Алгебра логарифмические уравнения и неравенства

Алгебра

План урока:

Задание. Укажите корень логарифмического уравнения

Задание. Решите урав-ние

В чуть более сложных случаях под знаком логарифма может стоять не сама переменная х, а выражение с переменной. То есть урав-ние имеет вид

Задание. Найдите решение логарифмического уравнения

Задание. Решите урав-ние

Задание. Решите урав-ние

Получили показательное уравнение. Показатели степеней можно приравнять, если равны их основания:

Уравнения вида logaf(x) = logag(x)

Порою логарифм стоит в обеих частях равенства, то есть и слева, и справа от знака «равно». Если основания логарифмов совпадают, то должны совпадать и аргументы логарифмов.

Задание. Решите урав-ние

Задание. Найдите корень урав-ния

Ситуация несколько усложняется в том случае, когда, под знаком логарифма в обоих частях равенства стоят выражения с переменными, то есть оно имеет вид

С одной стороны, очевидно, что должно выполняться равенство f(x) = g(x). Но этого мало, ведь под знаком логарифма не должно стоять отрицательное число. Поэтому после получения корней следует подставить их в урав-ние и убедиться, что они не являются посторонними корнями.

Задание. Решите урав-ние

Получили квадратное уравнение, которое решаем с помощью дискриминанта:

Получили два корня, (– 3) и 4. Однако теперь подставим их в исходное урав-ние и посмотрим, что у нас получится. При х = – 3 имеем:

Это верное равенство, поэтому х = – 3 действительно является корнем урав-ния. Теперь проверяем х = 4:

Хотя выражения и справа, и слева одинаковы, равенство верным считать нельзя, ведь выражение log3 (– 1) не имеет смысла! Действительно, нельзя вычислять логарифм от отрицательного числа. Поэтому корень х = 4 оказывается посторонним, и у нас остается только один настоящий корень – число (– 3).

Уравнения, требующие предварительных преобразований

Естественно, не всегда в обоих частях логарифмических уравнений и неравенств стоят только логарифмы с совпадающими основаниями. Часто требуется выполнить некоторые предварительные преобразования, чтобы привести урав-ние к виду logaf(x) = logag(x).

Задание. Решите урав-ние

с помощью которой любой множитель можно внести под знак логарифма. Сделаем это и в нашем случае:

Теперь в обеих частях равенства не стоит ничего, кроме логарифмов с одинаковыми основаниями. Поэтому мы можем приравнять их аргументы:

Задание. Решите урав-ние

Снова проверяем каждый из корней, подставляя его в исходное ур-ние. Прих = –1 получаем

Задание. Решите урав-ние

Решение. В правой части снова стоит сумма, но на этот раз не логарифмов. Однако число 1 можно представить как log5 5. Тогда урав-ние можно преобразовать:

Задание. Решите урав-ние

Решение. Данный пример похож на простейшее логарифмическое уравнение, однако переменная находится в основании логарифма, а не в аргументе. По определению логарифма мы можем записать, что

Первый вариант придется отбросить, так как основание логарифма, (а в данном случае это выражение х – 5) не может быть отрицательным числом. Получается, что

Задание. Решите урав-ние

Решение. Здесь ситуация осложняется тем, что основания логарифмов разные. Поэтому один из них необходимо привести к новому основанию. Попробуем привести log25x 4 к основанию 5, используя известную нам формулу

Мы добились того, что у логарифмов одинаковые основания, а потому мы можем приравнять их аргументы:

Логарифмические уравнения с заменой переменных

Иногда приходится делать некоторые замены, чтобы уравнение приняло более привычный вид.

Задание. Решите уравнение методом замены переменной

Задание. Найдите решение уравнения методом замены переменной

Решение. Для начала напомним, что символ lg означает десятичный логарифм. Отдельно знаменатель дроби в правой части:

Логарифмирование уравнений

Ясно, что если от равных величин взять логарифмы по одному и тому же основанию, то тогда эти логарифмы окажутся также равными. Если подобный прием применяют при решении урав-ния, то, говорят, что производится логарифмирование уравнения. Иногда оно позволяет решить некоторые особо сложные примеры.

Задание. Укажите корни урав-ния

Здесь переменная величина находится одновременно и в основании степени, и в ее показателе. Возьмем от правой и левой части урав-ния логарифм по основанию 5:

Возвращаемся от переменной t к переменной х:

Переход от логарифмических неравенств к нелогарифмическим

Рассмотрим график логарифмической функции у = logax при условии а > 1. Она является возрастающей функцией. Если на оси Ох отложить два числа tи s так, чтобы t располагалось левее s (то есть t 1). Но это не совсем так. Дело в том, что надо учесть ещё и тот факт, что под знаком логарифма может стоять исключительно положительное число. Получается, что от простейшего логарифмического неравенства

Естественно, вместо величин t и s могут стоять как числа, так и выражения с переменными.

