Анализ уравнений и анализ размерности

Метод размерностей при обучении физике

Разделы: Физика

В физике. нет места для путаных мыслей…
Действительно понимающие природу
Того или иного явления должны получать основные
Законы из соображений размерности. Э. Ферми

Описание той или иной проблемы, обсуждение теоретических и экспериментальных вопросов начинается с качественного описания и оценки того эффекта, который дает данная работа.

При описании какой-то проблемы нужно, прежде всего, оценить порядок величины ожидаемого эффекта, простые предельные случаи и характер функциональной связи величин, описывающих данное явление. Эти вопросы называются качественным описанием физической ситуации.

Одним из наиболее эффективных методов такого анализа является метод размерностей.

Вот некоторые достоинства и приложения метода размерностей:

  • быстрая оценка масштабов исследуемых явлений;
  • получение качественных и функциональных зависимостей;
  • восстановление забытых формул на экзаменах;
  • выполнение некоторых заданий ЕГЭ;
  • осуществление проверки правильности решения задач.

Анализ размерностей применяется в физике еще со времен Ньютона. Именно Ньютон сформулировал тесно связанный с методом размерностей принцип подобия (аналогии).

Учащиеся впервые встречаются с методом размерностей при изучении теплового излучения в курсе физики 11 класса:

Спектральной характеристикой теплового излучения тела является спектральная плотность энергетической светимости rv энергия электромагнитного излучения, испускаемого за единицу времени с единицы площади поверхности тела в единичном интервале частот.

Единица спектральной плотности энергетической светимости – джоуль на квадратный метр (1 Дж/м 2 ). Энергия теплового излучения черного тела зависит от температуры и длины волны. Единственной комбинацией этих величин с размерностью Дж/м 2 является kT/ 2 ( = c/v). Точный расчет, проделанный Рэлеем и Джинсом в 1900 г., в рамках классической волновой теории дал следующий результат:

где k – постоянная Больцмана.

Как показал опыт, данное выражение согласуется с экспериментальными данными лишь в области достаточно малых частот. Для больших частот особенно в ультрафиолетовой области спектра формула Рэлея-Джинса неверна: она резко расходится с экспериментом. Методы классической физики оказались недостаточными для объяснения характеристик излучения абсолютно черного тела. Поэтому расхождение результатов классической волновой теории с экспериментом в конце XIX в. получило название “ультрафиолетовой катастрофы”.

Покажем применение метода размерностей на простом и хорошо понятном примере.

Тепловое излучение абсолютно черного тела: ультрафиолетовая катастрофа – расхождение классической теории теплового излучения с опытом.

Представим себе, что тело массой m перемещается прямолинейно под действием постоянной силы F. Если начальная скорость тела равна нулю, а скорость в конце пройденного участка пути длиной s равна v, то можно записать теорему о кинетической энергии: . Между величинами F, m, v и s существует функциональная связь.

Предположим, что теорема о кинетической энергии забыта, а понимаем, что функциональная зависимость между v, F, m, и s существует и имеет степенной характер.

(1)

Здесь x, y, z – некоторые числа. Определим их. Знак

означает, что левая часть формулы пропорциональна правой, то есть , где k – числовой коэффициент, не имеет единиц измерения и с помощью метода размерностей не определяется.

Левая и правая части соотношения (1) имеют одинаковые размерности. Размерности величин v, F, m и s таковы: [v] = м/c = мc -1 , [F] = H = кгмс -2 , [m] = кг, [s] = м. (Символ [A] обозначает размерность величины A.) Запишем равенство размерностей в левой и правой частях соотношения (1):

м c -1 = кг x м x c -2x кг y м Z = кг x+y м x+z c -2x .

В левой части равенства вообще нет килограммов, поэтому и справа их быть не должно.

Справа метры входят в степени x+z, а слева — в степени 1, поэтому

Аналогично, из сравнения показателей степени при секундах следует

Из полученных уравнений находим числа x, y, z:

x = 1/2, y = -1/2, z = 1/2.

Окончательная формула имеет вид

Возведя в квадрат левую и правую части этого соотношения, получаем, что

Последняя формула есть математическая запись теоремы о кинетической энергии, правда без числового коэффициента.

Принцип подобия, сформулированный Ньютоном, заключается в том, что отношение v 2 /s прямо пропорционально отношению F/m. Например, два тела с разными массами m1 и m2; будем действовать на них разными силами F1 и F2 , но таким образом, что отношения F1 / m1 и F2 / m2 будут одинаковыми. Под действием этих сил тела начнут двигаться. Если начальные скорости равны нулю, то скорости, приобретаемые телами на отрезке пути длины s, будут равны. Это и есть закон подобия, к которому мы пришли с помощью идеи о равенстве размерностей правой и левой частей формулы, описывающей степенную связь значения конечной скорости со значениями силы, массы и длины пути.

Метод размерностей был введен при построении основ классической механики, однако его эффективное применение для решения физических задач, началось в конце прошлого – в начале нашего века. Большая заслуга в пропаганде этого метода и решения с его помощью интересных и важных задач принадлежит выдающемуся физику лорду Рэлею. В 1915 году Рэлей писал: “ Я часто удивляюсь тому незначительному вниманию, которое уделяется великому принципу подобия, даже со стороны весьма крупных ученых. Нередко случается, что результаты кропотливых исследований преподносятся как вновь открытые “законы”, которые, тем не менее, можно было получить априорно в течение нескольких минут”.

В наши дни физиков уже нельзя упрекнуть в пренебрежительном отношении или в недостаточном внимании к принципу подобия и к методу размерностей. Рассмотрим одну из классических задач Рэлея.

• Задача Рэлея о колебаниях шарика на струне.

Пусть между точками A и B натянута струна. Сила натяжения струны F. На середине этой струны в точке C находится тяжелый шарик. Длина отрезка AC (и соответственно CB) равна 1. Масса М шарика намного больше массы самой струны. Струну оттягивают и отпускают. Довольно ясно, что шарик будет совершать колебания. Если амплитуда эти x колебаний много меньше длины струны, то процесс будет гармоническим.

Определим частоту колебаний шарика на струне. Пусть величины , F, M и 1 связанны степенной зависимостью:

F X M Y 1 Z (2)

Показатели степени x, y, z – числа, которые нам нужно определить.

Выпишем размерности интересующих нас величин в системе СИ:

[] = c -1 , [F] = кгм с -2 , [M] = кг, [1] = м.

Если формула (2) выражает реальную физическую закономерность, то размерности правой и левой частей этой формулы должны совпадать, то есть должно выполняться равенство

с -1 = кг x м x c -2x кг y м z = кг x + y м x + z c -2x

В левую часть этого равенства вообще не входят метры и килограммы, а секунды входят в степени – 1. Это означает, что для x, y и z выполняются уравнения:

Решая эту систему, находим:

Точная формула для частоты отличается от найденной всего в раз ( 2 = 2F/(M1)).

Таким образом, получена не только качественная, но и количественная оценка зависимости для от величин F, M и 1. По порядку величины найденная степенная комбинация дает правильное значение частоты. Оценка всегда интересует по порядку величины. В простых задачах часто коэффициенты, неопределяемые методом размерностей, можно считать числами порядка единицы. Это не есть строгое правило.

• При изучении волн рассматриваю качественное прогнозирование скорости звука методом анализа размерностей. Скорость звука ищем как скорость распространения волны сжатия и разрежения в газе. У учащихся не возникает сомнений в зависимости скорости звука в газе от плотности газа и его давления p.

Ответ ищем в виде:

u= C x p y (1)

где С – безразмерный множитель, числовое значение которого из анализа размерности найти нельзя. Переходя в (1) к равенству размерностей.

м/c = (кг/м 3 ) x Па y ,

м/с = (кг/м 3 ) x (кг м/(с 2 м 2 )) y ,

м 1 с -1 = кг x м -3x кг y м y c -2y м -2y ,

м 1 с -1 = кг x+y м -3x + y-2y c -2y ,

м 1 с -1 = кг x+y м -3x-y c -2y .

Равенство размерностей в левой и правой части равенства дает:

x + y = 0, -3x-y = 1, -2y= -1,

x= -y, -3+x = 1, -2x = 1,

Таким образом, скорость звука в газе

(2)

Формулу (2) при С=1 впервые получил И. Ньютон. Но количественные выводы этой формулы были весьма сложны.

Экспериментальное определение скорости звука в воздухе было выполнено в коллективной работе членов Парижской Академии наук в 1738 г., в которой измерялось время прохождения звуком пушечного выстрела расстояния 30 км.

Повторяя данный материал в 11-м классе, внимание учащихся обращается на то, что результат (2) можно получить для модели изотермического процесса распространения звука с использованием уравнения Менделеева — Клапейрона и понятия плотности:

RT (3)

RT (4)

– скорость распространения звука.

