Алгебраическое и графическое решение уравнений с модулем

Алгебраическое и графическое решение уравнений с модулем

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Алгебраическое и графическое решение уравнений, содержащих модули

Алгебраическое и графическое решение уравнений, содержащих модули.

2.Понятия и определения………………………………………….4

4.Способы решение уравнений, содержащих модуль…………. 6

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины…………………………………………………………..15

4.4.Решение нестандартных уравнений, ………….16

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и. т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем — это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль — абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

3. Доказательство теорем

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна — a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или –a

1. Если число a положительно, то — a отрицательно, т. е. — a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2= ( x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера (и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4 * 15=36 – 60= -24 0

Проверка: |1 – 6|=|12 – 5 * 1 + 9| |3 – 6|=|32 – 5 * 3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин — это расстояние между ними. Например, геометрический смысл выражения |x – a | — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпретации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка — нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно, решением данного уравнения будет являться не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b >a Û a a Û x

Алгебраическое и графическое решение линейных уравнений, содержащих модули

Эта тема требует более глубокого исследования, так как она прослеживается в различных заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, в заданиях вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ.

Основной целью работы считаю получение расширенной информации о модуле числа, его применении, а также о различных способах решения уравнений, содержащих знак абсолютной величины.

Скачать:

ВложениеРазмер
issledovatelskaya_rabota.doc285 КБ

Предварительный просмотр:

Исследовательская работа по математике.

Тема: «Алгебраическое и графическое

решение линейных уравнений, содержащих

Ученицы 7 класса

гимназии № 2 г. Зарайска

Учитель: Трушина Елена Николаевна

2.1 Вспомогательный материал для изучения данной темы……………………………………4

3.Решение линейных уравнений, содержащих неизвестное под знаком модуля…………. 7

4. Графики линейных функций, содержащих выражение под знаком модуля……………..11

4.1. Графики простейших функций, содержащих знак модуля……. …………………………18

5. Графическое решение линейных уравнений, содержащих модули………………………. 20

6. Решение нестандартных задач с модулем………………………………………………………26

8. Список использованной литературы……………………………………………………………29

Цель работы: считаю, что эта тема требует более глубокого исследования, так как она прослеживается в различных заданиях повышенной сложности, которые предлагают учащимся авторы дидактических материалов, в задачах математических олимпиад, в заданиях вступительных экзаменов в Высшие Учебные Заведения и на ЕГЭ.

Основной целью работы считаю получение расширенной информации о модуле числа, его применении, а также о различных способах решения уравнений, содержащих знак абсолютной величины.

Знание – самое превосходное из

владений. Все стремятся к нему,

само же оно не приходит.

Понятие «модуль» широко применяется во многих разделах школьного курса математики, например, в изучении абсолютной и относительной погрешностей приближенного числа; в геометрии и физике будут изучаться понятия вектора и его длины (модуля вектора). Понятия модуля применяется в курсах высшей математики, физики и технических наук, изучаемых в высших учебных заведениях.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это слово имеет множество значений и применяется не только в математике, физике и технике, но и в архитектуре, программировании и других точных науках.

Считают, что термин предложил использовать Котс, ученик Ньютона. Знак модуля был введен в XIX веке Вейерштрассом.

В архитектуре модуль – исходная единица измерения, устанавливаемая для данного архитектурного сооружения.

В технике – это термин, применяемый в различных областях техники, служащий для обозначения различных коэффициентов и величин, например, модуль упругости, модуль зацепления.

В математике модуль имеет несколько значений, но я буду рассматривать его как абсолютную величину числа.

2. Понятия и определения.

Чтобы лучше изучить данную тему, необходимо вспомнить простейшие определения:

а) уравнение – это равенство, содержащее переменные.

б) уравнение с модулем – это уравнение, содержащее переменную под знаком модуля (абсолютной величины). Например: | x | = 5.

в) решить уравнение – это, значит, найти все его корни, или доказать, что их нет.

г) линейное уравнение с одной переменной – уравнение вида: ax = b, где x – независимая переменная, a и b – некоторые числа.

д) линейная функция – функция вида: y = kx + b, где x – независимая переменная, k и b – некоторые числа.

е) графиком линейной функции является прямая линия.

ж) область определения линейной функции состоит из всех чисел;

если D(у) состоит не из всех чисел, то её график представляет собой соответствующую часть прямой. Например, это может быть полупрямая или отрезок.

з) раскрытие скобок:

1) если перед скобками стоит знак «+», то можно опустить скобки и этот знак «+», сохранив знаки слагаемых, стоящих в скобках.

2) чтобы раскрыть скобки, перед которыми стоит знак «-», надо заменить этот знак на «+», поменяв знаки всех слагаемых на противоположные, а потом раскрыть скобки.

2.1. Вспомогательный материал для изучения данной

Для изучения данной темы необходимо познакомиться с графическим решением линейных уравнений и числовыми промежутками.

а) графическое решение уравнений.

Это один из способов решения уравнений.

Его применяют не так часто, так как он занимает в некоторых случаях много времени; результаты, полученные при построении графиков, не всегда являются точными. Суть этого способа заключается в том, чтобы построить графики данных функций.

В случае, если графики пересекутся, то абсциссы точек пересечений данных графиков будут являться корнями данного уравнения.

В случае, если графики не пересекутся, то уравнение корней не имеет.

Абсцисса точки пересечения графиков линейных функций будет корнем линейного уравнения.

Построим в одной системе координат графики двух функций:

D(у): х – любое число D(у): х – любое число


источники:

http://pandia.ru/text/78/290/1270.php

http://nsportal.ru/ap/library/nauchno-tekhnicheskoe-tvorchestvo/2013/12/10/algebraicheskoe-i-graficheskoe-reshenie-lineynykh