Аналитическое выравнивание временных рядов оценка параметров уравнения тренда

Метод аналитического выравнивания

Назначение сервиса . Сервис позволит прямо на сайте в онлайн-режиме провести аналитическое выравнивание ряда yt, проверить наличие гетероскедастичности и автокорреляции остатков тестом Дарбина-Уотсона (см. пример аналитического выравнивания по прямой).

  • Шаг №1
  • Шаг №2
  • Видеоинструкция
  • Оформление Word

Чтобы привести нелинейные зависимости к линейной используют метод выравнивания (линеаризацию).

y = f(x)ПреобразованиеМетод линеаризации
y = b x aY = ln(y); X = ln(x)Логарифмирование
y = b e axY = ln(y); X = xКомбинированный
y = 1/(ax+b)Y = 1/y; X = xЗамена переменных
y = x/(ax+b)Y = x/y; X = xЗамена переменных. Пример
y = aln(x)+bY = y; X = ln(x)Комбинированный
y = a + bx + cx 2x1 = x; x2 = x 2Замена переменных
y = a + bx + cx 2 + dx 3x1 = x; x2 = x 2 ; x3 = x 3Замена переменных
y = a + b/xx1 = 1/xЗамена переменных
y = a + sqrt(x)bx1 = sqrt(x)Замена переменных

В общем случае при аналитическом выравнивании используется метод наименьших квадратов:

  1. Система нормальных уравнений для линейной зависимости:
  2. Система нормальных уравнений для полинома второй степени (параболы):
  3. Система нормальных уравнений для полинома третьей степени:

Типичное задание. Произведите аналитическое выравнивание и выразите общую тенденцию развития розничного товарооборота торгового дома соответствующим аналитическим уравнением. Вычислите аналитические (выровненные) уровни ряда динамики и нанесите их на график вместе с фактическими данными.

Пример . По УР имеются данные о вводе в действие жилых домов и общежитий, тыс. м 2 . Для анализа динамики показателя ввода в действие жилых домов и общежитий вычислите:

  1. абсолютные приросты, темпы роста и темпы прироста по годам и к 1998 г., абсолютное содержание одного процента прироста. Полученные показатели представьте в виде таблицы;
  2. среднегодовые показатели — величину уровня ряда; абсолютный прирост темп роста и прироста. Сделайте выводы.

Постройте график динамики уровня ряда за период 1998 -2006 гг., проведите аналитическое выравнивание ряда (постройте математическую модель и график), сделайте прогноз на 2007 год.

Тенденции развития и колебания

Методические основы изучения основной тенденции развития

Уровни ряда динамики формируются под совокупным влиянием множества долговременных и краткосрочных факторов, и, в том числе, различного рода случайных обстоятельств. В связи с чем, при статистическом изучении динамики необходимо четко разделить ее на два основных элемента – тенденцию и колеблемость.

Тенденция развития динамического ряда к увеличению либо снижению его уровней – основная закономерность изменения уровней ряда. В отдельные же годы уровни испытывают колебания, отклоняясь от основной тенденции.

Тенденция динамики связана с действием долговременно существующих причин и условий развития. Однако после какого-то периода времени эти причины и условия тоже могут измениться и породить уже другую тенденцию развития изучаемого явления. Основная тенденция развития ряда динамики выражается в форме уравнения, называемого трендом.

Колебания, напротив, связаны с действием краткосрочных или циклических (конъюнктурных) факторов, влияющих на отдельные уровни динамического ряда, и отклоняющих уровни от тенденции то в одну, то в другую сторону. Например, положительная тенденция динамики урожайности связана с прогрессом агротехники, с укреплением экономического положения определенной совокупности хозяйств, совершенствованием организации производства. Колеблемость урожайности может быть вызвана, например, чередованием благоприятных по погоде и неблагоприятных лет, колебаниями в развитии вредных насекомых и болезней растений, и т.п.

Тенденцию и колебания наглядно показывает график (рис. 10.1). По оси абсцисс на графике всегда отражается время, по оси ординат – уровни ряда динамики. По обеим осям строго соблюдается масштаб, иначе характер динамики будет искажен.

Изучение основной тенденции развития осуществляется в два этапа (рис. 10.2):

  • на первом этапе ряд динамики проверяется на наличие тренда;
  • на втором этапе проводится выравнивание временного ряда и непосредственное выделение тренда с экстраполяцией полученных результатов.

Проверка на наличие тренда в ряду динамики может быть осуществлена различными методами, в частности, приведенными на рис. 10.2.

Суть фазочастотного критерия знаков первой разности (Валлиса и Мура) заключается в том, что наличие тренда в динамическом ряду утверждается в том случае, если этот ряд не содержит или содержит в приемлемом количестве фазы – изменения знака разности первого порядка.

Суть критерия Кокса и Стюарта сводится к тому, что весь анализируемый ряд динамики разбивается на три равные по числу уровней группы и сравнивают между собой суммарные или средние уровни первой и последней групп. Существенное различие между ними позволяет сделать вывод о наличии тренда. Если количество уровней ряда динамики не делится на три, то недостающие уровни можно добавить, например, используя для этого условные уровни, повторив значения стоящие крайними в ряду, или фактические уровни смежных с крайними периодов.

В соответствии с методом серий каждый конкретный уровень временного ряда считается принадлежащим к одному из двух типов: например, если, уровень ряда меньше медианного значения, то считается, что он имеет тип А, в противном случае – тип В. После замены числовых значений уровней ряда буквами А и В последовательность уровней временного ряда выступает как последовательность типов. В образовавшейся последовательности типов определяется число серий (R). Серией называется любая последовательность элементов одинакового типа, граничащая с элементами другого типа. Если во временном ряду общая тенденция к росту или снижению отсутствует, то количество серий является случайной величиной (для n >10) и оказывается в доверительном интервале, характеризуемом неравенством:

где R – среднее число серий, определяемое по формуле:

n – число уровней ряда; t – нормированное отклонение – параметр, назначаемый в соответствии с принятым уровнем доверительной вероятности Р (вероятности, с которой число серий может оказаться в доверительном интервале). Значения t приводятся в таблицах нормального распределения вероятностей.

Наиболее часто используемые сочетания t и Р приведены в таблице 6.3; σR – среднее квадратическое отклонение числа серий, которое рассчитывается по формуле:

Полученные границы доверительного интервала округляют до целых чисел, уменьшая нижнюю границу и увеличивая верхнюю.

