Алгебра 9 решение систем уравнений

Методы решения систем уравнений с двумя переменными

п.1. Метод подстановки

Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.

Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.

п.2. Метод сложения

п.3. Метод замены переменных

Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.

п.4. Графический метод

Графический метод подробно рассмотрен в §15 данного справочника.

п.5. Примеры

Пример 1. Решите систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Решаем методом подстановки: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Для нижнего уравнения: \( \mathrm \)
Подставляем в верхнее уравнение: \( \mathrm \)

б) \( \left\< \begin < l >\mathrm & \\ \mathrm <(x^2+y^2)xy=10>& \end\right. \)
Замена переменных: \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: \( \left\< \begin < l >\mathrm & \\ \mathrm <(a^2-2b)b=10>& \end\right.\Rightarrow \left\< \begin < l >\mathrm & \\ \mathrm <9b-2b^2=10>& \end\right. \)
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ \mathrm< D=9^2-4\cdot 2\cdot 10=1,\ \ b=\frac<9\pm 1><4>> = \left[\begin < l >\mathrm & \\ \mathrm & \end\right. $$ Возвращаемся к исходным переменным: \( \left[\begin < l >\left\<\begin < l >\mathrm & \\ \mathrm & \end\right.& \\ \left\<\begin < l >\mathrm & \\ \mathrm & \end\right. \end\right. \)

«Системы уравнений». 9-й класс

Класс: 9

Презентация к уроку

Загрузить презентацию (412 кБ)

При помощи учащихся класса были повторены способ подстановки и сложения. Графический – был рассмотрен вместе (слайды показывались на стене): дети рассказывали о функции и схематически изображали её график мелом, затем выцветал правильный и, было видно, прав ли ученик. В этом способе повторили нахождение координат данной точки, их запись.
Далее устно рассматривались решения различных тестовых заданий, где применялся графический способ решения систем уравнений.
В конце урока проводится маленькая самостоятельная работа с аналогичными заданиями.

Цели:

  • повторить способы решения систем уравнений;
  • акцентировать внимание на возможность решения систем различными способами;
  • научить, при решении систем уравнений, записывать верно ответ
  • продолжить обучать умению
  • планировать самостоятельную работу;
  • осваивать информацию и логически ее перерабатывать;
  • вырабатывать собственную позицию, обосновывать ее и защищать (обосновывать свой способ решения, свой результат).

Оборудование:

  • компьютер,
  • мультимедийный проектор,
  • карточки.

I этап урока (организационный)

Учитель сообщает тему урока, цели.

II этап урока (повторение)

1. Как вы понимаете выражение – «система уравнений»?
2. Что значит: решить систему уравнений? (Решить систему – это значит найти пару значений переменных, которая обращает каждое уравнение системы в верное равенство.)
3. Какие способы решения систем вы знаете? (Подстановки, сложения и графический.)

Вспомнить эти способы нам помогут …

Предварительно по работе с системами подготовлены и проверены ученики данного класса.

1. Способ подстановки

О решении систем этим способом рассказывает …

Далее вместе с классом решаем систему этим способом на доске и в тетради.

Ответ: (0; 3); (–3; 6)

2. Способ сложения

О решении систем этим способом рассказывает …

Далее вместе с классом решаем систему этим способом на доске и в тетради.




3. Графический способ.

Рассказывает учитель с помощью всех учащихся.

Слайд 5

  • Что нужно сделать для решения систем графическим способом? (Построить графики функций и найти координаты точек пересечения графиков. Для этого из каждого уравнения нужно выразить переменную у.)
  • Выразим из обоих уравнений переменную у.
  • Что можно сказать о первом уравнении? (Это уравнение функции обратной пропорциональности. График – гипербола, состоящая из двух ветвей, расположенных в первой и третьей координатных четвертях.)
  • Как построить гиперболу? (Строим на доске, проверяем с помощью слайда)
  • Что можно сказать о втором уравнении? (Это уравнение квадратичной функции. График – парабола, полученная из графика функции путём перемещения на три единицы вверх по оси ординат.)
  • Сколько точек пересечения получили? (1)
  • Как найти её координаты?
  • От чего зависит количество решений системы уравнений? (От количества точек пересечения графиков функций.)

Физминутка

Выполняем несколько заданий из материалов ГИА (по слайдам)

Задание №1. Слайд 6
Задание №2. Слайд 7
Задание №3. Слайд 8
Задание №4 Слайд 9
Задание №5. Слайд 10

Запишем домашнее задание: П 3.5, с 150.

№ 434 (а) – способ сложения;
№ 435 (а) – способ подстановки;
№ 436 (а) – графически.

III этап урока (заключительный)

Основные методы решения систем повышенной сложности

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжим изучение всех трех основных методов решения систем уравнений и их комбинаций на примере решения систем повышенной сложности. А также рассмотрим некоторые специфические приемы для упрощения различных типов систем.


источники:

http://urok.1sept.ru/articles/627834

http://interneturok.ru/lesson/algebra/9-klass/sistemy-uravneniy/osnovnye-metody-resheniya-sistem-povyshennoy-slozhnosti