Алкены как составлять уравнения с гомологическим рядом

Алкены

Алкены — непредельные (ненасыщенные) углеводороды, имеющие в молекуле одну двойную связь С=С. Такая связь содержит одну сигма-связь (σ-связь) и одну пи-связь (π-связь).

Алкены также называют этиленовыми углеводородами, по первому члену гомологического ряда — этилену — CH2=CH2. Общая формула их гомологического ряда — CnH2n.

Номенклатура и изомерия алкенов

Названия алкенов формируются путем добавления суффикса «ен» к названию алкана с соответствующим числом: этен, пропен, бутен, пентен и т.д.

При составлении названия алкена важно учесть, что главная цепь атомов углерода должна обязательно содержать двойную связь. Принято начинать нумерацию атомов углерода с того края, к которому ближе двойная связь. В конце названия указывают атом углерода, у которого начинается двойная связь.

Атомы углерода, прилежащие к двойной связи находятся в sp 2 гибридизации.

Для алкенов характерна изомерия углеродного скелета, положения двойной связи, межклассовая изомерия с циклоалканами и пространственная геометрическая изомерия в виде существования цис- и транс-изомеров.

Некоторые данные, касающиеся алкены, надо выучить:

  • Длина связи между атомами углерода составляет 0,134 нм
  • Тип гибридизации атомов углерода (прилежащих к двойной связи) — sp 2
  • Валентный угол (между химическими связями) составляет 120°
Получение алкенов

Алкены получают несколькими способами:

    Крекинг нефти

В результате крекинга нефти образуется один алкан и один алкен.

При наличии катализатора и повышенной температуры от молекул алканов отщепляется водород. Наиболее легко водород отдает третичный атом, чуть труднее — вторичный и заметно труднее — первичный.

В реакции галогеналкана со спиртовым(!) раствором щелочи образуется алкен. По правилу Зайцева, водород отщепляется от соседнего наименее гидрированного атома углерода.

В подобных реакциях применяется цинк (цинковая пыль) — двухвалентный металл, который связывает расположенные рядом атомы галогенов. Между атомами углерода, которым принадлежали галогены, завязывается двойная связь.

При нагревании спиртов c серной кислотой — H2SO4, обладающей выраженными водоотнимающими свойствами, происходит отщепление воды от спирта по правилу Зайцева. В результате образуется алкен.

Внутримолекулярная дегидратация спиртов происходит при t > 140 °C.

Химические свойства алкенов

Алкены — ненасыщенные углеводороды, охотно вступающие в реакции присоединения. Реакции замещения для них не характерны.

Водород присоединяется к атомам углерода, образующим двойную связь. Пи-связь (π-связь) рвется, остается единичная сигма-связь (σ-связь).

Реакция с бромной водой является качественной для непредельных соединений, содержащих двойные (и тройные) связи. В ходе такой реакции бромная вода обесцвечивается, что указывает на присоединение его по кратным связям к органическому веществу.

Реакция с хлором на свету протекает по свободнорадикальному механизму, так как на свету молекулы хлора расщепляются, образуя свободные радикалы.

Алкены вступают в реакции гидрогалогенирования, протекающие по типу присоединения.

Гидрогалогенирование протекает по правилу Марковникова, в соответствии с которым атом водорода присоединяется к наиболее гидрированному, а атом галогена — к наименее гидрированному атому углерода.

Присоединение воды, гидратация, происходит по правилу Марковникова. Водород присоединяется к наиболее гидрированному атому углерода, гидроксогруппа — к наименее гидрированному.

При горении алкены, как и все органические соединения, сгорают с образованием углекислого газа и воды — полное окисление. При неполном окислении образуются окиси.

Окисление алкенов перманганатом калия (марганцовкой) в нейтральной среде является качественной реакцией на алкены в частности, и непредельные углеводороды в целом. В результате реакции фиолетовый раствор марганцовки обесцвечивается и выпадает осадок бурого цвета — MnO2.

В более жестких условиях — при подкислении раствора серной кислотой, реакция идет с полным разрывом в самом слабом месте молекулы — двойной связи.

Полимеризация — цепная реакция синтеза полимеров, при котором молекула полимера образуется путем последовательного соединения молекул мономеров.

Индекс «n», степень полимеризации, обозначает число мономерных звеньев, которые входят в состав полимера.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Алкены

Алкены – это непредельные (ненасыщенные) нециклические углеводороды, в молекулах которых присутствует одна двойная связь между атомами углерода С=С.

