Аналитическая модель системы уравнений это

Электронная библиотека

Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних. Это, например, выражения для сил резания:

Аналитическое моделирование основано на косвенном описании моделируемого объекта с помощью набора математических формул. Язык аналитического описания содержит следующие основные группы семантических элементов: критерий (критерии), неизвестные, данные, математические операции, ограничения. Наиболее существенная характеристика аналитических моделей заключается в том, что модель не является структурно подобной объекту моделирования. Под структурным подобием здесь понимается однозначное соответствие элементов и связей модели элементам и связям моделируемого объекта. К аналитическим относятся модели, построенные на основе аппарата математического программирования, корреляционного, регрессионного анализа.

Аналитическая модель всегда представляет собой конструкцию, которую можно проанализировать и решить математическими средствами. Так, если используется аппарат математического программирования, то модель состоит в основе своей из целевой функции и системы ограничений на переменные. Целевая функция, как правило, выражает ту характеристику объекта (системы), которую требуется вычислить или оптимизировать. В частности, это может быть производительность технологической системы. Переменные выражают технические характеристики объекта (системы), в том числе варьируемые, ограничения – их допустимые предельные значения.

Аналитические модели являются эффективным инструментом для решения задач оптимизации процессов, протекающих в технологических системах, а также оптимизации и вычисления характеристик самих технологических систем.

Важным моментом является размерность конкретной аналитической модели. Часто для реальных технологических систем (автоматических линий, гибких производственных систем) размерность их аналитических моделей столь велика, что получение оптимального решения с помощью вычислений оказывается весьма сложным.

Для повышения вычислительной эффективности в этом случае используют различные приемы.

Один из них связан с разбиением задачи большой размерности на подзадачи меньшей размерности так, чтобы автономные решения подзадач в определенной последовательности давали решение основной задачи. При этом возникают проблемы организации взаимодействия подзадач, которые не всегда оказываются простыми. Другой прием предполагает уменьшение точности вычислений, за счет чего удается сократить время решения задачи.

Алгоритмические математические модели выражают связи между выходными параметрами и параметрами входными и внутренними в виде алгоритма.

Имитационные математические модели – это алгоритмические модели, отражающие развитие процесса (поведение исследуемого объекта) во времени при задании внешних воздействий на процесс (объект). Например, это модели систем массового обслуживания, заданные в алгоритмической форме.

Имитационное моделирование основано на прямом описании моделируемого объекта. Существенной характеристикой таких моделей является структурное подобие объекта и модели. Это значит, что каждому существенному с точки зрения решаемой задачи элементу объекта ставится в соответствие элемент модели. При построении имитационной модели описываются законы функционирования каждого элемента объекта и связи между ними.

Работа с имитационной моделью заключается в проведении имитационного эксперимента. Процесс, протекающий в модели в ходе эксперимента, подобен процессу в реальном объекте. Поэтому исследование объекта на его имитационной модели сводится к изучению характеристик процесса, протекающего в ходе эксперимента.

Ценным качеством имитации является возможность управлять масштабом времени. Динамический процесс в имитационной модели протекает в так называемом системном времени. Системное время имитирует реальное время. При этом пересчет системного времени в модели можно выполнять двумя способами:

· первый способ заключается в «движении» по времени с некоторым постоянным шагом;

· второй способ заключается в «движении» по времени от события к событию, при этом считается, что в промежутках времени между событиями в модели изменений не происходит.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Основы математического моделирования систем и процессов (стр. 2 )

Из за большого объема этот материал размещен на нескольких страницах:
1 2 3 4 5

В каждом из перечисленных случаев в различной степени сказывается влияние таких ранее не учтенных факторов, как сила сопротивления воздуха, притяжение Луны, Солнца, убывание плотности атмосферы с высотой, вращение Земли, ветер, по-разному дующий на разных высотах, фактическое отличие формы Земли от шара (она является телом более сложной геометрической формы).

Проблема 3. Определение уровня детализации исследуемого объекта.

