Алгебра 9 класс разбор темы дробные рациональные уравнения

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Конспект урока по алгебре по теме «Дробные рациональные уравнения» (9 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Конспект урока по алгебре в 9 классе по теме

«Дробные рациональные уравнения».

Учебник: Алгебра. 9 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк , К. И. Нешков, С. Б.Суворова]; под ред. С. А. Теляковского. – 5-е изд. — М.: Просвещение, 2018. – 287 с.

Конспект урока № 28 по теме « Уравнения и неравенства с одной переменной».

сформировать понятие дробного рационального уравнения; рассмотреть различные способы решения дробных рациональных уравнений; рассмотреть алгоритм решения дробных рациональных уравнений; обучить решению дробных рациональных уравнений по алгоритму

развивать логическое мышление, умение сравнивать, анализировать, делать выводы, устную речь.

воспитывать умение высказывать свое мнение, участвовать в коллективной работе, в группе, формировать способность к позитивному сотрудничеству.

Планируемые образовательные результаты:

— ответственное отношение к учению, готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию;

— умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, приводить примеры и контрпримеры.

регулятивные: способность самостоятельно планировать пути достижения целей, осознанно выбирать наиболее эффективные способы решения учебных и познавательных заданий;

коммуникативные: развитие способности организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; определять цели, распределять функции и роли участников, взаимодействовать и находить общие способы работы; умения работать в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; слушать партнера; формулировать, аргументировать и отстаивать свое мнение;

познавательные: уметь ориентироваться в своей системе знаний, извлекать из математических текстов необходимую информацию, выполнять действия по алгоритму.

— понимать смысл понятия «дробное рациональное уравнение» и уметь употреблять его в письменной и устной речи;

— уметь решать дробные рациональные уравнения.

Оборудование. Учебник, раздаточный материал (алгоритм решения дробных уравнений, дополнительные упражнения), лист самооценки для работы в парах.

Тип урока. Изучение нового материала.

Ход урока

1. Организационный момент

«Уравнение представляет собой наиболее

серьезную и важную вещь в математике».

2. Мотивация учебной деятельности.

На доске записаны следующие уравнения:

(1); (2); (3); (4).

Учитель сообщает обучающимся, что сегодня на уроке они познакомятся с новым видом уравнений.

Какие из приведенных уравнений мы еще не решали? Что представляют левые и правые части уравнений (3) и (4)?

Обучающиеся формулируют тему и цели урока, записывают в тетради тему урока.

3. Актуализация опорных знаний. :

Какое выражение называется дробью? (отношение двух величин)

Какие выражения называются рациональными? (Алгебраическое выражение, в котором указаны только действия сложения, вычитания, умножения и возведения в степень с натуральным показателем, называют целым рациональным выражением.) (Если кроме указанных действий входит действие деления, то выражение называют дробно-рациональным).

Что такое уравнение? ( Равенство с переменной или переменными .)

Какие свойства используются при решении уравнений? ( 1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)

Обучающиеся формулируют тему и цели урока, записывают в тетради тему урока.

Данная тема объединяет ранее изученные темы такие как дроби и действия с дробями, уравнения различных видов и алгоритмы их решения следовательно вам необходимо применить свои знания и умения полученные ранее.

4. Изучение нового материала.

Итак, вспомнив понятия, дадим основное определение дробно-рациональных уравнений.

Определение. Дробным рациональным уравнением называется уравнение, обе части которого являются рациональными выражениями, причем хотя бы одно из них – дробным выражением.

.Алгоритм решения дробных рациональных уравнений.

1. Находят общий знаменатель дробей, входящих в уравнение.

2. Умножают обе части уравнения на этот знаменатель.

3. Решают получившееся целое уравнение.

4. Исключают из его корней те, которые обращают в нуль общий знаменатель дробей.

Под руководством учителя ученик у доски решает следующее уравнение, используя алгоритм.

1.

Решение:

Ответ: 2,5

Учитель вызывает к доске учащихся для выполнения следующих заданий:

№ 288(в), № 289(в, г) стр.84.

Работа в парах № 294 стр. 85.

По окончании работы обсуждение, подведение итогов, заполнение листов самооценки.

5. Закрепление и первичный контроль. Самостоятельно по карточкам, с последующей взаимопроверкой.

I вариант II вариант

Решить уравнение: Решить уравнение:

1. ; 1. ;

2. ; 2. ;

3. . 3. .

6. Итог урока. Фронтальный опрос. Выставление оценок.

7. Рефлексия. Анализ и оценка успешности деятельности и определение перспектив последующей работы.

— О чем мы сегодня вели разговор?

— Какие способы решения данных уравнений вы знаете?

— Какие уравнения называются равносильными?

— Какие свойства используются при решении уравнений?

— Какова была цель урока?

— Что вы узнали нового на уроке?

— Что вам больше всего удалось и какие препятствия во время урока вы легко преодолели?

— Что вызвало затруднение, что нужно повторить и над чем поработать?

8. Домашнее задание: стр. 81-83 п. 13 (разобрать примеры), № 288 (а, б), № 289 (а, б), дополнительно № 290 (а).

Алгебра. 9 класс

Когда обе части выражения представляют из себя рациональные выражения, и хотя бы одно является дробным, то такие уравнения называют дробными рациональными.

На простом примере вспомним алгоритм решения дробных рациональных уравнений.

В первую очередь необходимо привести все дроби уравнения к общему знаменателю, в нашем случае общий знаменатель равен 6x.

Первую дробь домножаем на 2, а вторую на x.

Стоит обратить внимание, что переменная x не может принимать значение ноль, так как в противном случае знаменатель первой дроби будет равен нулю.

Далее записываем обе дроби под одну дробную черту и приводим подобные в числителе.

После этого необходимо вспомнить, что дробь равна нулю только в ситуации, когда числитель равен нулю, а знаменатель не равен.

Решив получившееся квадратное уравнение, мы получаем корни 1 и –5, удовлетворяющие условию x ≠ 0.

Рассмотрим более сложные примеры дробных рациональных уравнений.

Начнём с того, что перенесём все члены уравнения в левую часть.

Далее вынесем знак минус из знаменателя второй дроби.

Теперь необходимо домножить x на знаменатель (x – 2) и записать всю левую часть уравнения под одну дробную черту.

Стоит обратить внимание на то, что x ≠ 2, иначе знаменатель дроби обратиться в нуль.

Как мы уже вспоминали, знаменатель не должен быть равен нулю, а числитель, наоборот равен нулю, так как сама дробь равна нулю.

Из этого мы получаем целое уравнение: 2x 2 – 3x – 2 – x(x – 2) = 0. Раскрыв скобки и приведя подобные, уравнение принимает стандартный вид квадратного уравнения.

Решив данное уравнение, получаем два корня: x1 = 2 и x2 = –1.

Осталось проверить, удовлетворяют ли они ограничениям переменной x.

Корень x1 = 2 не удовлетворяет данному условию, а значит, не является корнем уравнения.

Значит, уравнение имеет один корень x = –1, его и запишем в ответе.


источники:

http://infourok.ru/konspekt-uroka-po-algebre-po-teme-drobnye-racionalnye-uravneniya-9-klass-5041533.html

http://resh.edu.ru/subject/lesson/2741/main/