При графическом методе тип тренда устанавливают путем размещения на поле графика эмпирических уровней. Концентрированное вокруг определенной кривой или хаотическое размещение эмпирических уровней ряда позволяет сделать вывод о наличии или отсутствии основной тенденции развития.

Пример проверки ряда динамики на наличие тренда

По данным таблицы 10.1 необходимо определить наличие тренда в ряду динамики числа браков на 1000 человек населения Российской Федерации в 2005-2018 гг.

Число браков на 1000 человек населения Российской Федерации в 2005-2018 гг., ‰

Годы20052006200720082009201020112012201320142015201620172018
Браки7,47,88,88,38,48,59,28,58,58,47,96,77,16,1

Для применения фазочастотного критерия знаков первой разности необходимо определить наличие роста или уменьшение рассматриваемого показателя от года к году рассматриваемого периода, т.е. знак «+» или «-» цепного абсолютного прироста (формула 9.2, с. 154), для наглядности представив результаты в таблице 10.2.

Знаки первой разности числа браков на 1000 человек населения Российской Федерации в 2005-2018 гг.

Годы20052006200720082009201020112012201320142015201620172018
Знак+++++0+

Количество «+» и « — « оказалось одинаковым, что, на первый взгляд, однозначно свидетельствует об отсутствии какой-либо закономерности динамики браков в России в рассматриваемом периоде.

Для применения критерия Кокса и Стюарта необходимо представленный ряд динамики разбить на три равные части, для чего к нему добавим имеющиеся на период исследования в официальной статистике данные о числе браков на 1000 человек населения в 2004 году – 6,8‰.

Первая треть добавленного ряда будет охватывать данные 2004-2008 гг., а последняя – 2014- 2018 гг., соответственно: (6,8+7,4+7,8+8,8+8,3=39,1) и (8,4+7,9+6,7+7,1+6,1=36,2). Средний уровень числа браков на 1000 человек населения страны в 2004-2008 гг. и 2014-2018 гг. составил, соответственно: 39,1:5=7,82‰ и 36,2:5=7,24‰.

Численные различия рассматриваемого показателя по выделенным периодам не велики, что также не позволяет утверждать наличие определенного тренда заключения браков в Российской Федерации.

Для применения метода серий рассчитаем медианное значение числа браков на 1000 человек населения страны в 2005-2018 гг.

Упорядоченная по возрастанию последовательность числа браков на 1000 человек населения в 2005-2018 гг. приведена в таблице 10.3.

Число браков на 1000 человек населения Российской Федерации в 2005-2018 гг. в порядке возрастания, ‰

№ п./п.1234567891011121314
Браки6,16,77,17,47,87,98,38,48,48,58,58,58,89,2

Так как ряд имеет четырнадцать значений уровней, то медиана будет равна половине суммы значений уровней седьмого и восьмого элемента упорядоченного ряда: Ме = 8,35 ‰.

К типу А относятся значения уровней рассматриваемого ряда динамики которые меньше медианного значения, к типу В – больше и ряд типов выглядит как ААВАВВВВВВАААА, отсюда число серий R = 5.

С вероятностью 0,954 найдем доверительный интервал, в котором может оказаться R, если количество серий является случайной величиной. Для этого предварительно найдем следующие показатели:

– с вероятностью 0,954 нормированное отклонение: t = 2 (см. табл. 10.1);

– среднее число серий: 7,5 (формула 10.2);

– среднее квадратическое отклонение числа серий: 1,803 (формула 10.3).

С вероятностью 0,954 можно утверждать, что количество серий случайная величина, если оно попадает в доверительный интервал 3 Исходный и выровненные методом скользящей средней ряды динамики выпуска продукции в течение месяца

Рабочие дни месяцаВыпуск продукции, млн. руб.Скользящая сумма, млн. руб.Скользящая средняя, млн. руб.ИнтервалыИнтервалытрехдневныепятидневныетрехдневныепятидневные123456137––––242112–37,3–333120215404344513623345,346,655815824752,749,465516928456,356,875618130860,361,68701953246564,89692133407164,8107421437071,36811712313707774128622739375,774137024838782,778,6149223040976,777,4156825340484,380,8169324242380,784,6178126342587,7851889264460889219942864769595,22010330649410298,821109311516103,7103,22299319–106,3–23111––––

Результаты расчетов скользящих сумм и скользящих средних приведены в 3-6 колонках таблицы 10.4.

Данные колонок 5 и 6 таблицы 10.4 показывают устойчивую тенденцию роста ежедневного выпуска продукции в течение месяца.

Аналитическое выравнивание рядов динамики

Под аналитическим выравниванием понимают определение основной проявляющейся во времени тенденции развития изучаемого явления, выраженной соответствующим уравнением регрессии. При этом развитие предстает как бы в зависимости только от течения времени, т.е. одного фактора — времени. В итоге выравнивания временного ряда получают наиболее общий, суммарный, проявляющий во времени результат действия всех причинных факторов. Отклонение конкретных уровней ряда от уровней, соответствующих общей тенденции, объясняют действием факторов, проявляющихся случайно или циклически.

На практике по имеющемуся временному ряду задают вид и находят параметры функции f(t), а затем анализируют поведение отклонений от тенденции.

Функцию f(t) выбирают таким образом, чтобы она давала содержательное объяснение изучаемого процесса. Чаще всего при выравнивании используются следующие зависимости:

– линейная, выраженная уравнением:

f(t) = y = a + b×t; (10.4)

– параболическая, выраженная уравнением:

f(t) = y = a + b×t + c×t 2 ; (10.5)

– экспоненциальная, выраженная уравнением:

f(t) = y = a×k t ; (10.4)

где y – уровни, освобожденные от колебаний;
а – начальный уровень тренда в момент или период, принятый за начало отсчета времени t (t = 0);
t – номер периода;
b – среднегодовой абсолютный прирост; константа линейного тренда (параметр, показывающий, на сколько изменится результат при изменении времени на единицу);
с – квадратический параметр, равный половине ускорения; константа параболического тренда. Ускорение (Δ’i) как разность между абсолютным приростом за данный период и абсолютным приростом за предыдущий период одинаковой длительности рассчитывается по формуле:

Δ’i = Δi — Δ’i-1. (10.7)
k – коэффициент роста; константа экспоненциального тренда.

Выравнивать динамические ряды по уравнению прямой линии целесообразно тогда, когда более или менее постоянны цепные абсолютные приросты, т.е. тогда, когда уровни ряда изменяются приблизительно в арифметической прогрессии.

