И. И. Математика для экономистов: Программа курса и практические задания. – М.: МИЭП, 1997.
  4. Большой энциклопедический словарь «Математика». Ю.В.Прохоров 2000 г.
  5. Справочник по математике для средних учебных заведений. А.Г.Цыпкин Москва «Наука» 1983г.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок № 1. Повторение 7-9. Числовые и алгебраические выражения. Линейные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме.

  1. обобщение и систематизация знаний по алгебре 7-9;
  2. повтор арифметики алгебраических выражений;
  3. решение линейных уравнений и неравенств;
  4. решение систем линейных уравнений и неравенств.

1. Колягин Ю. М., Ткачева М. В., Фёдорова Н. Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни.

2. Ткачева М. В., Федорова Н. Е. Алгебра и начала математического анализа. Тематические тесты. 10 класс. Базовый и профильный уровни

1. Шабунин М. И., Ткачева М. В., Фёдорова Н. Е. и др. Алгебра и начала математического анализа. Дидактические материалы. 10 класс. Профильный уровень.

2. Галицкий М. Л., Гольдман А. М., Звавич Л. И. Сборник задач по алгебре для 8-9 классов. Учеб. пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 2000.

Открытые электронные ресурсы:

1. Федеральный институт педагогических измерений. http://www.fipi.ru

Все выражения можно разбить на два класса на основании наличия переменных: числовые выражения и выражения с переменными.

Логическая задача на классификацию

Основание для классификации: наличие переменных

Выражения с переменными

Для числовых выражений можно находить значение – результат всех выполненных действий. Для выражений с переменными можно также находить значение при некоторых значениях переменных, предварительно упростив его, например, с помощью свойств, правил, формул сокращенного умножения.

Найдите значение выражения при a=0,01 и b=12:

2)

3)

2);

3)

3b-2a-3b=-2a-2a=-0,02

2.Линейное уравнение с одним неизвестным

Линейное уравнение с одним неизвестным – это уравнение вида ax=b, где a и b – заданные числа, x – неизвестное

Решить уравнение – это значит найти все его корни или установить, что корней нет

Основные свойства уравнений

Любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Решение уравнения ax=b,где a и b – числа, x – переменная

Если a≠0, b – любое число, то .

Если a=0, b≠0, то нет корней.

Обе части уравнения можно умножить или разделить на одно и то же число, не равное нулю.

1) ,

1),

Решим уравнение 2).

По определению модуля числа имеем 5x+7=±2.

Таким образом, либо 5x+7=2, откуда x=-1, либо 5x+7=-2, откуда x=-1,8. Получаем ответ: -1; -1,8.

Решение уравнения ax=b,где a и b – числа, x – переменная

Если a≠0, b – любое число, то .

Если a=0, b≠0, то нет корней.

Если a=0, b=0, то x – любое число.

Линейное уравнение с параметрами

Решите уравнение (5x+7)n=x-m, где m и n – некоторые числа, x – неизвестное

1)Если 5n-1≠0, то есть n≠0,2, то . Используя основное свойство дроби, получаем, что .

2)Если 5n-1=0, то есть n=0,2, то уравнение примет вид 0∙x=-m-1,4;

Тогда при m=-1,4 корнем уравнения будет любое число,

при m≠-1,4 уравнение не имеет корней.

Рассмотрим задачу 1.

От пристани А до пристани В катер плывет по реке 15 минут, а обратно 20 минут. Найти скорость течения реки, если собственная скорость катера 14 км/ч.

Для ее решения необходимо:

1.Провести ориентировку в тексте задачи.

1.1.Проанализировать условие и выявить данные (известные, дополнительные, скрытые).

1.2.Проанализировать вопрос задачи и выявить искомое.

1.3.Определить связи одноуровневые и межуровневые между данными и искомым.

1.4.Построить графическую схему, например, таблицу.

1.5.Установить в ней место искомого.

2.Спланировать способ решения задачи.

2.1.Подобрать метод, например, алгебраический.

2.3.Подобрать действия для решения составленной математической модели.

3.Исполнить намеченный план решения и найти искомое.

4.Провести самоконтроль решения задачи, проверив, что найденное искомое не противоречит условию задачи.

5.Провести самооценку решения задачи.

6.Провести самокоррекцию выполненного решения задачи, если есть в том необходимость.

1 способ: Провести повторное решение задачи от начала до конца.

2 способ: Провести дополнительную деятельность для того, чтобы ответить на вопрос задачи.

3 способ: Решить задачу другим способом.

удовлетворяет условию

3.Системы линейных уравнений с двумя неизвестными

Система двух уравнений первой степени с двумя неизвестными – это система вида

где x и y – неизвестные,

– заданные числа,

причем и .

Решение системы двух уравнений с двумя неизвестными – это пара чисел x и y, которые при подстановке в эту систему обращают каждое ее уравнение в верное числовое равенство.

Решить систему уравнений – это значит найти все ее решения или установить, что их нет.

Способы решения систем уравнений: способ подстановки и способ сложения.

Решите систему способом подстановки

Для этого необходимо:

1.Выразить одну переменную через другую из какого-либо уравнения.

2.Подставить полученное выражение вместо выраженной переменной в другое уравнение.

3.Решить полученное уравнение относительно одной переменной.

4.Найти значение другой переменной, подставив найденный корень в формулу пункта 1.

5.Записать решение системы.

(1;2) – решение системы

Решите систему способом сложения

Для этого необходимо:

1.Домножить какое-либо уравнение системы или оба уравнения на такие числа, чтобы при почленном сложении уравнений получить уравнение относительно одной переменной.