Любая физическая система представляет собой совокупность элементов. Каждый элемент в свою очередь можно расчленить на подэлементы. Процесс расчленения теоретически может быть бесконечным. Задача исследователя – выбрать оптимальный уровень детализации моделируемого объекта. Уровень детализации определяется целью моделирования и степенью знаний о свойствах элементов объекта.

Детализацию целесообразно производить до такого уровня, на котором для каждого элемента можно определить зависимость параметров выходных сигналов от параметров входных сигналов. Стремление повысить уровень детализации приводит к чрезмерной громоздкости модели и резкому увеличению ее размерности.

3-й этап. Формирование математической модели, т. е. запись модели в формализованном виде:

все соотношения записывают в аналитической форме;

логические условия выражают в виде систем неравенств;

случайные процессы заменяют их типовыми моделями.

4-й этап. Исследование математической модели. Инструментами исследования являются численные и аналитические методы.

5-й этап. Анализ результатов моделирования с последующим выводом об адекватности модели либо о необходимости ее доработки, либо о ее непригодности.

1.3.4. Классификация математических моделей

Математические модели можно классифицировать по форме их представления (рис. 1.10). За основу второй классификации (рис. 1.11) взят характер модели.

2. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ФОРМЕ

СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

2.1. Области применения

Исследование некоторых физических систем приводит к математическим моделям в форме систем линейных алгебраических уравнений (СЛАУ). Иногда СЛАУ появляются в процессе математического моделирования как промежуточный шаг (этап) в решении более сложной задачи. Есть значительное число научно-технических задач, в которых математические модели сложных нелинейных систем посредством дискретизации или линеаризации сводятся к решению СЛАУ.

Примеры задач, использующих математические модели в форме СЛАУ:

1) при проектировании и эксплуатации электротехнических устройств требуется проведение расчета и анализа их работы в стационарных режимах. Задача сводится к расчету эквивалентных схем, в основе которого лежит формирование и решение СЛАУ;

2) при построении математической модели, связывающей функциональной зависимостью некоторые параметры x, y исследуемого объекта на основании полученных в результате эксперимента данных , где i = 1,2,3, . ,n (задачи аппроксимации данных);

3) при исследовании процессов в системах, математические модели которых строятся в классе дифференциальных уравнений в частных производных. В результате разностной аппроксимации исходной модели при определенных условиях приходят к математическим соотношениям в форме СЛАУ;

4) сущность многих физических процессов математически отображается с помощью интегральных уравнений. Ввиду сложности решения многих из них исследователь предпочитает свести задачу к решению модели в форме СЛАУ, используя известные методы аппроксимации.

5) исследование систем автоматического регулирования в установившемся режиме приводит во многих случаях к статическим моделям в форме СЛАУ.

Система линейных уравнений порядка n имеет вид:

(2.1)

или в векторно-матричной форме:

(2.2)

где – вектор свободных членов;

– вектор неизвестных;

A – матрица коэффициентов системы, размером .

2.2. Методы решения

Методы решения СЛАУ делятся на две группы: прямые (точные) и итерационные (приближенные).

Прямые методы позволяют получить решение за конечное число шагов. Итерационные методы построены по принципу многократного вычисления последовательных приближений, сходящихся к искомому решению.

Прямые методы целесообразно использовать для решения систем сравнительно небольшой размерности с плотно заполненной матрицей (матрицей, имеющей малое количество нулевых элементов). Итерационные методы предпочтительнее в задачах большой размерности со слабо заполненными матрицами.

К прямым методам относятся метод определителей, метод Гаусса и его модификации, метод LU-разложения, матричный метод и др. К разряду итерационных методов принадлежат метод простой итерации, метод Зейделя.

2.2.1. Прямые методы

2.2.1.1. Метод Гаусса

Решение СЛАУ осуществляется в два этапа (прямой и обратный ход)

Прямой ход. Исходная система (2.1) путем последовательных преобразований приводится к треугольному виду. Это достигается последовательным исключением неизвестных из уравнений. В результате получается эквивалентная система:

(2.3)

Обратный ход. С помощью подстановки в предпоследнее (n-1)-е уравнение системы (2.3) вычисляется . Подстановкой и в (n-2)-е уравнение определяют . Таким же образом последовательно определяют неизвестные .

П р и м е р 14. Решить систему с тремя неизвестными методом Гаусса:

(2.4)

Прямой ход. Первое уравнение из системы (2.4) разделим на 3:

(2.5)

Из второго уравнения исключим неизвестное Для этого ко второму уравнению прибавим преобразованное первое уравнение, умноженное на (–2). Получим:

(2.6)

(2.7)

Разделим уравнение (2.7) на . Получим:

. (2.8)

Из третьего уравнения системы (2.4) исключим . Для этого из третьего уравнения вычтем первое преобразованное (2.5):

(2.9)

(2.10)

Разделим уравнение (2.10) на :

, (2.11)

(2.12)

Из третьего уравнения системы (2.12) исключим неизвестное . Для этого к третьему уравнению прибавим второе:

(2.13)

или , (2.14)

откуда выразим : .

Тогда эквивалентная система в треугольном виде примет вид:

(2.15)

Обратный ход. Подставим значение во второе уравнение системы (2.15) и найдем . Подстановкой значений и в первое уравнение найдем .

Если квадратная матрица линейной системы

(2.16)

имеет отличные от нуля главные диагональные миноры, т. е.

(2.17)

то она может быть разложена на произведение двух треугольных матриц – нижней с ненулевыми диагональными элементами и верхней – с единичными диагональными элементами

(2.18)

Поэтому матричное уравнение (2.16) можно заменить уравнением:

(2.19)

Введем вектор вспомогательных переменных Тогда уравнение (2.19) можно записать в виде системы двух векторно-матричных уравнений:

(2.20)

Таким образом, решение системы (2.16) сводится к последовательному решению двух систем с треугольными матрицами типа (2.3) или (2.15), из которых неизвестные определяются последовательной подстановкой.

Математически это выражается так: из первого уравнения системы (2.20) определяется вектор :

, (2.21)

после чего из второго уравнения системы (2.19) вычисляется вектор :

. (2.22)

Обратные матрицы и существуют, т. к. определители треугольных матриц L и U, вычисляемые как произведения их диагональных элементов, отличны от нуля.

Метод LU-разложения – это фактически метод Гаусса, выраженный в векторно-матричной форме, отличающийся от классического варианта способом хранения матриц.

2.2.1.3. Матричный метод

Если для системы выполняется условие невырожденности матрицы A

, (2.23)

то решение этой системы можно представить в виде:

, (2.24)

где – обратная матрица.

2.2.2. Итерационные методы

2.2.2.1. Метод простых итераций

Исходная система уравнений (2.1) приводится к виду:

(2.25)

(2.26)

Задав начальные (нулевые) приближения для искомых неизвестных:

(2.27)

подставляем их в правую часть системы (2.26). Получаемые при этом в левой части системы значения представляют собой первые приближения:

, (2.28)

где

Подставив первые приближения в правую часть системы (2.26), в левой ее части получим вторые приближения − :

. (2.29)

Таким образом, итерационный процесс описывается соотношениями:

(2.30)

Полученные в результате последовательности итераций приближения: сходятся к истинному решению системы (2.1), в том случае, если для коэффициентов системы (2.26) выполняется хотя бы одно из условий:

; (2.31)

. (2.32)

Вычисления продолжают до тех пор, пока не будет выполнено условие:

(2.33)

где – заданная точность.

2.2.2.2. Метод Зейделя

Метод Зейделя – модификация метода простых итераций, обеспечивающая ускорение сходимости итерационного процесса к истинному решению системы за счет следующего приема.