Выравнивание динамических рядов по уравнению квадратической параболы необходимо применять в тех случаях, когда изменение уровней ряда происходит с приблизительно равномерным ускорением или замедлением цепных абсолютных приростов.

Выравнивание по экспоненциальной функции целесообразно использовать тогда, когда уровни ряда динамики выявляют тенденцию постоянства цепных темпов роста, т.е. в случае изменения уровней ряда динамики в геометрической прогрессии.

Кроме выше рассмотренных существуют логарифмическая, гиперболическая, логистическая и др. формы тренда.

Для расчета параметров уравнения тренда обычно используют метод наименьших квадратов.

Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда.

Для линейного тренда нормальные уравнения МНК имеют вид:

где yi – уровни исходного ряда динамики;
ti – номера периодов или моментов времени;
n – число уровней ряда.

Систему можно упростить, перенеся начало отсчета времени ti в середину ряда. Тогда Σti будет равна 0 и система приобретет вид:

Отметим, что значение Σt 2 при четном числе n можно определить по формуле:

Для того, чтобы выйти на значение Σt 2 , полученное по формуле, при четном числе n шаг между ti и ti-1 или ti+1 принимается равным 2 года.

Для тренда, выраженного квадратической параболой, нормальные уравнения МНК имеют вид:

После переноса начала отсчета ti в середину ряда получим:

Для экспоненциального тренда нормальные уравнения МНК имеют вид:

После переноса начала отсчета ti в середину ряда получим:

Построив уравнение регрессии, проводят оценку его надежности. Это делается посредством F-критерия Фишера, рассчитываемого по формуле 8.15. Если Fфакт > Fтеор, то уравнение регрессии значимо, т.е. построенная модель адекватна фактической временной тенденции.

Пример аналитического выравнивания ряда динамики

По данным таблицы 9.11 необходимо провести аналитическое выравнивание ряда динамики среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом за 2000-2018 гг.

Проверку ряда динамики среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации за 2000-2018 гг. на наличие тренда проведем с помощью фазочастотного критерия знаков первой разности.

Данные таблицы 9.12 свидетельствуют о неуклонном росте среднемесячной заработной платы в стране и, соответственно, о положительных значениях знаков первой разности на протяжении всего исследованного периода.

Тенденция к росту уровней рассматриваемого ряда динамики очевидна.

Для определения тренда, наиболее точно отражающего закономерность изменения среднего уровня месячной заработной платы работников организаций по экономике Российской Федерации во времени, рассчитаем параметры уравнений линейной, параболической и экспоненциальной зависимостей, оценив их надежность с помощью F-критерия Фишера.

Результаты вспомогательных действий для расчета параметров уравнений регрессии приведены в таблице 10.5. Для упрощения расчетов начало отсчета времени ti перенесено в середину ряда.

Данные для расчета параметров уравнений регрессии, характеризующих динамику среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом за 2000-2018 гг.

ГодыСреднемесячная зарплата, тыс. руб., уi,Условное время, годы, tiуititi 2уiti 2ti 4Ln уiti(Ln уiti)×tiУровни трендов
линейногопараболы II порядкаэкспоненциального
123456789101112
20002,2-9-19,881178,265610,8-7,1-1,3-2,03,5
20013,2-8-25,664204,840961,2-9,31,00,54,1
20024,4-7-30,849215,624011,5-10,43,43,14,8
20035,5-6-33,036198,012961,7-10,25,75,65,7
20046,7-5-33,525167,56251,9-9,58,18,26,6
20058,6-4-34,416137,62562,2-8,610,410,67,8
200610,6-3-31,8995,4812,4-7,112,813,19,1
200713,6-2-27,2454,4162,6-5,215,215,510,6
200817,3-1-17,3117,312,9-2,917,517,912,4
200918,6000002,90,019,920,314,5
201021,0121,0121,013,03,022,222,617,0
201123,4246,8493,6163,26,324,624,919,9
201226,6379,89239,4813,39,826,927,223,3
201329,84119,216476,82563,413,629,329,527,3
201432,55162,525812,56253,517,431,731,731,9
201534,06204,0361224,012963,521,234,033,937,4
201636,77256,9491798,324013,625,236,436,143,7
201739,28313,6642508,840963,729,338,738,351,2
201843,79393,3813539,765613,834,041,140,459,9
Всего377,601343,757011982,93066650,989,6377,6377,6390,8

Рассчитаем параметры линейного тренда:

– начальный уровень тренда а в момент, принятый за начало отсчета времени (t = 0), по формуле 10.10 равен: 19,874 тыс. руб.;

– константа линейного тренда b по формуле 10.11 равна: 2,357 тыс. руб.

Уравнение линейного тренда имеет вид (формула 10.4): y = 19,874 + 2,357×t.

Параметры линейного уравнения означают, что среднемесячный уровень номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом и его выровненный уровень, отнесенный к середине периода, т.е. к 2009 г., равняются 19,874 тыс. руб., а среднегодовой абсолютный прирост среднемесячной заработной платы за рассмотренный период составил 2,357 тыс. руб.

Рассчитаем параметры параболического тренда с помощью системы уравнений 10.14, установив начало отсчета времени (t = 0) в середине ряда, и осуществив соответствующую подстановку данных из столбцов 2-7 таблицы 10.5.

Полученная система имеет уравнений вид:

19a + 570c = 377,6;
570b = 1343,7;
570a + 30666c = 11982,9.

Решив эту систему уравнений имеем: a = 20,285, b = 2,357, c = -0,014.

Уравнение параболического тренда имеет вид (формула 10.5):

y = 20,285 + 2,357t + 0,014t 2 .

Значение параметра с (константы параболического тренда, равной половине ускорения изменения абсолютного цепного прироста) означает, что абсолютный прирост среднемесячной номинальной начисленной заработной работников организаций по экономике страны в рассматриваемом периоде замедлялся в среднем на 28 рубля (2×0,014×1000) в год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета, т.е. 2009 г., тренд проходит через точку с ординатой 20,285 тыс. руб. Свободный член параболического тренда не является средним уровнем за период.

Рассчитаем параметры экспоненциального тренда, используя данные колонок 8 и 9 таблицы 10.5:

  • по формуле 10.17 ln a = 2,679, отсюда, а = 14,543;
  • по формуле 10.18 ln k = 0,157, отсюда k = 1,170.

Уравнение экспоненциального тренда имеет вид (формула 10.6): y = 14,543×1,17 t .

