Алгоритм решения линейного уравнения с одним неизвестным

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Простые равенства с неизвестными — первоначальный этап знакомства с линейными уравнениями. Примеры с объяснением для 6 класса основываются не только на решении последних, но и на базовых определениях, а также использования формул сокращенного умножения для понижения степени до единицы. Математики рекомендуют начать с теории, а затем перейти к ее практическому применению.

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

  • Обыкновенные.
  • С параметром.
  • Высшей степени.

    Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

    Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

    Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

    Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

    Обыкновенные тождества

    Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

  • Раскрыть скобки.
  • Произвести математические преобразования над компонентами уравнения.
  • Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  • Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  • Выполнить проверку, подставив решение в исходное равенство.

    Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  • 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  • 7t 2 −7t 2 +7t-7=7t-7=8.
  • 7t=15.
  • t=2,5.
  • 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

    Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

    Выражения с параметром

    Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

  • Записать равенство.
  • Раскрыть скобки и привести подобные элементы к общему виду.
  • Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  • Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  • Записать формулу определения корня.
  • При необходимости подставить значение параметра.
  • Проверить результат.

    Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  • t-2+pt=0.
  • Опускается, поскольку в выражении нет скобок.
  • (t+pt)=t (1+p)=2.
  • p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  • t=2/(1+p).
  • При p=0: t=2.
  • 2−2+0*2=0.

    Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p). Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

    Понижение степени

    Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

    Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

    Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  • Написать равенство с неизвестным.
  • Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  • Решить линейные уравнения.
  • Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

    Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  • 3t^2-3=0.
  • 3(t^2-1)=0.
  • Сократить обе части на 3: t^2-1=0.
  • Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  • У уравнения два корня: t1=1 и t2=-1.
  • Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

    Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

    Системы линейного типа

    Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

  • Записать систему уравнений.
  • Выбрать наиболее простое тождество и выразить одну величину через другую.
  • Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  • Раскрыть скобки и выполнить математические преобразования.
  • Решить уравнение в четвертом пункте.
  • Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  • Найти вторую переменную.
  • Записать результат.
  • Выполнить проверку.

    Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  • 5t-2s=1 и 4t^2-s^2=0.
  • Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  • (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  • 8t=8=>t=1.
  • 5*1-2s=1. Отсюда s=2.
  • 5*1-2*2=1=1 (равенство действительное).

    В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

    Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

  • Упростить все выражения, входящие в систему.
  • Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  • Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  • Начертить прямоугольную систему координат.
  • Отметить точки, исходя из таблицы, в системе координат.
  • Соединить точки плавными линиями при помощи карандаша.
  • Проделать аналогичные действия над другими тождествами (5 и 6).
  • Определить точки пересечения функций и записать их координаты.

    В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

    Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

    Урок 43 Бесплатно Решение уравнений

    Сегодня на уроке вспомним, что такое уравнение и что называют корнем уравнения. Рассмотрим один из видов уравнений: линейное уравнение с одним неизвестным, определим его общий вид и узнаем, как называются составные части такого равенства.

    Разберем способы и приемы решения линейных уравнений с одним неизвестным.

    Рассмотрим алгоритм и пример решения задач с помощью линейных уравнений.

    Линейное уравнение

    В реальной жизни нам часто приходится решать множество различных примеров и задач.

    Связать реальную жизнь и математическое описание любой ситуации нам позволяет математическая модель.

    Составив математическую модель жизненной задачи, мы можем превратить слова в формулы, неравенства, равенства, уравнения и т.п.

    Математическая модель задачи в виде уравнения позволяет установить связи между всеми данными задачи, а также применить эту модель-уравнение для решения огромного множества подобного типа задач.

    Вам уже хорошо известно, что уравнение — это математическое равенство, содержащее неизвестное число, которое необходимо определить.

    Неизвестное число, входящее в уравнение, называют неизвестным членом данного уравнения.

    Принято обозначать неизвестный член уравнения маленькими латинскими буквами.

    Чаще всего в математике используют буквы x, y, z.

    Найти неизвестное число, при котором из уравнения получается верное равенство, — это значит решить уравнение, т.е. найти корни уравнения или убедиться, что корней нет.

    Корень уравнения — это значение неизвестного числа в уравнении, при котором уравнение обращается в верное равенство.

    Уравнения могут иметь разное количество корней.

    Существуют уравнения, имеющие один единственный корень, и уравнения, вообще не имеющие корней.

    Встречаются уравнения, решением которых являются несколько значений (два, три и более), а в некоторых случаях уравнение может иметь бесконечное множество решений.

    Уравнение, в котором находится одна неизвестная, называют уравнением с одной неизвестной.

    х + 3 = 6 (уравнение с одной неизвестной х)

    3 ∙ у = 15 (уравнение с одной неизвестной y).

    Существуют уравнения с большим количеством неизвестных: с двумя, тремя и т. д.

    Рассмотрим, что представляют собой линейные уравнения с одной неизвестной.

    Линейные уравнения с одной неизвестной называют уравнения вида a ∙ x = b, где a ≠ 0

    х— неизвестное число

    a и b— некоторые числа:

    а— это коэффициент уравнения.

    b— это свободный член уравнения.

    Линейное уравнение с одной неизвестной может быть представлено в виде a ∙ x + b = 0, оно является равнозначным уравнению вида a ∙ x = ax = b.

    У меня есть дополнительная информация к этой части урока!

    Уравнения с одним неизвестным умели решать в Древнем Вавилоне и в Древнем Египте более четырех тысяч лет назад.

    Дошедшие до нас источники свидетельствуют, что знания о неизвестных величинах и методах их вычисления, которыми тогда владели ученые, были образными.

    Одним из древнейших задачников по математике (примерно 1700 г до н.э.) является древнеегипетский папирус Ахмеса (также известный, как папирус Ринда (Райнда) по имени его первого владельца).

    Папирус Ахмеса содержит условия и решения 84 задач. Он является наиболее полным старейшим математическим сборником задач, дошедшим до наших дней.

    Все задачи, описанные и решенные в нем, имели практическое значение и могли применяться в строительстве, в межевании земельных наделов и т.д.

    Папирус содержит множество задач, которые сводятся к решению различных видов уравнений, в том числе и к линейным уравнениям.

    Папирус был обнаружен в 1858 г. Сейчас большая часть рукописи хранится в Британском музее.

    В III веке н.э. древнегреческий математик Диофант Александрийский в своей рукописи «Арифметика» изложил 130 задач, которые решались с помощью определенных (имеющих одно решение) и неопределенных уравнений.

    Уравнения, изложенные в книге, сейчас называются «Диофантовыми уравнениями».

    Также Диофант Александрийский впервые ввел буквенную символику в математику.

    Однако первым руководством по решению задач стал научный труд багдадского ученого IX века Мухамеда Бен Мусы аль-Хорезми «Книга о восстановлении и противопоставлении».

    Данная научная работа стала началом становления науки о решении уравнений.

    Мухамед Бен Муса аль-Хорезми впервые представил алгебру (раздел математики) как самостоятельную науку об общих методах решения уравнений, предложил классификацию уравнений.

    Но его математические сочинения в большей степени выражались словесно, в связи с чем казались очень громоздкими и сложными.

    Значительно упростить и облегчить описание и решение уравнений удалось великому французскому ученому XVI века Франсуа Виету.

    Он был первым, кто ввел буквенное обозначение коэффициентам уравнений и неизвестным величинам.

    Установил связь между корнями и коэффициентами уравнения.

    Франсуа Виет внедрил в науку мысль о том, что преобразования можно производить не только над величинами, но и над символами, таким образом, решать любую задачу в общем виде, т.е., по сути, он ввел понятие математической формулы.

    До сих пор многие идеи Виета являются актуальными и востребованными

    Пройти тест и получить оценку можно после входа или регистрации


    источники:

    http://kupuk.net/uroki/algebra/lineinye-yravneniia-algoritmy-i-primery-reshenii-s-obiasneniem-dlia-6-klassa/

    http://ladle.ru/education/matematika/6class/reshenie-uravnenij