Аминокислоты в белки уравнение реакции

Белки и аминокислоты

Белки (син. протеины) — высокомолекулярные органические вещества, построенные из остатков аминокислот. По своему биологическому значению принадлежат к числу важнейших составных частей организма.

Несомненно, белки абсолютно необходимы для жизни растений, животных и грибов. Именно вследствие такого большого значения белки получили названия протеинов (греч. protos — первый, главный).

Качественной реакцией на белки служит ксантопротеиновая реакция. Ее проводят путем добавления к раствору белка HNO3(конц.) до тех пор, пока не прекратится выпадение осадка. Осадок окрашивается в характерный желтый цвет.

Аминокислота

Аминокислота — органическая кислота, содержащая, по меньшей мере, одну карбоксильную группу (COOH) и одну аминогруппу (NH2). Аминокислоты являются основной составляющей всех белков.

В построении белков участвуют 20 наиболее распространенных аминокислот. На данном этапе учить их наизусть не обязательно, эта задача настигнет вас на кафедре биохимии 😉

И все же для успешного изучения данной темы мы возьмем за основу две аминокислоты: глицин и аланин.

Я хочу вас обрадовать (надеюсь, что обрадую)). Если вы успешно изучили темы: карбоновые кислоты, амины — то вы уже знаете химические свойства аминокислот!

Они напоминают амфотерные соединения: по аминогруппе вступают в реакции с кислотами, по карбоксильной — с основаниями. Мы разберем их подробнее чуть ниже.

Получение аминокислот

Аминокислоты можно получить в реакции аммиака с галогенкарбоновыми кислотами.

Химические свойства аминокислот
  • Основные свойства

За счет наличия аминогруппы, аминокислоты проявляют основные свойства. Реагируют с кислотами.

По карбоксильной группе аминокислоты способны вступать в реакции с металлами, основными оксидами, основаниями и солями более слабых кислот.

Аминокислоты способны вступать в реакцию этерификации, образуя сложные эфиры.

В молекуле белка аминокислоты связаны друг с другом пептидной связью. Она образуется между карбоксильной группой одной аминокислоты и аминогруппой другой аминокислоты.

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Лабораторная работа №1

Лабораторная работа №1

ХИМИЯ ПРОСТЫХ БЕЛКОВ.

ЦВЕТНЫЕ РЕАКЦИИ НА БЕЛКИ И АМИНОКИСЛОТЫ

Белки представляют собой высокомолекулярные полимерные органические соединения, построенные из остатков различных α-аминокислот, соединенных ковалентной пептидной связью.

Присутствие белка в растворах можно обнаружить с помощью цветных реакций, обусловленных наличием в белке аминокислот, их специфических групп и пептидных связей. Существуют универсальные цветные реакции, т. е. на все белки (биуретовая и нингидриновая), и специфические, т. е. на определенные аминокислоты (ксантопротеиновая, Миллона, Фоля и др.).

На основании некоторых цветных реакций разработаны методы количественного определения белков и аминокислот, которые широко используются в биохимических лабораториях.

Цель: Ознакомиться с универсальными цветными реакциями на белки и специфическими реакциями на отдельные аминокислоты, содержащиеся в белковых растворах.

Работа 1. Биуретовая реакция на пептидную связь (Пиотровского)

Биуретовая реакция обусловлена наличием в белке пептидных связей, которые в щелочной среде образуют с сернокислой медью комплексы фиолетового цвета с красным или синим оттенком. Группа, образующая пептидную связь, в щелочной среде присутствует в своей таутомерной енольной форме:

При избытке щелочи происходит диссоциация ОН-группы, появляется отрицательный заряд, с помощью которого кислород взаимодействует с медью. Возникает солеобразная связь. Кроме того, медь образует дополнительные координационные связи с атомами азота, участвующими в пептидной связи, путем использования их электронных пар. Возникающий таким образом комплекс очень стабилен. Интенсивность окраски комплекса зависит от концентрации белка и количества медной соли в растворе.

Биуретовой реакцией обнаруживаются все без исключения белки, а также продукты их неполного гидролиза – пептоны и полипептиды. Для ди — и трипептидов биуретовая реакция ненадежна. Оттенок зависит от длины полипептидной цепочки. Пептоны при этой реакции дают розовое или красное окрашивание. Биуретовая реакция положительна и с веществами небелкового характера, имеющими в составе не менее двух – CO – NH2-групп, к ним относятся, например, оксамид – NH2 – CO – CO – NH2, биурет – N2H – CO – NH – CO – NH2.

Исследуемый материал: раствор яичного белка, раствор растительного белка, 1% раствор желатина.

Реактивы: 10% раствор NaOH, 1% раствор CuSO4.

Оборудование: пробирки, капельницы.