Значение параметра k (константы экспоненциального тренда) означает, что среднегодовой темп роста среднемесячной номинальной начисленной зарплаты работников организаций по экономике Российской Федерации в целом в 2000-2018 гг. составлял 117,0 %. В точке, принятой за начало отчета, тренд проходит точку с ординатой 14,543 тыс. руб.

Отметим, что суммы теоретических уровней линейного и параболического трендов (колонки 10 и 11 таблицы 10.5) совпадают с суммой фактических уровней среднемесячной заработной платы за 2000-2018 гг. (колонка 2 таблицы 10.5). Это свидетельствует не только о том, что параметры трендов рассчитаны правильно, но и позволяет предположить, что полученные уравнения регрессии адекватно характеризуют сложившуюся тенденцию.

Для составления прогнозов на будущее, рассмотренные тренды неравнозначны по степени адекватности отражения формы прогрессии уровней ряда динамики, поэтому проведем оценку надежности уравнений регрессии с помощью критерия Фишера при α = 0,05 (с вероятностью 0,95).

Рассчитаем теоретические и фактические значения F-критерия для линейного, параболического и экспоненциального трендов.

Для расчета общей и факторных дисперсий для всех видов трендов среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом за 2000-2018 гг. построим вспомогательную таблицу 10.6.

Данные для расчета дисперсий среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом за 2000-2018 гг.

ГодыСреднемесячная зарплата, тыс. руб., уi,уi 2Линейный трендПараболический трендЭкспоненциальный тренд
y’i(y’i— y ) 2y’i(y’i— y ) 2y’i(y’i— y ) 2
123456789
20002,24,84-1,3450,13-2,0480,293,5267,04
20013,210,241,0355,660,5373,464,1247,74
20024,419,363,4272,303,1280,974,8226,08
20035,530,255,7200,065,6202,395,7201,99
20046,744,898,1138,938,2137,326,6175,51
20058,673,9610,488,9110,685,337,8146,89
200610,6112,3612,850,0113,146,039,1116,63
200713,6184,9615,222,2315,518,9910,685,65
200817,3299,2917,55,5617,93,8412,455,45
200918,6345,9619,90,0020,30,1714,528,41
201021,0441,0022,25,5622,67,5917,08,14
201123,4547,5624,622,2324,925,7219,90,00
201226,6707,5626,950,0127,254,1723,311,81
201329,8888,0429,388,9129,592,5727,354,84
201432,51056,2531,7138,9331,7140,5531,9145,20
201534,01156,0034,0200,0633,9197,7437,4305,76
201636,71346,8936,4272,3036,1263,7743,7568,71
201739,21536,6438,7355,6638,3338,2951,2979,22
201843,71909,6941,1450,1340,4420,9559,91600,40
Всего377,610715,74377,63167,60377,63170,15390,85225,47

Общую дисперсию рассчитываем по данным колонок 2 и 3 таблицы 10.6, используя способ разности (формула 5.12),

169,0. Факторную дисперсию по теоретическим значениям рассчитываем по формуле 8.9, а остаточную дисперсию – по формуле 8.11. Напомним, что у = 19,874 тыс. руб.

Для линейного тренда:

  • факторная дисперсия по данным столбца 5 таблицы 10.6 равна: 166,7;
  • остаточная дисперсия: = 169,0 – 166,7 = 2,3.

Для тренда, характеризуемого параболой второго порядка:

  • факторная дисперсия по данным столбца 7 таблицы 10.6 равна: 166,9;
  • остаточная дисперсия: = 169,0 – 166,9 = 2,1.

Для экспоненциального тренда:

  • факторная дисперсия по данным столбца 9 таблицы 10.6 равна: 275,0;
  • остаточная дисперсия: 169,0 – 275,0 = -106,0.

Фактическое значение критерия Фишера для каждого типа тренда определим по формуле 8.15, а значения степеней свободы k1 и k2 дисперсий – по формулам 8.16 и 8.17.

Итак, для линейного тренда при k1 = 2 – 1 = 1 и k2 = 19 – 2 = 17 фактическое значение критерия Фишера равно: 1232,1; теоретическое значение критерия Фишера по данным таблицы 7.10 равно: Fт ≈ 4,4. Так как Fф > Fт (1232,1 > 4,4), то с вероятностью 0,95 можно утверждать, что линейная регрессия адекватно отражает динамику среднемесячной номинальной начисленной заработной платы работников организаций по экономике Российской Федерации в целом в 2000-2018 гг.

Для тренда, характеризуемого параболой второго порядка, при k1 = 3 – 1 = 2 и k2 = 19 – 3 = 16 фактическое значение критерия Фишера равно: 635,8; теоретическое значение критерия Фишера по данным таблицы 7.10 равно: Fт = 3,6. Так как Fф > Fт (635,8 > 3,6), то с вероятностью 0,95 можно утверждать, что и параболическая регрессия адекватно отражает динамику номинальной среднемесячной заработной платы работников организаций России в 2000-2018 гг.

Для экспоненциального тренда фактическое значение критерия Фишера равно отрицательной величине, что не позволяет рассматривать данный тренд на предмет адекватности.

Наиболее адекватно сложившуюся в исследуемом ряду динамики тенденцию отражает линейный тренд (рис. 10.4).

Понятие о колеблемости

При изучении и измерении тенденции динамики колебания уровней играли лишь роль помех, «информационного шума», от которого следовало по возможности абстрагироваться. Однако факторы, обусловливающие колебания уровней временного ряда, как правило, объективны, что предопределяет самостоятельное исследование колеблемости.

Значение изучения колебаний уровней динамического ряда определяется, в первую очередь, тем, что регулирование рыночной экономики, как со стороны государства, так и производителей в значительной мере состоит в регулировании колебаний экономических процессов. Например, колебания урожайности, продуктивности скота, производства сельхозпродукции экономически нежелательны, так как потребность в продукции агрокомплекса постоянна. Эти колебания следует уменьшать, применяя прогрессивную технологию и другие меры. Напротив, сезонные колебания объемов производства зимней и летней одежды, обуви, мороженного, прохладительных напитков и т.п. – необходимы и закономерны, так как спрос на эти товары тоже колеблется по сезонам и равномерное производство требует лишних затрат на хранение запасов.

Типы колебаний статистических показателей весьма разнообразны. Три основных типа колебаний: пилообразная или маятниковая колеблемость, циклическая долгопериодическая колеблемость и случайно распределенная во времени колеблемость показаны на рис. 10.5, на котором хорошо видны их свойства и отличия друг от друга.