Задание. Найдите решение логарифмического неравенства

Ответ можно оставить и в такой форме, однако всё же принято записывать его в виде промежутка. Очевидно, что нерав-во 0 logas:

Но, снова-таки, мы должны учесть, числа t может быть лишь положительным (тогда s, которое больше t, автоматически также окажется положительным). Получается, что при 0 loga s можно перейти к двойному нерав-ву 0 2 – 45х + 200 имеет решение

Однако в системе (5) есть ещё два неравенства, х > 0 и 45 >x. Их решениями являются промежутки (0; + ∞) и (– ∞; 45). Чтобы определить решение всей системы, отметим на одной прямой решения каждого отдельного нерав-ва и найдем область их пересечения:

Видно, что решениями нерав-ва будут являться промежутки (0; 5) и (40; 45), на которых справедливы все три нерав-ва, входящих в систему (5).

Логарифмические уравнения и неравенства.

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Описание презентации по отдельным слайдам:

Логарифмические уравнения
и неравенства

Определение.
Логарифмом положительного числа b по основанию а (а > 0, а ≠ 1) называется показатель степени, в который нужно возвести основание а, чтобы получить b.
Обозначение: loga b.
Десятичный логарифм — логарифм, основание которого равно 10.
Обозначение: log10 x = lg x.
Натуральный логарифм — логарифм, основание которого равно е ≈ 2,7.
Обозначение: logе x = ln x.

График и свойства логарифмической функции.

График и свойства логарифмической функции.

Выражения и их преобразования.

Логарифмическим уравнением называется уравнение, в котором неизвестная находится только под знаком логарифма или в основании логарифма (или то и другое одновременно).

Методы решения логарифмических уравнений:
По определению
Метод потенцирования
Метод замены переменной
Метод логарифмирования

Метод потенциирования:
Признак: уравнение может
быть представлено в виде
равенства двух логарифмов
по одному основанию .

1. Определить ОДЗ уравнения (подлогарифмические выражения положительны);
2. Пропотенцировать обе части уравнения по основанию равному основанию логарифма;
3. Перейти к равенству подлогарифмических выражений, применив свойство логарифма;
4. Решить уравнение и проверить полученные корни по ОДЗ;
5. Записать удовлетворяющие ОДЗ корни в ответ.

Метод замены переменной:
Признак: Все логарифмы
в уравнении могут быть
сведены к одному и тому же
логарифму, содержащему
переменную.
1. Определить ОДЗ уравнения (подлогарифмические выражения положительны);
2. Произвести замену переменной;
3. Решить полученное уравнение;
4. Составить простейшие логарифмические уравнения, возвращаясь к первоначальной переменной;
5. Проверить полученные корни по ОДЗ;
6. Записать удовлетворяющие ОДЗ корни в ответ.

Метод логарифмирования:
Признак: переменная
содержится и в основании
степени, и в показателе
степени под знаком
логарифма.
Определить ОДЗ уравнения (подлогарифмические выражения положительны);
Прологарифмировать обе части уравнения по основанию равному основанию логарифма в показателе степени;
Вынести показатель степени за знак логарифма, пользуясь свойством логарифма;
Решить полученное уравнение, пользуясь методом замены переменной.

Разбить уравнения на группы по методу их решения:
1.

Разбить уравнения на группы по методу их решения:
По определению
2.
4.

Метод замены переменной
10.
5.

3.
Метод потенцирования
7.

Решение логарифмических уравнений.

Решение логарифмических уравнений.

Решение логарифмических уравнений.

Решение логарифмических неравенств.
Между методами решений логарифмических уравнений и логарифмических неравенств есть существенные отличия:
1) для решения логарифмических неравенств необходимо
установить характер монотонности
соответствующей логарифмической функции в
зависимости от величины её основания.
2) решением неравенства, как правило,
является бесконечное множество чисел,
и значит, о выполнении проверки
найденных решений не может быть и речи,
поскольку в отличие от уравнений это
просто невозможно.
Поэтому при решении логарифмических неравенств
особое значение приобретает умение проводить
равносильные преобразования неравенств.

Решение логарифмических неравенств.