Ход работы. К 5 каплям водного раствора белка добавляют 5 капель 10% раствора NaOH и 2 капли 1% раствора CuSO4. Содержимое перемешивают. Оно приобретает сине-фиолетовый цвет. Нельзя добавлять избыток CuSO4, так как синий осадок маскирует характерное фиолетовое окрашивание биуретового комплекса.

Работа 2. Нингидриновая реакция на α-аминокислоты

Белки, полипептиды и свободные α-аминокислоты дают синее или фиолетовое окрашивание с нингидрином. При нагревании белка с водным раствором нингидрина аминокислоты окисляются и распадаются, образуя СО2, NH3 и соответствующий альдегид. Нингидрин, являясь сильным окислителем, вызывает окислительное дезаминирование α-аминокислоты, приводящее к образованию аммиака, двуокиси углерода, соответствующего альдегида и восстановленной формы нингидрина. Нингидрин восстанавливается и связывается со второй молекулой нингидрина посредством молекулы аммиака, образуя продукты конденсации, окрашенные в синий, фиолетовый, красный, а в случае пролина – в желтый цвет.

СПОСОБЫ ПОЛУЧЕНИЯ АМИНОКИСЛОТ

1) Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот):

O2N-C6H4 -COOH + 3H2 → H2N-C6H4 -COOH + 2H2O

2) Гидролизом белков можно получить около 25 аминокислот, но полученную смесь трудно разделить. Обычно одна или две кислоты получаются в значительно больших количествах, чем остальные, и эти кислоты удается выделить довольно легко — с помощью ионообменных смол.

Химические свойства аминокислот как амфотерных органических соединений.

Аминокислоты — амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (-СООН), так и основной (-NH2) группы в одной и той же молекуле. В очень кислых растворах NH2-группа кислоты протонируется и кислота становится катионом. В сильнощелочных растворах карбоксильная группа аминокислоты депротонируется и кислота превращается в анион.

Подобно аминам, они реагируют с кислотами с образованием солей аммония:

H2N–CH2 –COOH + HCl → Cl- [H3N–CH2 –COOH]+

При взаимодействии с щелочами аминокислоты реагируют по карбоксильной группе.

Как карбоновые кислоты они образуют функциональные производные:

а) соли : H2N–CH2 –COOH + NaOH → H2N–CH2 –COO- Na+ + H2O

б) сложные эфиры(реакция этерификации):

NH2CH2COOH + CH3OH → H2O + NH2CH2 COOCH3 (метиловый эфир глицина)

При взаимодействии друг с другом аминокислоты образуют пептидную связь (существует в белке):

HOOCCH2NHH + HOOCCH2NH2 → HOOCCH2NHCOCH2 NH2 + H2O

При взаимодействии двух a-аминокислот образуется дипептид. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

Применение аминокислот.

Аминокислоты широко используются в современной фармакологии. Являясь не только структурными элементами белков и других эндогенных соединений, они имеют большое функциональное значение. Некоторые из них выступают в качестве нейромедиаторных веществ. Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств.

Белки. Получение белков реакцией поликонденсации аминокислот.

Аминокислоты способны к поликонденсации, в результате которой образуется полиамид. Полиамиды, состоящие из -аминокислот, называются пептидами или полипептидами. Амидная связь в таких полимерах называется пептидной связью. Полипептиды с молекулярной массой не меньше 5000 называют белками.

Первичная, вторичная и третичная структуры белков.

Уникальная последовательность аминокислотных остатков в цепи, присущая данному белку, называется первичной структурой белка.

Фрагмент полипептидной цепи:

… — N – CH – C – N – CH – C – N – CH –C – N – CH – C — …

Один из первых белков, первичная структура которого была установлена в 1954 г., — гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой – 30), Mr (инсулина)=5700. Другой белок – фермент рибонуклеаза – состоит из 124 аминокислотных остатков и имеет Mr=15000.

Белок крови – гемоглобин имеет Mr = 68000. Белки некоторыхвирусов имеют Mr до 50 млн. Относительная молекулярная масса белков изменяется в широких пределах: от 5 тыс. до десятков миллионов.

Особенности скручивания цепей белковых молекул (взаимное расположение фрагментов в пространстве) называются вторичной структурой белков.

Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате этого происходит закручивание спирали в клубок. Эта особенность строения называется третичной структурой белка. Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс (олигопротеин), состоящий из нескольких полноценных белковых субъединиц. Четвертичная структураопределяет степень ассоциации таких мономеров в биологически активном материале.

Белки делятся на две большие группы — фибриллярные (отношение длины молекулы к ширине больше 10) и глобулярные(отношение меньше 10). К фибриллярным белкам относится коллаген, наиболее распространенный белок позвоночных; на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов.

Химические свойства

Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.

При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы.

Первичная структура, а, следовательно, и химический состав белка не меняются. Изменяются физические свойства: снижается растворимость, способность к гидратации, теряется биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.