Пилообразная или маятниковая колеблемость состоит в попеременных отклонениях уровней ряда от тренда то в одну, то в другую сторону. Такие колебания можно наблюдать в динамике урожайности при невысоком уровне агротехники: высокий урожай при благоприятных условиях погоды выносит из почвы больше питательных веществ, чем их образуется естественным путем за год, следовательно, почва обедняется, что вызывает снижение следующего урожая ниже тренда, который выносит меньше питательных веществ, чем образуется за год и плодородие возрастает, и т.д.

Циклическая долгопериодическая колеблемость свойственна, например, солнечной активности (10-летние циклы), а, значит, и связанным с ней на Земле процессами – урожайности отдельных культур в ряде районов, некоторым заболеваниям людей, растений и т.п. Для этого типа колеблемости характерны редкая смена знаков отклонений от тренда и кумулятивный эффект отклонений одного знака, который может тяжело отражаться на экономике. Зато эти колебания хорошо прогнозируются.

Случайно распределенная во времени колеблемость – нерегулярная, хаотическая. Она может возникнуть при наложении множества колебаний с разными по длительности циклами. Но может возникать и в результате столь же хаотической колеблемости главной причины существования колебаний, например суммы осадков за летний период, температуры воздуха в среднем за месяц в разные годы.

На предположении, что параметры тренда и колебаний сохраняются до прогнозируемого периода, т.е. на экстраполяции, основана методика статистического прогноза по тренду и колеблемости. Экстраполяция справедлива, если система развивается эволюционно в достаточно стабильных условиях.

Сезонные колебания

Особого внимания при изучении колеблемости заслуживают сезонные колебания. Сезонные колебания строго цикличны – повторяются через каждый год.

Сезонными колебаниями называют периодические колебания уровней, возникающие под влиянием смены времени года.

Роль сезонных колебаний велика в агропромышленном комплексе, торговле многими товарами, заболеваемости, строительстве, деятельности рекреационных учреждений, на транспорте.

Сезонность наносит большой ущерб народному хозяйству, связанный с неравномерным использованием оборудования и рабочей силы, с неравномерной загрузкой транспорта и т.д.

Для изучения сезонных колебаний необходимо иметь уровни за каждый месяц (квартал) года, а, чтобы сгладить случайные колебания и точнее измерить сезонные, их изучают за несколько лет.

Уровень сезонности и форма «сезонной волны» изучаются с помощью индексов сезонности.

Способы определения индексов сезонности зависят от наличия или отсутствия основной тенденции.

Индивидуальные индексы сезонности показывают, во сколько раз фактический уровень ряда в момент (интервал) времени t больше или меньше среднего уровня, соответствующего данному моменту (интервалу) времени, либо уровня, вычисляемого по уравнению тенденции f(t).

Индекс сезонности (It,сез), если тренда нет или он незначителен, рассчитывают по формуле:

где y t – средний уровень показателя по одноименным месяцам (кварталам) за ряд лет;
t – номер месяца (квартала);
y o – общий средний уровень показателя за период исследования.

При наличии тренда индекс сезонности определяется на основе методов, исключающих влияние тенденции. Порядок расчета индекса сезонности при наличии тренда следующий:

1) для каждого уровня (yt,i) определяются выровненные значения по тренду f(t) = yt,i;

2) рассчитываются индивидуальные индексы уровней исследуемых показателей для каждого месяца (квартала) каждого года по формуле:

3) индексы сезонности определяются по формуле:

где n – число лет (i = 1, …, n).

Совокупность исчисленных для каждого месяца годового цикла индексов сезонности характеризует «сезонную волну» развития изучаемого явления во внутригодовой динамике.

Пример расчета индексов сезонности при условии отсутствия четко выраженной тенденции изменения уровней ряда динамики

По данным таблицы 10.7 необходимо проанализировать внутригодовую динамику потерь рабочего времени на предприятиях города N по причине неявок персонала на работу в 2016-2018 гг.

Данные о потерях рабочего времени на предприятиях города N по причине неявок персонала на работу в 2016-2018 гг., чел.-дн. (данные условные)

ГодыМесяцы
январьфевральмартапрельмайиюньиюльавгустсентябрьоктябрьноябрьдекабрь
201618616519280485452783564221175
2017174180204123504668844358179198
2018182174165126684247655474187170

Проверим ряд динамики потерь рабочего времени на предприятиях города N в 2016-2018 гг. на наличие тренда. Для этого рассчитаем годовые потери рабочего времени, т.е. проведем укрупнение месячных уровней в годовые, и определим темпы роста. Расчет базисных темпов роста в данном примере соответствует методике проверки ряда динамики на наличие тренда с помощью критерия Кокса и Стюарта.

Просуммировав месячные уровни, получили потери рабочего времени в 2016 г. – 1350 чел.- дн.; в 2017 г. – 1407 чел.-дн.; в 2018 г. – 1354 чел.-дн.

Базисные темпы роста потерь рабочего времени на предприятиях города N в 2016-2018 гг., рассчитанные по формуле 9.5, составили 100,3 % (1354 : 1350 × 100); цепные темпы роста потерь рабочего времени внутри этого периода, рассчитанные по формуле 9.6, составили в 2017 г. по сравнению с 2016 г. 104,2 % (1407 : 1350 × 100), а в 2018 г. по сравнению с 2017 г. – 96,2 % (1354 : 1407 × 100).

Рассчитанные значения темпов роста годовых уровней ряда динамики потерь рабочего времени на предприятиях города N в 2016-2018 гг., позволяют сделать вывод, что изучаемое явление не имеет четко выраженной тенденции к росту, поэтому индексы сезонности рассчитываются по формуле 10.19.

Средние уровни потерь рабочего времени по одноименным месяцам за три года ( y t) и их общий среднемесячный уровень за период исследования ( y o) найдем по формуле 4.21.

Результаты расчетов соответствующих индексов сезонности представим в таблице 10.8.

Результаты расчета индексов сезонности внутригодовой динамики потерь рабочего времени на предприятиях города N по причине неявок персонала на работу в 2016-2018 гг.

ГодыМесяцыВсего, чел.-дн.
IIIIIIIVVVIVIIVIIIIXXXIXII
2016186165192804854527835642211751350
20171741802041235046688443581791981407
20181821741651266842476554741871701354
Итого, чел.-дн.5425195613291661421672271321965875434111
y t, чел.-дн.180,7173,0187,0109,755,347,355,775,744,065,3195,3181,0х
It,сез, %158,2151,5163,896,048,541,448,766,338,557,2171,3158,5х

Расчеты y t проводились следующим образом: y I = 542 : 3 = 180,7 чел.-дн.; y II = 519 : 3 = 151,5 чел.-дн.; и т.д.; y o = 4111 : 36 = 114,2 чел.-дн.