2.Решить уравнение, полученное после почленного сложения.

3.Подставить найденный корень в какое-либо уравнение исходной системы.

4.Решить составленное уравнение.

5.Записать решение системы.

(3;-1) – решение системы

Решение системы двух линейных уравнений с двумя неизвестными

Если , то система имеет единственное решение.

Если то система не имеет решений.

Если , то система имеет бесконечно много решений.

Система линейных уравнений с параметром

Решите систему уравнений с параметром a:

Решим систему способом подстановки. Выразим y из первого уравнения системы: . Подставим выражение вместо y во второе уравнение системы:
(a-3)x+a((a+1)x-a)=-9 .

Решим полученное уравнение относительно x:
.

1. Если , то есть , то система имеет единственное решение. Найдем это решение: После сокращения получаем: . Найдем соответствующее значение y, подставив вместо x в формулу
. Получим . Итак, если , то – решение системы.

2. Если и , то есть a=-3, то система имеет бесконечно много решений. Найдем в этом случае решения системы. Для этого подставим a=-3 в первое уравнение системы. Получим уравнение -2x-y=-3, из которого выразим y: y=3-2x. Значит, (x;3-2x), где x – любое число, — решения системы.

3. Если и , то есть a=1, то система не имеет решений.

Ответ: Если , то – решение системы;

если a=-3, то (x;3-2x), где x – любое число, — решения системы;

если a=1, то система не имеет решений.

4.Решение линейных неравенств с одним неизвестным

Неравенство первой степени с одним неизвестными – это неравенство вида ax b / ax≤b / ax ≥b, где a и b – заданные числа, x – неизвестное.

Решение неравенства с одним неизвестным – это то значение неизвестного, при котором это неравенство обращается в верное числовое неравенство.

Решить неравенство – это значит найти все его решения или установить, что их нет.

Правило решения неравенства первой степени с одним неизвестным

1.Перенести с противоположными знаками члены, содержащие неизвестное, из правой части в левую, а не содержащие неизвестное – из левой части в правую.

2.Привести подобные члены в левой и правой частях неравенства.

3.Если коэффициент при неизвестном отличен от нуля, то разделить на него обе части неравенства.

5.Системы линейных неравенств с одним неизвестным

Решение системы неравенств с одним неизвестным – это значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства.

Решить неравенство 2x-8 3.

Решение неравенства ax 0, то

Если a 0, то x – любое число

Если a=0, b≤0, то решений нет

Линейное неравенство с параметром

Решите неравенство с параметром a:

ax 0, то

Если a 0, то ; если a 0, 2x>6, x>3.

Решим второе неравенство системы:

4x-20 b / ax≤b / ax ≥b, где a и b – заданные числа, x – неизвестное.

Система двух уравнений первой степени с двумя неизвестными – это система вида

где x и y – неизвестные,

– заданные числа,

причем и .

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (встречаются редко, но знать их полезно).

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Задания для самостоятельного решения

№1. Найдите корни уравнения 2 − 3 ( 2 x + 2 ) = 5 − 4 x .

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

2 − 3 ( 2 x + 2 ) = 5 − 4 x

2 − 6 x − 6 = 5 − 4 x

Переносим иксы влево, числа вправо:

− 6 x + 4 x = 5 + 6 − 2

x = 9 − 2 = − 9 2 = − 4,5

№2. При каком значении x значения выражений 7 x − 2 и 3 x + 6 равны?

Решение:

Приравниваем эти два выражения:

№3. Решите уравнение ( − 5 x + 3 ) ( − x + 6 ) = 0.

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

Произведение двух множителей равно нулю тогда и только тогда, когда хотя бы один из множителей равен нулю. Чтобы найти все корни данного уравнения, надо приравнять каждый множитель к нулю и оба корня взять в ответ.

( − 5 x + 3 ) ( − x + 6 ) = 0 ⇔ [ − 5 x + 3 = 0 − x + 6 = 0 ⇒ [ − 5 x = − 3 ; − x = − 6 ; ⇒ [ x = − 3 − 5 = 3 5 = 0,6 x = − 6 − 1 = 6 1 = 6

В задании указано, что в ответ надо записать корни в порядке возрастания 0,6 6.

№4. Решите уравнение ( x − 4 ) 2 + ( x + 9 ) 2 = 2 x 2 .

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

Раскроем квадраты, используя ФСУ (формулы сокращенного умножения):

x 2 − 2 ⋅ x ⋅ 4 + 4 2 + x 2 + 2 ⋅ x ⋅ 9 + 9 2 − 2 x 2 = 0

Замечаем, что x 2 сокращается:

x 2 − 8 x + 4 2 + x 2 + 18 x + 9 2 − 2 x 2 = 0

− 8 x + 18 x + 16 + 81 = 0

№5. Решите уравнение ( x + 10 ) 2 = ( 5 − x ) 2 .

Решение:

Раскроем скобки, используя ФСУ.

( x + 10 ) 2 = ( 5 − x ) 2

x 2 + 2 ⋅ x ⋅ 10 + 10 2 = 5 2 − 2 ⋅ 5 ⋅ x + x 2

x 2 + 20 x + 100 = 25 − 10 x + x 2

x 2 + 20 x + 100 − x 2 + 10 x − 25 = 0

№6. Решите уравнение x − 11 = x + 7 7 .

Решение:

Домножим левую и правую часть уравнение на 7 . Получим: