Алгоритм решения задач с помощью линейных уравнений

Алгебра. 7 класс

Конспект урока

Решение задач с помощью линейных уравнений

Перечень рассматриваемых вопросов:

• Решение линейных уравнений.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Корень уравнения – это число, при подстановке которого в уравнение получается верное равенство.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.

Переменная – символ, используемый для представления величины, которая может принимать любое из ряда значений.

Свободный член – член уравнения, не содержащий неизвестного.

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

Решить уравнение – значит найти все его корни или установить, что их нет.

Преобразование – это действия, выполняемые с целью замены исходного выражения на выражение, которое будет тождественно равным исходному.

Математическая модель – математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.

Выражение – это совокупность чисел и букв, соединенных между собой различными знаками.

Линейное уравнение – уравнение вида ax = b, где x – переменная, a, b – некоторые числа.

1. Никольский С. М. Алгебра: 7 класс. // Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. – М.: Просвещение, 2017. – 287 с.

1. Чулков П. В. Алгебра: тематические тесты 7 класс. // Чулков П. В. – М.: Просвещение, 2014 – 95 с.

2. Потапов М. К. Алгебра: дидактические материалы 7 класс. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 96 с.

3. Потапов М. К. Рабочая тетрадь по алгебре 7 класс: к учебнику С. М. Никольского и др. «Алгебра: 7 класс». 1, 2 ч. // Потапов М. К., Шевкин А. В. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения.

Мы уже рассматривали примеры функциональных зависимостей между величинами как математические модели реальных процессов. Теперь рассмотрим текстовые задачи, математическими моделями которых являются линейные уравнения и уравнения, сводящиеся к линейным.

Решить задачу можно с помощью системы уравнений, а можно с помощью одного уравнения. Рассмотрим на примере задачи.

Из города А в город В одновременно выехали два автомобиля. Первый проехал с постоянной скоростью весь путь. Второй проехал первую половину пути со скоростью, меньшей скорости первого на 15 км/ч, а вторую половину пути – со скоростью 90 км/ч, в результате чего прибыл в В одновременно с первым автомобилем. Найдите скорость первого автомобиля, если известно, что она больше 54 км/ч. Ответ дайте в км/ч.

При решения текстовых задач эффективно построение схем и составление таблиц.

Используя сравнение скоростей, указанное в задаче, и обозначая скорость первого автомобиля икс, запишем скорость второго автомобиля на протяжении всего пути:

Скорость первого автомобиля: x, скорость второго автомобиля: x – 15x – 15/

Теперь заполним вспомогательную таблицу.

Условие, что автомобили прибыли в пункт назначения одновременно, используем для составления уравнения. Выражаем время первого автомобиля, которое он затратил на весь путь, через x.

Время первого автомобиля:

Время второго автомобиля:

Сократим на S ≠ 0 и умножим на 2.

Умножим обе части на 90x(x – 15), получим:

Решением уравнения будут корни:

Условию уравнения удовлетворяет только x = 60

Ответ: 60 км/ч – скорость первого автомобиля.

Составим алгоритм решения текстовых задач при помощи уравнений.

Решать задачу с помощью уравнения следует в такой последовательности:

1) обозначить переменной одну из неизвестных величин;

2) другие неизвестные величины (если они есть) выразить через введенную переменную;

3) по условию задачи установить соотношение между неизвестными и известными значениями величин и составить уравнение;

4) решить полученное уравнение;

5) проанализировать решение уравнения и найти неизвестную величину, а при необходимости и значения остальных неизвестных величин;

6) записать ответ к задаче.

Решите задачу двумя способами.

В первый день со склада было отпущено 20% имевшихся груш. Во второй день 180% от того количества груш, которое было отпущено в первый день. В третий день ‑ оставшиеся 88 кг. Сколько кг груш было на складе первоначально?

Разберем 2 способа решения этой задачи.

Для первого способа составим вспомогательную таблицу:

Значит, первоначально было 200 кг груш.

Составим вспомогательную аблицу:

Ответ: 200 кг груш.

Разбор заданий тренировочного модуля.

Задание 1. Запишите выражение для нахождения цены 1 кг сахара (в руб.), если n тонн сахара стоят m рублей.

Для решения задачи, вспомним, сколько килограммов содержится в одной тонне:

Так как стоимость n тонн сахара = m рублей, то, чтобы найти, сколько стоит 1 кг сахара, нужно стоимость разделить на количество:

Цена персиков на 30 р. выше, чем цена абрикосов. Для консервирования компота купили 5 кг персиков и 7 кг абрикосов. По какой цене покупали фрукты, если вся покупка обошлась 850 рублей?

Пусть цена абрикосов – x рублей. Тогда x + 20x + 20 – цена персиков.

Всего купили персиков: 5(x + 30) и абрикосов 7x.

Так как на всю покупку затратили 850 руб., имеем выражение:

5(x + 30) + 7x = 850

Раскроем скобки: 5x + 150 + 7x = 850

Перенесем слагаемые, не содержащие переменной, в правую часть, меняя знак на противоположный:

Решение задач с помощью линейных уравнений с одной переменной

Алгоритм решения текстовой задачи с помощью уравнения

Алгоритм решения текстовой задачи с помощью уравнения:

  • Проанализировать условие задачи, обозначить неизвестное буквой и составить уравнение.
  • Решить полученное уравнение.
  • Истолковать результат в соответствии с условием задачи.

Задачи с решениями

Задача 1. Одна сторона треугольника в два раза больше другой и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 43 см.

Пусть сторона AB=x.

Периметр треугольника: P = AB+AC+BC = x+2x+(2x+3) = 43

$$5x+3 = 43 \iff 5x = 40 \iff x = 40:5 = 8$$

AB = x = 8 см, AC = 2x = 16 см, BC = 2x+3 = 19 см

Ответ: 8 см, 16 см и 19 см

Задача 2. Расстояние между двумя станциями поезд может пройти со скоростью 70 км/ч на полчаса быстрее, чем со скоростью 60 км/ч. Найдите это расстояние.

Пусть x – расстояние между станциями.

По условию разность затраченного времени:

Решаем: $ \frac <60>— \frac <70>= \frac<1> <2>| \times 420 \iff 7x-6x = 210 \iff x = 210 $

Расстояние между станциями 210 км

Задача 3. Бригада должна была изготовить детали за 5 дней, но выполнила работу за 4 дня, т.к. изготавливала каждый день на 12 деталей больше. Сколько деталей изготовила бригада?

Пусть x — количество изготовленных деталей.

Количество деталей в день, шт./дни

Количество дней, дни

По условию разность между количествами деталей в день:

Решаем: $ \frac <4>— \frac <5>= 12 | \times 20 \iff 5x-4x = 240 \iff x = 240 $

Бригада изготовила 240 деталей.

Ответ: 240 деталей

Задача 4. Сумма двух чисел равна 90. Если большее из них разделить на меньшее, то частное равно 3 и в остатке 6. Найдите эти числа.

Пусть x — меньшее число. Тогда большее равно 90-x. По условию: 90-x = 3x+6

$$ 90-6 = 3x+x \iff 4x = 84 \iff x = 21 $$

Меньшее число x = 21, большее число 90-x = 69.

Задача 5. Матери 37 лет, а дочери 13 лет. Когда дочь была или будет втрое младше матери? А вдвое?

Пусть x — число прошедших лет. Возраст матери станет 37+x, дочери 13+x.

$$ \frac<37+x> <13+x>= 3 \iff 37+x = 3(13+x) \iff 37+x = 39+3x \iff 37-39 = 3x-x \iff $$

$$ \iff 2x = -2 \iff x = -1 $$

Дочь была втрое младше матери 1 год тому назад.

$$ \frac<37+x> <13+x>= 2 \iff 37+x = 2(13+x) \iff 37+x = 26+2x \iff 37-26 = 2x-x \iff $$

Дочь будет вдвое младше матери через 11 лет.

Ответ: год назад; через 11 лет

Задача 6. Сколько лет отцу и сыну, еcли в позапрошлом году сын был младше в 5 раз, а в следующем будет младше в 4 раза?

Пусть x — возраст сына в этом году.

Возраст сына, лет

Возраст отца, лет

И для отца, и для сына пройдёт три года:

$$ 4(x+1)-5(x-2) = 3 \iff 4x+4-5x+10 = 3 \iff 4x-5x = 3-14 \iff -x = -11 $$ $$ x = 11 $$

Сейчас сыну 11 лет.

В следующем году отцу будет 4(x+1)=4∙12=48 лет. Значит, сейчас отцу 47 лет.

Ответ: 11 лет и 47 лет.

Задача 7. Сумма цифр данного двузначного числа равна 7. Если эти цифры поменять местами, то получится двузначное число на 9 больше данного. Найдите данное число.

Пусть x — первая цифра данного числа, число десятков.

По условию разность чисел:

$$ (70-10x+x)-(10x+7-x) = 9 \iff 70-9x-9x-7 = 9 \iff $$ $$ \iff -18x = 9-63 \iff -18x = -54 \iff x = 3 $$

Первая цифра x = 3, вторая цифра 7-x = 4.

Данное число 34.

Задача 8. По расписанию автобус должен ехать от посёлка до станции со скоростью 32 км/ч и приезжать на станцию за полчаса до отхода поезда. Но из-за ненастной погоды автобус ехал со скоростью на 7 км/ч меньше и опоздал к поезду на 12 мин. Чему равно расстояние от посёлка до станции?

Пусть x – расстояние от посёлка до станции.

Разность по времени между расписанием и фактическим прибытием:

30 мин+12 мин = 42 мин = $\frac<42><60>$ ч = 0,7 ч

$ \frac<25>— \frac <32>= 0,7 | \times 32 \cdot 25 $

$ 32x-25x = \frac<7> <10>\cdot 32 \cdot 25 = 7 \cdot 16 \cdot 5 $

$ 7x = 7 \cdot 16 \cdot 5 \iff x = 16 \cdot 5 = 80 $

Расстояние 80 км.

Задача 9*. Если к двузначному числу приписать справа и слева цифру 4, то получится число в 54 раза больше исходного. Найдите исходное двузначное число.

Пусть x — исходное число.

Если приписать по 4 слева и справа, в полученном четырёхзначном числе первая 4 указывает на количество тысяч, число x — на количество десятков, последняя 4 – на количество единиц. Соотношение чисел:

Решаем: $ 4004+10x = 54x \iff 4004=44x \iff x = \frac<4004> <44>= \frac<1001> <11>= 91 $

Исходное число x = 91.

Задача 10. Для проведения экзамена закуплены тетради. Если их сложить в пачки по 45 штук, останется одна лишняя тетрадь, а если сложить в пачки по 50 штук, то в одной пачке не будет хватать 4 тетради. Сколько тетрадей было куплено, если пачек по 45 тетрадей получается на одну больше, чем пачек по 50 тетрадей?

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Примеры решений

Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?

Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7\cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7\cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48\cdot 3=144$

Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700\cdot 3=2100$ кг.

Муки во втором мешке: $700$ кг.

Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

Избавимся от коэффициента при неизвестном и получим ответ:

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15\cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3\cdot 150$ кг цемента, а у второй $x-3\cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3\cdot 150=1,5(x-3\cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=\frac<15><10>=\frac<3><2>$.

Запишем с учётом перевода дробей и упростим:

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

Домножим обе части на 2 и получим ответ:

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Задачи для самостоятельного решения

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

Ответ: Рабочие отработали 6 дней.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

Ответ: На шапку ушло $80$ г, на свитер $5\cdot 80=400$ г, на шарф $80-5=75$ г.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3\cdot 2x-0,3\cdot 10=65$$

$$2x+0,3\cdot 2x=65+10+0,3\cdot 10$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.


источники:

http://reshator.com/sprav/algebra/7-klass/reshenie-zadach-s-pomoshchyu-linejnyh-uravnenij-s-odnoj-peremennoj/

http://reshu.su/algebra/06/