Наглядное представление о сезонной волне потерь рабочего времени на предприятиях города N дает график на рис. 10.4.

На рис. 10.4 четко видно, что наибольшие потери рабочего времени на предприятиях города N по причине неявок персонала на работу в 2016-2018 гг. приходились на март и ноябрь – пик сезонной заболеваемости острыми респираторными заболеваниями. Ярко выраженный спад потерь рабочего времени по причине неявок работников на предприятия города N приходился на период с мая по октябрь, что соответствует общей тенденции динамики потерь рабочего времени в экономике страны.

Пример расчета индексов сезонности при условии наличия тренда

По данным таблицы 10.9 необходимо проанализировать внутригодовую динамику потерь рабочего времени на предприятиях города К по причине неявок персонала на работу в 2016- 2018 гг.

Просуммировав внутригодовые уровни потерь рабочего времени на предприятиях города К по годам (2016 г. – 3010 чел.-дн.; 2017 г. – 2760 чел.-дн.; 2018 г. – 2510 чел.-дн.), видим наличие ярко выраженной тенденции их снижениях их уровня.

Данные о потерях рабочего времени на предприятиях города К по причине неявок персонала на работу в 2016-2018 гг., чел.-дн. (данные условные)

ГодыМесяцы
январьфевральмартапрельмайиюньиюльавгустсентябрьоктябрьноябрьдекабрь
20164205603002701102050240180180380300
20173404802502601807040170130220370250
2018400290360240903040110150210350240

Для исключения влияния выявленной тенденции при анализе внутригодовой динамики потерь рабочего времени на предприятиях города К используем метод, основанный на аналитическом выравнивании уровней ряда.

Выравнивание уровней рассматриваемого ряда динамики по месяцам 2016-2018 гг. проведем, используя уравнение прямой (формула 10.4). Параметры линейного тренда рассчитаем по данным таблицы 10.10 упрощенным способом, выбрав начало отсчета t таким образом, чтобы было выполнено условие Σt = 0.

Данные для расчета параметров линейного тренда потерь рабочего времени на предприятиях города К по причине неявок персонала на работу по месяцам 2016-2018 гг.

Периодyt,i, чел.-дн.tyt,i×tt 2y’t,i, чел.-дн.it,i, %
1234567
Январь 2016 г.420-35-14700279150,5
Февраль 2016 г.560-33-18480276202,8
Март 2016 г.300-31-9300273109,7
Апрель 2016 г.270-29-783027199,8
Май 2016 г.110-27-297026841,1
Июнь 2016 г.20-25-5002657,5
Июль 2016 г.50-23-115026219,1
Август 2016 г.240-21-504025992,5
Сентябрь 2016 г.180-19-342025770,1
Октябрь 2016 г.180-17-306025470,9
Ноябрь 2016 г.380-15-5700251151,4
Декабрь 2016 г.300-13-3900248120,9
Январь 2017 г.340-11-3740245138,5
Февраль 2017 г.480-9-4320243197,9
Март 2017 г.250-7-1750240104,3
Апрель 2017 г.260-5-1300237109,7
Май 2017 г.180-3-54023476,9
Июнь 2017 г.70-1-7023130,3
Июль 2017 г.4014022917,5
Август 2017 г.170351022675,3
Сентябрь 2017 г.130565022358,3
Октябрь 2017 г.22071540220100,0
Ноябрь 2017 г.37093330217170,2
Декабрь 2017 г.250112750215116,5
Январь 2018 г.400135200212188,9
Февраль 2018 г.290154350209138,8
Март 2018 г.360176120206174,6
Апрель 2018 г.240194560203118,0
Май 2018 г.9021189020144,9
Июнь 2018 г.302369019815,2
Июль 2018 г.4025100019520,5
Август 2018 г.11027297019257,2
Сентябрь 2018 г.15029435018979,2
Октябрь 2018 г.210316510187112,5
Ноябрь 2018 г.3503311550184190,4
Декабрь 2018 г.240358400181132,6
Всего82800-21360155408280х

По формуле 10.10 и данным столбца 2 таблицы 10.10: а = 8280 : 36 = 230 чел.-дн.

По формуле 10.11 и данным столбцов 3 и 4 таблицы 10.10: b = -21360 : 15540 = -1,4 чел.-дн.

В соответствии с формулой 10.4 уравнение прямой выровненного ряда динамики потерь рабочего времени на предприятиях города К по причине неявок персонала на работу за 2016-2018 гг. имеет вид: y’t = 230 — 1,4×t.

На основании этого уравнения рассчитаем значения уровней выровненного ряда динамики y’t,i (см. столбец 6 табл. 10.10) и сопоставим с ними исходные уровни ряда yt,i, т. е. найдем индивидуальные индексы уровней исследуемых показателей для каждого квартала каждого года it,i, (см. столбец 7 табл. 10.10).

Индексы сезонности для каждого квартала определяем по формуле 10.21.

Так, для января индекс сезонности равен: 1,593 (159,3%); для февраля – 1,798 (179,8%); и т.д. Результаты расчетов индексов сезонности сведены в таблице 10.11.

Результаты расчета индексов сезонности внутригодовой динамики потерь рабочего времени на предприятиях города К по причине неявок персонала на работу в 2016-2018 гг.

МесяцыIIIIIIIVVVIVIIVIIIIXXXIXII
It,сез, %159,3179,8129,5109,254,317,719,075,069,294,5170,7123,3

Наглядное представление о внутригодовой динамике потерь рабочего времени на предприятиях города К по месяцам рассмотренного периода дает графическое изображение «сезонной волны» (рис. 10.4), отражающее наиболее высокие уровни потерь рабочего времени в феврале и ноябре.

Аналитическое сглаживание временного ряда. Уравнение тренда

Кривые роста, описывающие закономерности развития явлений во времени – это результат аналитического выравнивания динамических рядов. Выравнивание ряда с помощью тех или иных функций в большинстве случаев оказывается удобным средством описания эмпирических данных. Это средство при соблюдении ряда условий можно применить и для прогнозирования. Процесс выравнивания состоит из следующих основных этапов:

— выбора типа кривой, форма которой соответствует характеру изменения динамического ряда;

— определения численных значений (оценка) параметров кривой;

— апостериорного контроля качества выбранного тренда.

В современных ППП все перечисленные этапы реализуются одновременно, как правило, в рамках одной процедуры.

Аналитическое сглаживание с использованием той или иной функции позволяет получить выровненные, или, как их иногда не вполне правомерно называют, теоретические значения уровней динамического ряда, т. е. уровни, которые наблюдались бы, если бы динамика явления полностью совпадала с кривой. Эта же функция с некоторой корректировкой или без нее, применяется в качестве модели для экстраполяции (прогноза).

Вопрос о выборе типа кривой является основным при выравнивании ряда. При всех прочих равных условиях ошибка в решении этого вопроса оказывается более значимой по своим последствиям (особенно для прогнозирования), чем ошибка, связанная со статистическим оцениванием параметров.

Поскольку форма тренда объективно существует, то при выявлении ее следует исходить из материальной природы изучаемого явления, исследуя внутренние причины его развития, а также внешние условия и факторы на него влияющие. Только после глубокого содержательного анализа можно переходить к использованию специальных приемов, разработанных статистикой.

Весьма распространенным приемом выявления формы тренда является графическое изображение временного ряда. Но при этом велико влияние субъективного фактора, даже при отображении выровненных уровней.

Наиболее надежные методы выбора уравнения тренда основаны на свойствах различных кривых, применяемых при аналитическом выравнивании. Такой подход позволяет увязать тип тренда с теми или иными качественными свойствами развития явления. Нам представляется, что в большинстве случаев практически приемлемым является метод, который основывается на сравнении характеристик изменения приростов исследуемого динамического ряда с соответствующими характеристиками кривых роста. Для выравнивания выбирается та кривая, закон изменения прироста которой наиболее близок к закономерности изменения фактических данных.

При выборе формы кривой надо иметь в виду еще одно обстоятельство. Рост сложности кривой в целом ряде случаев может действительно увеличить точность описания тренда в прошлом, однако в связи с тем, что более сложные кривые содержат большее число параметров и более высокие степени независимой переменной, их доверительные интервалы будут, в общем, существенно шире, чем у более простых кривых при одном и том же периоде упреждения.

В настоящее время, когда использование специальных программ без особых усилий позволяет одновременно строить несколько видов уравнений, широко эксплуатируются формальные статистические критерии для определения лучшего уравнения тренда.

Из сказанного выше, по-видимому, можно сделать вывод о том, что выбор формы кривой для выравнивания представляет собой задачу, которая не решается однозначно, а сводится к получению ряда альтернатив. Окончательный выбор не может лежать в области формального анализа, тем более, если предполагается с помощью выравнивания не только статистически описать закономерность поведения уровня в прошлом, но и экстраполировать найденную закономерность в будущее. Вместе с тем различные статистические приемы обработки данных наблюдения могут принести существенную пользу, по крайней мере, с их помощью можно отвергнуть заведомо непригодные варианты и тем самым существенно ограничить поле выбора.

Рассмотрим наиболее используемые типы уравнений тренда:

1. Линейная форма тренда:

, (3.5)

где – уровень ряда, полученный в результате выравнивания по прямой; – начальный уровень тренда; – средний абсолютный прирост, константа тренда.

Для линейной формы тренда характерно равенство так называемых первых разностей (абсолютных приростов) и нулевые вторые разности, т. е. ускорения.

2. Параболическая (полином 2-ой степени) форма тренда:

(3.6)

Для данного типа кривой постоянными являются вторые разности (ускорение), а нулевыми – третьи разности.

Параболическая форма тренда соответствует ускоренному или замедленному изменению уровней ряда с постоянным ускорением. Если 0, то квадратическая парабола имеет максимум, если > 0 и

В следующем диалоговом окне (рис. 3.9) нажимаем на кнопку Function to be estimated, чтобы попасть на экран для задания модели вручную (рис. 3.10).

Рис. 3.7. Запуск процедуры Statistics/Advanced Linear/

Nonlinear Models/Nonlinear Estimation

Рис. 3.8. Окно процедуры Nonlinear Estimation

Рис. 3.9ю Окно процедуры User-Specified Regression, Least Squares

Рис. 3.10. Окно для реализации процедуры

задания уравнения тренда вручную

В верхней части экрана находится поле для ввода функции, в нижней части располагаются примеры ввода функций для различных ситуаций.

Прежде чем сформировать интересующие нас модели, необходимо пояснить некоторые условные обозначения. Переменные уравнений задаются в формате «v№», где «v» обозначает переменную (от англ. «variable»), а «№» – номер столбца, в котором она расположена в таблице на рабочем листе с исходными данными. Если переменных очень много, то справа находится кнопка Review vars, позволяющая выбирать их из списка по названиям и просматривать их параметры с помощью кнопки Zoom (рис. 3.11).

Рис. 3.11. Окно выбора переменной с помощью кнопки Review vars

Параметры уравнений обозначаются любыми латинскими буквами, не обозначающими какое-либо математическое действие. Для упрощения работы предлагается обозначать параметры уравнения так, как в описании уравнений тренда – латинской буквой «а», последовательно присваивая им порядковые номера. Знаки математических действий (вычитания, сложения, умножения и пр.) задаются в обычном для Windows-приложений формате. Пробелы между элементами уравнения не требуются.

Итак, рассмотрим первую модель тренда – линейную, .

Следовательно, после набора она будет выглядеть следующим образом:

,

где v1 – это столбец на листе с исходными данными, в котором находятся значения исходного динамического ряда; а0 и а1 – параметры уравнения; v2 – столбец на листе с исходными данными, в котором находятся значения интервалов времени (переменная Т) (рис. 3.12).

После этого дважды нажимаем кнопку ОК.

Рис. 3.12. Окно процедуры задания уравнения линейного тренда

Рис. 3.13. Закладка Quick процедуры оценки уравнения тренда.

В появившемся окне (рис. 3.13) можно выбрать метод оценки параметров уравнения регрессии (Estimation method), если это необходимо. В нашем случае нужно перейти к закладке Advanced и нажать на кнопку Start values (рис. 3.14). В этом диалоге задаются стартовые значения параметров уравнения для их нахождения по МНК, т.е. их минимальные значения. Изначально они заданы как 0,1 для всех параметров. В нашем случае можно оставить эти значения в том же виде, но если значения в наших исходных данных меньше единицы, то необходимо задать их в виде 0,001 для всех параметров уравнения тренда (рис. 3.15). Далее нажимаем кнопку ОК.