Наличие двойной связи между атомами углерода очень сильно меняет свойства углеводородов. В этой статье мы подробно остановимся на свойствах, способах получения и особенностях строения алкенов.

Гомологический ряд алкенов

Все алкены имеют некоторые общие или похожие физические и химические свойства. Схожие по строению алкены, которые отличаются на одну или несколько групп –СН2–, называют гомологами. Такие алкены образуют гомологический ряд.

Самый первый представитель гомологического ряда алкенов – этен (этилен) C2H4, или СH2=СH2.

Продолжить гомологический ряд можно, последовательно добавляя группу –СН2– в углеводородную цепь.

Название алкена Формула алкена
Этилен (этен)C2H4
Пропилен (пропен)C3H6
Бутилен (бутен)C4H8
ПентенC5H10
ГексенC6H12
ГептенC7H14
ОктенC8H16
НоненC9H18

Общая формула гомологического ряда алкенов CnH2n.

Первые четыре члена гомологического ряда алкенов – газы, начиная с C5 – жидкости.

Алкены легче воды, не растворимы в воде и не смешиваются с ней.

Строение алкенов

Рассмотрим особенности строения алкенов на примере этилена.

В молекуле этилена присутствуют химические связи C–H и С=С.

Связь C–H ковалентная слабополярная одинарная σ-связь. Связь С=С – двойная, ковалентная неполярная, одна из связей σ, вторая π-связь. Атомы углерода при двойной связи образуют по три σ-связи и одну π-связь. Следовательно, гибридизация атомов углерода при двойной связи в молекулах алкенов – sp 2 :

При образовании связи σ-связи между атомами углерода происходит перекрывание sp 2 -гибридных орбиталей атомов углерода:

При образовании π-связи между атомами углерода происходит перекрывание негибридных орбиталей атомов углерода:

Три sp 2 -гибридные орбитали атома углерода взаимно отталкиваются, и располагаются в пространстве так, чтобы угол между орбиталями был максимально возможным.

Поэтому три гибридные орбитали атомов углерода при двойной связи в алкенах направлены в пространстве под углом 120 о друг к другу:

Изображение с сайта orgchem.ru

Это соответствует плоско-треугольному строению молекулы.

Например, молекуле этилена C2H4 соответствует плоское строение.

Изображение с сайта orgchem.ru

Молекулам линейных алкенов с большим числом атомов углерода соответствует пространственное строение.

Например, в молекуле пропилена присутствует атом углерода в sp 3 -гибридном состоянии, в составе метильного фрагмента СН3. Такой фрагмент имеет тетраэдрическое строение и располагается вне плоскости двойной связи.

Изображение с сайта orgchem.ru

Изомерия алкенов

Для алкенов характерна структурная и пространственная изомерия.

Структурная изомерия

Для алкенов характерна структурная изомерия – изомерия углеродного скелета, изомерия положения кратной связи и межклассовая изомерия.

Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.

Изомеры углеродного скелета отличаются строением углеродного скелета.

Например.

Изомеры с различным углеродным скелетом и с формулой С4Н8 — бутен-1 и метилпропен

Бутен-1Метилпропен

Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Алкены являются межклассовыми изомерами с циклоалканами. Общая формула и алкенов, и циклоалканов — CnH2n.

Например.

Межклассовые изомеры с общей формулой С3Н6 — пропилен и циклопропан

ПропиленЦиклопропан

Изомеры с различным положением двойной связи отличаются положением двойной связи в углеродном скелете.

Например.

Изомеры положения двойной связи, которые соответствуют формуле С4Н8 — бутен-1 и бутен-2

Бутен-1Бутен-2

Пространственная изомерия

Для алкенов характерна пространственная изомерия: цис-транс-изомерия и оптическая.

Алкены, которые обладают достаточно большим углеродным скелетом, могут существовать в виде оптических изомеров. В молекуле алкена должен присутствовать асимметрический атом углерода (атом углерода, связанный с четырьмя различными заместителями).

Цис-транс-изомерия обусловлена отсутствием вращения по двойной связи у алкенов.

Алкены, имеющие у каждого из двух атомов углерода при двойной связи различные заместители, могут существовать в виде двух изомеров, отличающихся расположением заместителей относительно плоскости π-связи.

Алкены, в которых одинаковые заместители располагаются по одну сторону от плоскости двойной связи, это цис-изомеры. Алкены, в которых одинаковые заместители располагаются по разные стороны от плоскости двойной связи, это транс-изомеры.

Например.

Для бутена-2 характерна цис- и транс-изомерия. В цис-изомере м етильные радикалы CH3 располагаются по одну сторону от плоскости двойной связи, в транс-изомере — по разные стороны.

цис-Бутен-2транс-Бутен-2

Цис-транс-изомерия не характерна для тех алкенов, у которых хотя бы один из атомов углерода при двойной связи имеет два одинаковых соседних атома.

Например.

Для пентена-1 цис-транс-изомерия не характерна, так как у одного из атомов углерода при двойной связи есть два одинаковых заместителя (два атома водорода)

Номенклатура алкенов

В названиях алкенов для обозначения двойной связи используется суффикс -ЕН.

Например, алкен имеет название 2-метилпропен.

При этом правила составления названий (номенклатура) для алкенов в целом такие же, как и для алканов, но дополняются некоторыми пунктами:

1. Углеродная цепь, в составе которой есть двойная связь, считается главной.

2. Нумеруют атомы углерода в главной цепи так, чтобы атомы углерода при двойной связи получили наименьший номер. Нумерацию следует начинать с более близкого к двойной связи конца цепи.

3. В конце молекулы вместо суффикса АН добавляют суффикс ЕН и указывают наименьший номер атома углерода при двойной связи в углеродной цепи.

4. Для простейших алкенов применяются также исторически сложившиеся (тривиальные) названия:

Тривиальное названиеФормула алкена
Этилен
Пропилен
Бутилен-1

Радикалы, содержащие двойную связь, также носят тривиальные названия:

Формула радикалаТривиальное название
CH 2 =CH-винил
CH2=CH-CH2аллил

Химические свойства алкенов

Алкены – непредельные углеводороды, в молекулах которых есть одна двойная связь. Строение и свойства двойной связи определяют характерные химические свойства алкенов.

Двойная связь состоит из σ-связи и π-связи. Рассмотрим характеристики одинарной связи С-С и двойной связи С=С:

Энергия связи, кДж/мольДлина связи, нм
С-С3480,154
С=С6200,133

Можно примерно оценить энергию π-связи в составе двойной связи С=С:

Таким образом, π-связь — менее прочная, чем σ-связь. Поэтому алкены вступают в реакции присоединения, сопровождающиеся разрывом π-связи. Присоединение к алкенам может протекать по ионному и радикальному механизмам.

Для алкенов также характерны реакции окисления и изомеризации. Окисление алкенов протекает преимущественно по двойной связи, хотя возможно и жесткое окисление (горение).

1. Реакции присоединения

Для алкенов характерны реакции присоединения по двойной связи С=С, при которых протекает разрыв пи-связи в молекуле алкена.

1.1. Гидрирование

Алкены реагируют с водородом при нагревании и под давлением в присутствии металлических катализаторов (Ni, Pt, Pd и др.).

Например, при гидрировании бутена-2 образуется бутан.

Реакция протекает обратимо. Для смещения равновесия в сторону образования бутана используют повышенное давление.

1.2. Галогенирование алкенов

Присоединение галогенов к алкенам происходит даже при комнатной температуре в растворе (растворители — вода, CCl4).

При взаимодействии с алкенами красно-бурый раствор брома в воде (бромная вода) обесцвечивается. Это качественная реакция на двойную связь.
Например, при бромировании пропилена образуется 1,2-дибромпропан, а при хлорировании — 1,2-дихлорпропан.

Реакции протекают в присутствии полярных растворителей по ионному (электрофильному) механизму.

1.3. Гидрогалогенирование алкенов

Алкены присоединяют галогеноводороды. Реакция идет по механизму электрофильного присоединения с образованием галогенопроизводного алкана.

Например, при взаимодействии этилена с бромоводородом образуется бромэтан.

При присоединении полярных молекул к несимметричным алкенам образуется смесь изомеров. При этом выполняется правило Марковникова.

Правило Марковникова: при присоединении полярных молекул типа НХ к несимметричным алкенам водород преимущественно присоединяется к наиболее гидрогенизированному атому углерода при двойной связи.
Например, при присоединении хлороводорода HCl к пропилену атом водорода преимущественно присоединяется к атому углерода группы СН2=, поэтому преимущественно образуется 2-хлорпропан.

1.4. Гидратация

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Например, при взаимодействии этилена с водой образуется этиловый спирт.

Гидратация алкенов также протекает по ионному (электрофильному) механизму.

Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.

Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.

1.5. Полимеризация

Полимеризация — это процесс многократного соединения молекул низкомолекулярного вещества (мономера) друг с другом с образованием высокомолекулярного вещества (полимера).

nM → Mn (M – это молекула мономера)

Например, при полимеризации этилена образуется полиэтилен, а при полимеризации пропилена — полипропилен.

2. Окисление алкенов

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

2.1. Каталитическое окисление

Каталитическое окисление протекает под действием катализатора.

Взаимодействие этилена с кислородом в присутствии солей палладия протекает с образованием этаналя (уксусного альдегида)

Взаимодействие этилена с кислородом в присутствии серебра протекает с образованием эпоксида

2.2. Мягкое окисление

Мягкое окисление протекает при низкой температуре в присутствии перманганата калия. При этом раствор перманганата обесцвечивается.

В молекуле алкена разрывается только π-связь и окисляется каждый атом углерода при двойной связи.

При этом образуются двухатомные спирты (диолы).

Например, этилен реагирует с водным раствором перманганата калия при низкой температуре с образованием этиленгликоля (этандиол-1,2)

2.2. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) происходит полный разрыв двойной связи С=С и связей С-Н у атомов углерода при двойной связи. При этом вместо разрывающихся связей образуются связи с кислородом.

Так, если у атома углерода окисляется одна связь, то образуется группа С-О-Н (спирт). При окислении двух связей образуется двойная связь с атомом углерода: С=О, при окислении трех связей — карбоксильная группа СООН, четырех — углекислый газ СО2.

Поэтому можно составить таблицу соответствия окисляемого фрагмента молекулы и продукта:

Окисляемый фрагмент KMnO4, кислая среда KMnO4, H2O, t
>C=>C=O>C=O
-CH=-COOH-COOK
CH2=CO2K2CO3

При окислении бутена-2 перманганатом калия в среде серной кислоты окислению подвергаются два фрагмента –CH=, поэтому образуется уксусная кислота:

При окислении метилпропена перманганатом калия в присутствии серной кислоты окислению подвергаются фрагменты >C= и CH2=, поэтому образуются углекислый газ и кетон:

При жестком окислении алкенов в нейтральной среде образующаяся щелочь реагирует с продуктами реакции окисления алкена, поэтому образуются соли (кроме реакций, где получается кетон — кетон со щелочью не реагирует).

Например, п ри окислении бутена-2 перманганатом калия в воде при нагревании окислению подвергаются два фрагмента –CH=, поэтому образуется соль уксусной кислоты – ацетат калия:

Например, при окислении метилпропена перманганатом калия в воде при нагревании окислению подвергаются фрагменты >C= и CH2=, поэтому образуются карбонат калия и кетон:

Взаимодействие алкенов с хроматами или дихроматами протекает с образованием аналогичных продуктов окисления.

2.3. Горение алкенов

Алкены, как и прочие углеводороды, горят в присутствии кислорода с образованием углекислого газа и воды.

В общем виде уравнение сгорания алкенов выглядит так:

Например, уравнение сгорания пропилена:

3. Замещение в боковой цепи

Алкены с углеродной цепью, содержащей более двух атомов углерода, могут вступать в реакции замещения в боковой цепи, как алканы.

При взаимодействии алкенов с хлором или бромом при нагревании до 500 о С или на свету происходит не присоединение, а радикальное замещение атомов водорода в боковой цепи. При этом хлорируется атом углерода, ближайший к двойной связи.

Например, при хлорировании пропилена на свету образуется 3-хлорпропен-1

4. Изомеризация алкенов

При нагревании в присутствии катализаторов (Al2O3) алкены вступают в реакцию изомеризации. При этом происходит либо перемещение двойной связи, либо изменение углеродного скелета. При изомеризации из менее устойчивых алкенов образуются более устойчивые. Как правило, двойная связь перемещается в центр молекулы.

Например, при изомеризации бутена-1 может образоваться бутен-2 или 2-метилпропен

Получение алкенов

1. Дегидрирование алканов

При дегидрировании алканов, содержащих от 2 до 4 атомов углерода в молекуле, образуются двойные и тройные связи.

Например, при дегидрировании этана может образоваться этилен или ацетилен:

При дегидрировании бутана под действием металлических катализаторов образуется смесь продуктов. Преимущественно образуется бутен-2:

Если бутан нагревать в присутствии оксида хрома (III), преимущественно образуется бутадиен-1,3:

2. Крекинг алканов

Крекинг – это реакция разложения алкана с длинной углеродной цепью на алканы и алкены с более короткой углеродной цепью.

Крекинг бывает термический и каталитический.

Термический крекинг протекает при сильном нагревании без доступа воздуха.

При этом получается смесь алканов и алкенов с различной длиной углеродной цепи и различной молекулярной массой.

Например, при крекинге н-пентана образуется смесь, в состав которой входят этилен, пропан, метан, бутилен, пропилен, этан и другие углеводороды.

Каталитический крекинг проводят при более низкой температуре в присутствии катализаторов. Процесс сопровождается реакциями изомеризации и дегидрирования. Катализаторы каталитического крекинга – цеолиты (алюмосиликаты кальция, натрия).

3. Дегидрогалогенирование галогеналканов

Галогеналканы взаимодействуют с щелочами в спиртовом растворе. При этом происходит дегидрогалогенирование – отщепление (элиминирование) атомов водорода и галогена от галогеналкана.

Например, при взаимодействии хлорэтана с спиртовым раствором гидроксида натрия образуется этилен.

При отщеплении галогена и водорода от некоторых галогеналканов могут образоваться различные органические продукты. В таком случае выполняется правило Зайцева.

Правило Зайцева: отщепление атома водорода при дегидрогалогенировании и дегидратации происходит преимущественно от наименее гидрогенизированного атома углерода.
Например, при взаимодействии 2-хлорбутана со спиртовым раствором гидроксида натрия преимущественно образуется бутен-2. Бутен-1 образуется в небольшом количестве (примерно 20%). В реакции мы указываем основной продукт.

4. Дегидратация спиртов

При нагревании спиртов (выше 140 о С) в присутствии водоотнимающих веществ (концентрированная серная кислота, фосфорная кислота) или катализаторов (оксид алюминия) протекает дегидратация. Дегидратация — это отщепление молекул воды.

При дегидратации спиртов образуются алкены.

Например, при дегидратации этанола при высокой температуре образуется этилен.

Дегидратация более сложных молекул также протекает по правилу Зайцева.

Например, при дегидратации бутанола-2 преимущественно образуется бутен-2.

5. Дегалогенирование дигалогеналканов

Дигалогеналканы, в молекулах которых два атома галогена расположены у соседних атомов углерода, реагируют с активными металлами с образованием алкенов.

Как правило, для отщепления используют двухвалентные активные металлы — цинк или магний.

Например, 1,2-дихлорпропан реагирует с цинком с образованием пропилена

6. Гидрирование алкинов

Гидрирование алкинов протекает в присутствии катализаторов (Ni, Pt) с образованием алкенов, а затем сразу алканов.

При использовании менее активного катализатора (Pd, СaCO3, Pb(CH3COO)2) гидрирование останавливается на этапе образования алкенов.

Например, при гидрировании бутина-1 в присутствии палладия преимущественно образуется бутен-1.

7. Гидрирование алкадиенов

Гидрирование алкадиенов протекает в присутствии металлических катализаторов, при нагревании и под давлением.

При присоединении одной молекулы водорода к дивинилу образуется смесь продуктов (бутен-1 и бутен-2):

Соотношение продуктов 1,2- и 1,4- присоединения зависит от условий реакции.

При комнатной и повышенной температуре основным продуктом реакции является 1,4-продукт (бутен-2).

При полном гидрировании дивинила образуется бутан:

Урок 19. Алкены

Гомологический ряд, номенклатура, изомерия

Алкены — это нециклические углеводороды, в молекулах которых есть одна двойная связь.

Алкены относятся к группе непредельных углеводородов. Непредельными углеводородами являются вещества, в состав молекул которых входит меньшее, чем у алканов, число атомов водорода. Поэтому они способны к реакциям присоединения, т. е. являются ненасыщенными.

Вопрос. Может ли существовать алкен, в состав которого входит один атом углерода?