Уточненное значение , полученное из первого уравнения системы (2.26) вводится во второе уравнение системы и используется для вычисления . Затем уточненные значения , вводятся в третье уравнение системы (2.26) и используются для вычисления . Таким образом, k-е приближение будет определяться через уточненные в процессе k-й итерации значения . Следовательно, итерационный процесс, реализуемый в методе Зейделя, может быть выражен соотношениями:

(2.34)

3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ В ФОРМЕ НЕЛИНЕЙНЫХ

АЛГЕБРАИЧЕСКИХ И ТРАНСЦЕНДЕНТНЫХ УРАВНЕНИЙ

3.1. Пример формирования модели

П р и м е р 15. Моделируемый объект – нелинейная цепь постоянного тока (рис. 3.1). R2 – нелинейное сопротивление.

По закону Кирхгофа

(3.1)

Нелинейную вольт-амперную характеристику (ВАХ) элемента R2 аппроксимируем выражением:

(3.2)

Сделаем подстановку выражения (3.2) в уравнение (3.1):

(3.3)

(3.4)

f(i)

Соотношение f(i) = 0 представляет собой математическую модель электрической цепи в форме нелинейного алгебраического уравнения относительно тока i. Решение этой модели позволит определить ток i в цепи при заданных значениях U и R1.

Исследование объектов различной физической природы в установившемся режиме часто приводит к статическим моделям в форме нелинейных алгебраических уравнений.

Алгебраическое уравнение может содержать только алгебраические функции, в которых над переменной x производятся арифметические операции, возведение в степень с рациональным показателем и извлечение корня. Например:

(3.5)

(3.6)

В некоторых задачах моделирование приводит к трансцендентному уравнению.

Трансцендентным называется уравнение, в состав которого входят трансцендентные функции: показательная, логарифмическая, тригонометрические функции, возведение в иррациональную степень. Например:

(3.7)

(3.8)

3.2. Базовые понятия

Уравнение с одним неизвестным x в общем случае имеет вид:

где z(x) и g(x) — функции, определенные на некотором числовом множестве X, называемом областью допустимых значений уравнения.

Другая форма записи уравнения с одним неизвестным имеет вид:

где f(x) = z(x) – g(x) получается в результате переноса функции g(x) в левую часть уравнения (3.9).

Всякое значение x*, которое при подстановке в уравнение (3.10) обращает его в числовое равенство, а функцию f(x) — в ноль, т. е. такое, что

, (3.11)

называется корнем уравнения, или нулем функции f(x).

Решить уравнение – значит найти все его корни (решения) или доказать, что уравнение не имеет корней.

Для алгебраических уравнений число корней известно заранее. Каждое алгебраическое уравнение степени n имеет в множестве комплексных чисел n корней с учетом кратности.

3.3. Методы решения

Аналитическое (явное) решение, т. е. решение в виде готовой формулы, выражающей неизвестное x через параметры уравнения, можно получить только для ограниченного круга уравнений, например формулы для вычисления корней квадратного (аx2+bx+c=0) и кубического (x3+px+q=0) уравнений. Решение некоторых простейших трансцендентных уравнений может быть получено в аналитической форме с использованием степенных рядов, непрерывных дробей и т. д.

В большинстве случаев найти явное решение уравнения очень сложно или невозможно. Кроме того, использование аналитических формул для решения большинства уравнений не может обеспечить получение точного значения корня, поскольку коэффициенты уравнения являются приближенными величинами, определенными в результате измерений. Поэтому задача отыскания точного значения корня теряет смысл.

Ставится задача – определить приближенное значение корня уравнения с заданной точностью.

Приближенное решение математических задач лежит в основе численных методов.

3.3.1. Особенности численных методов решения

3.3.1.1. Этапы численного решения нелинейного уравнения

Численное решение уравнения f(x) = 0 (речь идет о действительных корнях) проводят в два этапа:

1) отделение корней, т. е. отыскание таких достаточно малых отрезков в области допустимых значений x, в которых содержится только один корень;

2) уточнение корней, т. е. вычисление корней с заданной точностью.