Рис. 3.14. Закладка Advanced процедуры оценки уравнения тренда

Рис. 3.15. Окно задания стартовыхзначений параметров уравнения тренда

Рис. 3.16. Закладка Quick окна результатов регрессионного анализа

На закладке Quick (рис.3.16) очень важным является значение строчки Proportion of variance accounted for, которое соответствует коэффициенту детерминации; это значение лучше записать отдельно, так как в дальнейшем оно выводиться не будет, и пользователю придется рассчитывать коэффициент вручную, при этом достаточно трех знаков после запятой[3]. Далее нажимаем кнопку Summary: Parameter estimates для получения данных о параметрах линейного уравнения тренда (рис. 3.17).

Рис. 3.17. Результаты расчета параметров линейной модели тренда

Столбец Estimate – числовые значения параметров уравнения; Standard еrror – стандартная ошибка параметра; t-value – расчетное значение t-критерия; df – число степеней свободы (n-2); p-level – расчетный уровень значимости; Lo. Conf. Limit и Up. Conf. Limit – соответственно нижняя и верхняя граница доверительных интервалов для параметров уравнения с установленной вероятностью (указана как Level of Confidence в верхнем поле таблицы).

Соответственно уравнение линейно модели тренда имеет вид .

После этого возвращаемся к анализу и нажимаем на кнопку Analysis of Variance (дисперсионный анализ) на той же закладке Quick (см. рис. 3.16).

Опишем содержание появившейся таблицы (рис. 3.18).

Рис. 3.18. Результаты дисперсионного анализа линейной модели тренда

В верхней заголовочной строке таблицы выдаются пять оценок:

Sum of Squares – сумма квадратов отклонений; df – число степеней свободы; Mean Squares – средний квадрат; F-value – критерий Фишера; p-value – расчетный уровень значимости F-критерия.

В левом столбце указывается источник вариации:

Regression – вариация, объясненная уравнением тренда; Residual – вариация остатков – отклонений фактических значений от выровненных (полученных по уравнению тренда); Total – общая вариация переменной.

На пересечении столбцов и строк получаем однозначно определенные показатели, расчетные формулы для которых представлены в табл. 3.2,

Расчет показателей вариации трендовых моделей

SourcedfSum of SquaresMean squaresF-value
Regressionm
Residualn-m
Totaln
Corrected Totaln-1
Regresion vs. Corrected TotalmSSRMSR

где – выровненные значения уровней динамического ряда; – фактические значения уровней динамического ряда; – среднее значение уровней динамического ряда.

SSR (Regression Sum of Squares) – сумма квадратов прогнозных значений; SSE (Residual Sum of Squares) – сумма квадратов отклонений теоретических и фактических значений (для расчета остаточной, необъясненной дисперсии); SST (TotalSum of Squares) – сумма первой и второй строчки (сумма квадратов фактических значений); SSCT (Corrected TotalSum of Squares) – сумма квадратов отклонений фактических значений от средней величины (для расчета общей дисперсии); Regression vs. Corrected Total Sum of Squares – повторение первой строчки; MSR (Regression Mean Squares) – объясненная дисперсия; MSE (Residual Mean Squares) – остаточная, необъясненная дисперсия; MSCT (Mean Squares Corrected Total) – скорректированная общая дисперсия; Regression vs. Corrected Total Mean Squares – повторение первой строчки; Regression F-value – расчетное значение F-критерия; Regression vs. Corrected Total F-value – скорректированное расчетное значение F-критерия; n – число уровней ряда; m – число параметров уравнения тренда.

Далее опять же на закладке Quick (см. рис. 3.16) нажимаем кнопку Predicted values, Residuals, etc. После ее нажатия система строит таблицу, состоящую из трех столбцов (рис. 3.19).

Observed – наблюдаемые значения (то есть уровни исходного динамического ряда);

Predicted – прогнозные значения (полученные по уравнению тренда для данных моментов времени);

Residuals – остатки (разница между фактическими и прогнозными значениями).

Рис. 3.19. Таблица наблюдаемых, прогнозных значений и остатков

для линейной модели тренда

Далее целесообразно построить графическое изображение, на котором линия линейного тренда будет наложена на исходный динамический ряд – это позволит визуально оценить степень соответствия.

Для этого на рабочем листе (см. рис. 3.19) выделяем столбцы Observed и Predicted, щелкаем по ним правой кнопкой мыши и выбираем функции Graphs of Block Data/ Line Plot: Entire Columns. Построенному графику лучше всего присвоить название и подписать легенду, с тем, чтобы далее легко его идентифицировать (рис. 3.20).

ВНИМАНИЕ. Получившиеся графики и таблицы целесообразно переименовывать в дерев рабочей книги из-за их большого количества и во избежание путаницы.

Рис. 3.20. Исходный динамический ряд и линейный тренд

Параметры уравнения тренда в STATISTICA, как и в большинстве других программ, рассчитываются по методу наименьших квадратов (МНК).

Метод позволяет получить значения параметров, при которых обеспечивается минимизация суммы квадратов отклонений фактических уровней от сглаженных, т. е. полученных в результате аналитического выравнивания.

(3.10)

Математический аппарат метода наименьших квадратов описан в большинстве работ по математической статистике, поэтому нет необходимости подробно на нем останавливаться.

В практике исследования социально-экономических явлений исключительно редко встречаются динамические ряды, характеристики которых полностью соответствуют признакам эталонных математических функций. Это обусловлено значительным числом факторов разного характера, влияющих на уровни ряда и тенденцию их изменения.

Итак, мы получили все необходимые результаты расчета параметров тренда, выраженного линейной моделью, а также построили график данного ряда, совмещенный с линией тренда.

На практике чаще всего строят целый ряд функций, описывающих тренд, а затем выбирают лучшую на основе того или иного формального критерия. В курсовом проекте предлагается построить пять трендовых моделей, функции которых представлены выше. В качестве примера приведем варианты построения параболической и логарифмической моделей на этапе ввода расчетной формулы в систему, получения уравнения тренда и с итоговым графиком (рис. 3.21 – 3.26). Отметим, что для попадания в меню ввода формулы достаточно нажать на кнопку Cancel текущего анализа (см. рис. 3.16).

Рис. 3.21. Окно процедуры задания уравнения параболической модели тренда

Рис. 3.22. Результаты расчета параметров параболической модели тренда

Рис. 3.23. Исходный динамический ряд и параболическая модель тренда

Рис. 3.24. Окно процедуры задания уравнения логарифмической модели тренда

Рис. 3.25. Результаты расчета параметров логарифмической модели тренда

Рис. 3.26. Исходный динамический ряд и логарифмическая модель тренда


источники:

http://be5.biz/ekonomika/s015/10.html

http://lektsii.org/1-15497.html