Поскольку двойная связь связывает два атома углерода, минимальное число атомов углерода в молекуле алкена равно двум. Сравним состав алкана и алкена:

Таким образом, алкены образует гомологический ряд, общая формула которого

Вопрос. Почему в названиях алкенов появился суффикс ЕН? (См. урок 17.7.)

Упражнение 19.1. Составьте графические формулы алкенов для n = 4.

Решение. Состав этого углеводорода С4Н8. Он содержит двойную связь. Для него возможны три углеродные цепочки:

Допишите атомы водорода к этим цепочкам и убедитесь, что это — изомеры.

Вывод. Начиная с бутена (n = 4) у алкенов возможна структурная изомерия, которая связана

  • со строением углеродной цепи: (а) и (в);
  • с положением двойной связи: (а) и (б).

Кроме того, для некоторых алкенов возможна пространственная (цис-транс-) изомерия. Цис-транс-изомеры отличаются друг от друга расположением одинаковых атомов или групп атомов по отношению к двойной связи. Такие изомеры есть у алкенов, в молекулах которых около двойной связи имеются разные радикалы (атомы, группы). Например, у бутена-2 [это формула (б)] второй и третий атомы углерода связаны с двумя разными группами: –СН3 и –Н:

Задание 19.1. Назовите оставшиеся два изомера бутена (а) и (в).

Таким образом, в названиях алкенов присутствие двойной связи обозначают при помощи суффикса ЕН, а положение двойной связи показывают цифрой, которую записывают после суффикса. Эта цифра указывает на меньший номер атома углерода при двойной связи. Нумерация атомов углерода основной, главной цепи начинается с того конца, к которому ближе двойная связь.

Упражнение 19.2. Назвать углеводород:

Решение. Основная цепь содержит 4 атома углерода, причём двойная связь соединяет атомы углерода № 1 и № 2 (нумеруем справа налево, так как к правому концу ближе двойная связь). Получаем: бутен-1.

У второго и третьего атомов углерода имеются радикалы «метил», всего их два (обозначение — ДИ); получаем: 2,3-диметилбутен-1.

Задание 19.2. Составьте графические формулы изомеров алкена с n = 5; назовите полученные соединения.

Кроме рассмотренных выше названий по международной номенклатуре IUPAC, на практике применяются и так называемые тривиальные названия. Например, этен обычно называют этилен, пропен — пропилен и т. д. Поэтому алкены называются «этиленовые углеводороды», тем более что по свойствам похожи на этилен.

Строение молекул

Молекулы алкенов отличаются по строению от молекул алканов тем, что они содержат двойную связь. Рассмотрим строение этой связи. Эта связь ковалентная, но неоднородная. Одна из двух связей имеет ту же природу, что и связь в молекулах алканов, т. е. это прочная σ-связь. Другая связь двойной связи образуется иначе, она менее прочная и обозначается буквой π(пи). Это π-связь. Таким образом, в молекуле этена (этилена) имеется:

Вопрос. Какая связь будет легче разрушаться в химических реакциях: σ- или π-связь?

В результате алкены (и любые другие углеводороды), имеющие π-связь, легко, иногда даже при обычных условиях, вступают в химические реакции, причём эти реакции происходят за счёт разрыва π-связи.

Свойства алкенов

Физические свойства

По физическим свойствам алкены почти не отличаются от алканов: низшие алкены (этилен, пропилен и др.) — газы, а с увеличением молекулярной массы увеличиваются и температуры кипения и температуры плавления. Это неполярные вещества, поэтому они практически нерастворимы в воде, но хорошо растворяются в бензине, маслах.

Химические свойства

Наиболее характерной реакцией для алкенов является реакция присоединения. В ходе этой реакции разрывается непрочная π-связь, в результате у обоих атомов углерода, которые соединялись этой связью, появляются «свободные» валентности, за счёт чего и происходит присоединение:

Эта реакция бромирования этилена (и других алкенов) происходит при нормальных условиях под действием раствора брома в воде (бромной воды). В результате цвет бромной воды изменяется: был жёлтым, становится бесцветным.

Поэтому реакция обесцвечивания бромной воды является качественной* на двойную связь.

* Качественной называется химическая реакция, при помощи которой можно обнаружить вещество в смеси или в растворе. В результате качественной реакции изменяется цвет, выделяется газ, осадок.

Упражнение 19.3. В двух пробирках находятся бесцветные жидкости: н-пентан и пентен-1. Как при помощи химической реакции определить, где какая жидкость находится?