3.3.1.2. Отделение корней

Рассмотрим несколько способов отделения корней.

С п о с о б 1 – по графику функции y = f(x).

приближенно определяется как абсцисса точки пересечения графика с осью Оx (рис. 3.2). Устанавливаются границы a и b отрезка, в пределах которого заключен только один корень x*.

С п о с о б 2 – уравнение f(x) = 0 заменяют равносильным:

. (3.13)

Строят графики функций и

Приближенное значение корня определяют как абсциссу точки пересечения этих графиков.

Например: отделим корень уравнения

(3.14)

для области значений аргумента x > 0.

Преобразуем уравнение (3.14) к виду:

(3.15)

где

Строим графики (рис. 3.3) и находим приближенно x* и отрезок .

С п о с о б 3 – по таблице значений функции f(x) на интересующем интервале изменения аргумента x. Например, представим таблицу (табл.3.1) значений функции

. (3.16)

Из данных табл. 3.1 видно, что корень уравнения существует и его следует искать на отрезке [7,0; 10,0], так как значения функции на концах этого отрезка имеют разные знаки.

Таблица значений функции

С п о с о б 4 – аналитический метод отделения корней, который базируется на знании следующих свойств функции:

а) если функция непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, то внутри отрезка существует по крайней мере один корень уравнения ;

б) если функция непрерывна и монотонна на отрезке и принимает на концах отрезка значения разных знаков, а производная сохраняет постоянный знак внутри отрезка, то внутри этого отрезка существует корень уравнения и притом единственный.

Функция называется монотонной в заданном интервале, если при любых из этого интервала она удовлетворяет условию (монотонно возрастающая функция)

или (монотонно убывающая функция).

Необходимым и достаточным условием монотонности функции в заданном интервале является выполнение для всех внутренних точек этого интервала условия или

Зная свойства функции , можно сделать вывод о характере графика , что может существенно облегчить процесс отыскания корней. Продемонстрируем это для непрерывной и монотонной на отрезке функции , которая принимает на концах отрезка значения разных знаков, имеет во всех точках интервала первую и вторую производные и , сохраняющие постоянный знак (рис. 3.4).

3.3.1.3. Уточнение корней

Рассмотрим несколько численных методов уточнения корней, применяемых для решения как алгебраических, так и трансцендентных уравнений. Эти методы относятся к разряду итерационных.

Итерационный процесс состоит в последовательном шаг за шагом уточнении начального приближения x0 искомого корня. Каждый шаг такого метода называется итерацией.

В результате реализации итерационного метода получают последовательность приближенных значений корня Если эти значения с увеличением n приближаются к истинному значению корня x*, то говорят, что итерационный процесс сходится.

3.3.1.3.1. Метод половинного деления (дихотомии, бисекции)

Пусть дано уравнение

(3.17)

где функция непрерывна и монотонна на отрезке и имеет на концах отрезка разные знаки:

(3.18)

Требуется найти корень уравнения (3.17) с точностью до График функции представлен на рис. 3.5.

Рассмотрим суть и этапы реализации метода половинного деления.

1) Отрезок делим пополам и определяем середину отрезка:

(3.19)

2) Вычисляем значение функции в точке Если , то является корнем уравнения. Если то поиск корня продолжается на одном из двух полученных отрезков – или . Следует выбрать тот отрезок, на концах которого функция принимает значения противоположных знаков. В данном случае (см. рис. 3.5) выбираем отрезок , так как для него выполняется условие: Для того чтобы сохранить в дальнейших расчетах единое обозначение текущего отрезка, на котором ведется поиск корня на данном шаге вычислений, необходимо параметру b присвоить новое значение : b = . С точки зрения геометрической интерпретации (см. рис. 3.5) это означает, что правая граница исходного отрезка точка b переносится в точку а оставшаяся за пределами точки часть графика дальше не рассматривается.


источники:

http://pandia.ru/text/78/121/88311-2.php