Качественные реакции на белки:

а) При горении белка – запах палёных перьев.

б) ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца):

Белок +HNO3жёлтая окраска

в) биуретовая реакция, (на пептидные связи)

Раствор белка +NaOH + CuSO4фиолетовая окраска

Гидролиз

Белок + Н2О → смесь аминокислот

г) ) цистеиновая реакция (на остатки аминокислот, содержащих серу):

белок + NaOH + Pb (CH3COO)2 → чёрное окрашивание.

Гидратация

Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается.

Биохимические функции белков. Функции белков в природе:

· структурные (кератин шерсти, фиброин шелка, коллаген);

· двигательные (актин, миозин);

· запасные (казеин, яичный альбумин);

· защитные (иммуноглобулины) и т.д.

Существуют белки, выполняющие специфические функции, например рецепторные, — обеспечивают передачу импульсов между нервными клетками и др.

Белки – необходимая составная часть пищи человека, отсутствие или недостаток их в пище может вызвать серьёзные заболевания.

Генетическая связь между органическими соединениями.

Генетическая связь ( от греч. «генезис» — происхождение).

Генетические связи — это связи между классами соединений, основанные на получении одного класса веществ с другого.

Генетическая связь отражает возможность взаимных превращений.

Правило генетических связей:

1) количество стрелок в схеме соответствует количеству уравнений химических реакций, которые необходимо сложить;

2) соединения, записанные перед стрелочкой обязательно должны вступить в химическую реакцию;

3) соединения, записанные после стрелочки должны образоваться в результате реакции.

Имея правила генетических связей давайте вместе совершим такое преобразование: С→СО2 → Н2СО3→СаСО3

Поэтому для неметаллов схема будет иметь такой вид:

Неметалл→ Кислотный оксид→ Кислота→Соль.

Изучая углеводороды, мы убедились в их разнообразии, которая обусловлена способностью атомов Углерода образовывать молекулы линейного, разветвленного, циклического строения; сочетаться между собой с помощью простых и кратных связей. А еще — образовывать гомологические ряды и изомеры.

Сравнив общие формулы алканов, алкенов и алкинов, можно заметить, что они отличаются количеством атомов Водорода в молекулах. Итак, реакциями гидрирования и дегидрирования можно переходить от одного класса углеводородов к другому. Существует также связь между насыщенными, ненасыщенными углеводородами и бензолом. Так, из метана реакцией дегидрирования можно получить ацетилен. А с него реакцией тримеризации добыть бензол:

Итак, при всем разнообразии углеводородов между ними существует взаимосвязь, что отражается во взаимных превращениях веществ. Это открывает огромные возможности для химического синтеза.
Вещественный мир природы чрезвычайно разнообразен, и вместе с тем все вещества взаимосвязаны. Генетическая связь между органическими и неорганическими веществами заключается, прежде всего, в том, что органические вещества можно добыть из неорганических. Например, при нагревании

неорганического вещества цианата аммония образуются органическое вещество мочевина (NH2)2CO:

Ярким доказательством существования генетической связи между органическими и неорганическими веществами являются также круговорот биогенных элементов в природе. Следовательно, все вещества генетически связаны между собой. Генетическая связь заключается в том, что каждое вещество может химически взаимодействовать с веществами других классов. Органические вещества могут взаимодействовать с неорганическими. Их можно синтезировать из неорганических и превращать в неорганические.

В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ряд. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное уравнение реакции (уравнение обратной реакции обозначено цифрой со штрихом):

Контроль знаний:

1.Дать определение амидной связи.

2. Дать характеристику структурам белка, составу аминокислот.

3.Какие элементы входят состав белка?

4.Опишите физические и химические свойства белков.

5.Какие вещества образуются при гидролизе белков?

6.Укажите число возможных изомерных аминов, имеющих молекулярную формулу СзН9N: а) два; б) три; в) четыре; г) пять.

ДОМАШНЕЕ ЗАДАНИЕ:

Проработать: Л1. Стр.169-173, Л1. Стр.174-177,178-183,пересказ конспекта лекции №14.

Лекция № 16.

Полимеры. Пластмассы: термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические). Искусственные полимеры. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение

Основные понятия и термины по теме: полимеры и их классификация, искусственные и синтетические полимеры, волокна: ацетатный шёлк, вискоза, лавсан, нитрон, капрон, полипропилен, поливинилхлорид.

План изучения темы

(перечень вопросов, обязательных к изучению):

1. Полимеры и их классификация. Пластмассы и волокна: их характеристика.

2. Искусственные полимеры. Их характеристика.Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.

3. Каучуки. Натуральные и синтетические. Их характеристика.


источники:

http://pandia.ru/text/80/187/38426.php

http://poisk-ru.ru/s55205t5.html