Решение. В обе пробирки добавляем жёлтую бромную воду и сильно встряхиваем: в пробирке, где был пентен-1, смесь обесцветится, а в другой пробирке цвет бромной воды не изменится.

Задание 19.3. Составьте уравнения реакций этих процессов.

Аналогично происходят и другие реакции присоединения: с Н2 (гидрирование), с Н2O (гидратация), с НСl и т. д. При этом в результате реакции присоединения двойная связь всегда разрушается (разрывается π-связь). Изменяется характер химической связи: вместо двойной связи появляется простая связь. Образуется одно вещество:

Задание 19.4. Составьте уравнения реакций:

Во всех случаях, которые рассматривались ранее, в результате реакции присоединения могло получиться только одно вещество (один изомер). Но так бывает не всегда. Попробуем составить уравнение реакции пропена с хлороводородом:

Какой изомер получится: (1)? или (2)? или оба? Эта задача решается при помощи правила Марковникова (1869 год)*.

* Марковников Владимир Васильевич (25.12.1837–11.02.1904) — русский химик-органик. Ввёл понятие о взаимном влиянии атомов как главном содержании теории химического строения.

Соединения типа Н-Х присоединяются по месту разрыва двойной связи так, что при этом атом водорода (вещества Н-Х) присоединяется к атому углерода, у которого было больше атомов водорода (наиболее гидрогенизированный атом углерода).

Вопрос. Какой изомер получился при гидрировании бутена-2: (1) или (2)?

При составлении уравнений таких реакций, конечно, нужно «считать» атомы водорода только у тех атомов углерода, которые связаны двойной связью:

Задание 19.5. Составьте уравнения реакций:

  1. пропен + бром;
  2. бутен-1 + хлороводород;
  3. 2-метилпропен + вода.

В отличие от алканов, алкены вступают в реакции окисления* и при обычных условиях. Так, если этилен пропустить через розовый раствор перманганата калия (КМnО4), то раствор станет бесцветным:

* Реакции мягкого окисления, в которых не разрушается углеродная цепь атомов, обозначается [O], а формула вещества-окислителя записывается под стрелочкой.

Вопрос. Является ли эта реакция качественной на двойную связь?

Таким образом, для обнаружения двойной связи в углеводороде, можно воспользоваться любой из качественных реакций:

  • обесцвечивание бромной воды;
  • обесцвечивание раствора перманганата калия.

Алкены горят, но, в отличие от газообразных алканов, пламя которых бесцветно, газообразные алкены горят светящимся (ярким) пламенем.

Задание 19.6. Составьте уравнение реакции горения этилена.

Алкены легко вступают в реакцию полимеризации. Это процесс, при котором из большого числа молекул (мономеров) образуется ОДНА большая молекула (полимер):

Вопрос. Является ли полиэтилен химически активным веществом? Почему?

Полиэтилен, в отличие от этилена, уже не содержит двойной связи, поэтому он химически инертен, т. е. практически не вступает в химические реакции. Поэтому из него делают плёнки, различные изделия, которые широко применяются в быту (полиэтиленовые пакеты*) и в химической промышленности (трубы, ёмкости и др.).

* Полиэтиленовые пакеты часто неправильно называют «целлофановыми», хотя целлофан — совсем другой материал (см. урок 26).

Получение и применение алкенов

Главный промышленный источник алкенов — природный газ, нефть и продукты их переработки (например, продукты крекинга).

Основным способом получения алкенов является реакция отщепления. В этом случае от двух соседних атомов углерода отщепляется по одному атому или группе:

В лаборатории алкены можно получить реакцией дегидратации (отщепления воды) спиртов. Эта реакция происходит при нагревании в присутствии концентрированной серной кислоты:

Упражнение 19.4. Какую молекулу нужно отщепить от хлорэтана, чтобы получить алкен?

Решение. Сравним состав хлорэтана и этилена:

Эта реакция происходит под действием спиртового раствора щёлочи. Уравнение этого процесса записывается так:

Вопрос. Какую молекулу нужно отщепить от 1,2-дихлорэтана для получения этилена?

Алкены легко вступают в химические реакции, поэтому они применяются для получения различных веществ: спиртов, растворителей, полимеров. Например, из этилена получают этиловый спирт, растворители (хлорэтан и дихлорэтан), полиэтилен.

Задание 19.7. Составьте уравнения реакций получения перечисленных веществ.

Плёнки полиэтилена находят большое применение не только для хранения пищевых продуктов: ими устилают дно каналов, чтобы уменьшить потери влаги; полиэтиленовую пленку используют для устройства парников; ею оборачивают трубы, чтобы уменьшить потери от коррозии и т. д.

Понятие об алкадиенах (диены)

Алкадиены — это углеводороды, в молекулах которых есть две двойные связи.

Алкадиены относят к группе непредельных ненасыщенных углеводородов.

Для того чтобы вывести общую формулу гомологического ряда алкадиенов, сравним состав алканов и алкадиенов:

Таким образом, алкадиены образуют гомологический ряд, общая формула которого

Первый член гомологического ряда алкадиенов С3Н4 называется пропадиен. Таким образом, названия составляют, используя те же принципы номенклатуры IUPAC, с использованием суффикса диен.

Вопрос. На что указывает этот суффикс?

Некоторые диены (так кратко обозначают представителей этого гомологического ряда) имеют тривиальные названия. Например, бутадиен-1,3 известен под названием дивинил, поскольку каждая его половинка является непредельным радикалом, который называется «винил»:

Его гомолог — 2-метилбутадиен-1,3 называется изопрен.

Задание 19.8. Составьте графическую формулу этого соединения.

Начиная с n = 4, возникает изомерия, которая связана не только со строением углеродной цепи, но и положением кратных связей. По этому признаку различают:

  • диены с кумулированными связями С–С–С=С=С;
  • диены с сопряжёнными связями С–С=С–С=С;
  • диены с изолированными связями С=С–С–С=С.

Наибольшее значение и применение имеют диены с сопряжёнными связями. Рассмотрим их свойства.

Для алкадиенов, как и для алкенов, характерны реакции присоединения, которые идут в две стадии. Но диены с сопряжёнными связями вначале присоединяют бром (или другое вещество) в положение 1,4:

Образовавшиеся «свободные валентности» замыкаются, образуя двойную связь.

Вопрос. Возможна ли для полученного соединения реакция присоединения?

Поскольку полученное вещество содержит двойную связь, возможна вторая стадия этого процесса:

Установлено, что на первой стадии присоединения образуется 2 изомера: 80 % указанного вещества (1,4-дибромбутен-2) и 20 % 3,4-дибромбутена-1*.

* Здесь нумерация цепи идёт по двойной связи, так как галогены не являются функциональной группой.

Задание 19.9. Составьте формулы обоих соединений.

Большое практическое значение имеет процесс полимеризации сопряжённых диенов. Вначале, как в случае бромирования, возникает двойная связь в положении 2,3:

Поскольку в полученном полимере имеется двойная связь, такие полимеры имеют два изомера: цис- и транс- (см. урок 19.1). Цис-изомеры таких полимеров являются эластичными и называются каучуки.

Каучуки — это эластичные полимеры, из которых получают резину. Резина образуется из каучука в результате вулканизации. Дело в том, что чистый каучук имеет крайне низкие эксплуатационные качества. Он становится твёрдым и хрупким на морозе, липким на жаре, быстро окисляется, крайне непрочен.

Бутадиен получают синтезом Лебедева**, который заключается в том, что этиловый спирт в присутствии определённых катализаторов подвергают одновременно дегидрированию и дегидратации:

** Лебедев Сергей Васильевич (25.07.1874–02.05.1934) — советский химик. Впервые получил (1910) образец синтетического бутадиенового каучука, разработал (1930) методы получения резины и резинотехнических изделий из синтетического каучука. По способу Лебедева впервые получен (1932) промышленный синтетический каучук.

Для алкадиенов, так же как и для алкенов, характерна реакция окисления. Например, они обесцвечивают раствор перманганата калия. При этом образуются многоатомные спирты.

Производные изопрена широко распространены в природе. К ним относятся многие душистые вещества (мяты, лимона), витамины (каротин, витамин А), а также холестерин.

Выводы

Алкены и алкадиены — это непредельные углеводороды, содержащие двойные связи. Для таких веществ характерны реакции

Все они происходят за счёт разрыва π-связи, которая входит в состав двойной связи.

Алкадиены с сопряжёнными связями образуют полимеры с особыми свойствами — каучуки.


источники:

http://chemege.ru/alkeny/

http://himi4ka.ru/samouchitel-po-himii/urok-19-alkeny.html