Решение логарифмических неравенств.
Имеется не менее 4 принципиально различных типов подхода к решению логарифмических неравенств:
А) перебор случаев «основание больше единицы», «основание меньше единицы»;
Б) переход к равносильным совокупностям систем
неравенств, не содержащих логарифмов;
В) обобщенный метод интервалов;
Г) графический метод.

Решение логарифмических неравенств.

Решение логарифмических неравенств.

Решите неравенство
Решение.
ОДЗ:

Решите неравенство
Решение.
ОДЗ:

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 956 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 685 человек из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 314 человек из 70 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 570 625 материалов в базе

Материал подходит для УМК

«Алгебра и начала математического анализа. Базовый и углубленный уровни», Алимов А.Ш., Колягин Ю.М. и др.

§ 19. Логарифмические уравнения

Другие материалы

  • 14.02.2021
  • 351
  • 15

  • 14.02.2021
  • 240
  • 24

  • 14.02.2021
  • 195
  • 9

  • 14.02.2021
  • 324
  • 5
  • 14.02.2021
  • 138
  • 2

  • 14.02.2021
  • 92
  • 1

  • 14.02.2021
  • 101
  • 1

  • 14.02.2021
  • 133
  • 6

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 14.02.2021 268
  • PPTX 6.5 мбайт
  • 15 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Чагарова Зарима Салиховна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 3 года и 5 месяцев
  • Подписчики: 1
  • Всего просмотров: 21763
  • Всего материалов: 13

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

В школах Хабаровского края введут уроки спортивной борьбы

Время чтения: 1 минута

Онлайн-конференция о создании школьных служб примирения

Время чтения: 3 минуты

Профессия педагога на третьем месте по популярности среди абитуриентов

Время чтения: 1 минута

Рособрнадзор не планирует переносить досрочный период ЕГЭ

Время чтения: 0 минут

В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №28.Логарифмические неравенства.

Перечень вопросов, рассматриваемых в теме

1) Понятие логарифмического неравенства

2) Основные способы решения логарифмических неравенств

Глоссарий по теме

Логарифмические неравенства – это неравенства вида , где и неравенства, сводящиеся к этому виду.

Решение логарифмических неравенств:

(знак неравенства сохраняется)

(знак неравенства меняется)

Колягин Ю.М., Ткачева М.В., Фёдорова Н.Е. и др. Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа. 10 класс. Базовый и углублённый уровни. – М.: Просвещение, 2014. – 384 с.

Лысенко Ф. Ф. Тематические тесты. Математика. ЕГЭ-2008. Под редакцией – Ростов-на-Дону: Легион, 2007. 256 с.

Шестаков С.А., Трепалин А.С., Ященко И.В., Захаров П.И.; под ред. Ященко И. В. ЕГЭ 2016. Математика. 20 вариантов тестов. Тематическая рабочая тетрадь – М.: МЦНМО, Издательство «Экзамен», 2016. – 295, [1] c.

Теоретический материал для самостоятельного изучения

Логарифмические неравенства – это неравенства вида , где и неравенства, сводящиеся к этому виду.

Способы решения логарифмических неравенств основаны на монотонности логарифмической функции в зависимости от основания логарифма. Функция возрастает, если и убывает, если .

(знак неравенства сохраняется)

(знак неравенства меняется)

Решить неравенство.

Основание логарифма 3 > 1, значит используем 1 схему.

; ; .

Решить неравенство .

Выполним преобразование правой части: заменим и используем свойство суммы логарифмов.

Основание логарифма , значит используем 2 схему.

;; ; .

Ответ:

Решение логарифмических уравнений и неравенств встречается в заданиях ГИА.

Задача 1. Решите неравенство

.

Замена: .

Рассмотрим функцию: .

Нули:

Обратная замена:

Используем определение логарифма, учитывая, что основание 2 >1.

; ; ;

Ответ:

Задача 2. Решите неравенство

.

;

Квадраты противоположных чисел равны, поэтому применяя свойство логарифма степени, не забываем поставить модуль.

;

Т. к. основание логарифма содержит переменную, необходимо рассмотреть 2 случая.

1.

; ; ;

; .

2. .

; ; ;

; .

Ответ:

Примеры и разбор решения заданий тренировочного модуля

№1.Найдите наименьшее целочисленное решение неравенства .

  1. Упростим левую часть неравенства, используя основное логарифмическое тождество:

  1. Приведем подобные слагаемые.

  1. Разделим неравенство на 2. (2 > 0, знак неравенства не меняем):


источники:

http://infourok.ru/logarifmicheskie-uravneniya-i-neravenstva-5036844.html

http://resh.edu.ru/subject/lesson/3852/conspect/