(5)

Познакомив учащихся с методом размерностей, даю им этим методом вывести основное уравнение МКТ для идеального газа.

Учащиеся понимают, что давление идеального газа зависит от массы отдельных молекул идеального газа, числа молекул в единице объема – n (концентрации молекул газа) и скорости движения молекул – .

Зная размерности величин, входящих в данное уравнение имеем:

,

,

,

,

Сравнивая размерности левой и правой части данного равенства, имеем:

Поэтому основное уравнение МКТ имеет такой вид:

— отсюда следует

Ранее было сказано, что С – безразмерный множитель, числовое значение которого из метода размерности определить нельзя.

Рассмотрим другое применение метода размерности. Если в ответах к заданиям встречаются одни и те же физические величины в различных выражениях, расположенные произвольно, то ответ можно выбрать путем проверки единиц измерений. Приведем подобные примеры.

1. Электрон с зарядом влетел в магнитное поле со скоростью перпендикулярно линиям индукции магнитного поля и стал двигаться по окружности радиуса R. Какое выражение соответствует модулю вектора магнитной индукции магнитного поля?

А) Б) В) Г)

А) — не подходит; (формулы автором не представлены. )

2. Спутник планеты массой М движется по круговой орбите радиуса R. Какова скорость движения спутника?

А) , Б) , В) , Г), Д)

Спутник движется по окружности —>, а .

Проверим единицы измерения в В):

.

• В отдельных случаях единицы измерения в ответах соответствуют единицам измерения искомой величины, однако, ответ в задании верный лишь один. Тогда следует обратиться к иным способам отыскивания этой величины.

Рассмотрим тестовое решение нижеизложенной задачи.

3. Шарик массой , подвешенный на нити, длинной , вращается по окружности радиусом , в горизонтальной плоскости с угловой скоростью . Какова сила натяжения нити?

Рисунок 2. Cхема движения маятника

А) ;

Б) ;

В)

Г)

Анализ условия: ответ Г – быть не может, т.к. , а не сила. По единицам измерения ответы А и Б возможны, однако, направлены не по силе натяжения нити:

Из заштрихованного треугольника видно, что

Это мы воспользовались методом размерности.

Метод размерностей кроме осуществления традиционной проверки правильности решения задач, выполнения некоторых заданий ЕГЭ, помогает находить функциональные зависимости между различными физическими величинами, но только для тех ситуаций, когда эти зависимости степенные. Таких зависимостей в природе много, и метод размерностей — хороший помощник при решении подобных задач.

Анализ размерностей и нормализация уравнений взаимосвязи физических величин.

Основной метод теории подобия – анализ размерностей физических величин, характеризующих состояние объекта исследования, и параметров, которые определяют это состояние. Под размерностью физической величины понимают выражение связи между ней и физическими величинами, положенными в основу системы единиц. Анализ размерностей позволяет определять вид таких уравнений взаимосвязи физических величин в изучаемых явлениях. Базой анализа размерностей служит требование, согласно которому основные уравнения, выражающие связь между переменными и параметрами объекта, должны быть справедливы при любом выборе единиц измерения входящих в них величин; значения переменных определяются решением данной системы уравнений, значения параметров должны быть заданы для решения этой системы. Из этого требования следует, в общем, что все слагаемые каждого уравнения должны иметь одинаковые размерности и, в частности, что с помощью операции, называемой нормализацией (преобразованием), могут быть приведены к безразмерному виду.

Нормализацию обычно проводят в два этапа. На первом этапе все переменные преобразуются к безразмерному виду путем выбора соответствующих масштабов так, чтобы диапазоны изменения всех безразмерных переменных были одинаковы (например, равны 1). При этом масштабные коэффициенты переменных включают в состав коэффициентов соответствующих членов нормализуемого уравнения. На втором этапе все члены уравнения делят на один из коэффициентов, что дает возможность сделать каждый член уравнения безразмерным. Если уравнение имеет начальные и граничные условия, то и они, соответственно, преобразуются.

Нормализованные уравнения содержат, как правило, величины двух типов:

а) безразмерные зависимые и независимые переменные;

б) безразмерные параметры (иногда называют π-комплексами).

Последние включают характерные размеры (масштабы) объекта, а также физические параметры исходного уравнения и граничных условий. Объекты, описание свойств которых сводится к одинаковым безразмерным уравнениям и граничным условиям, независимо от их физической природы относятся к одному классу. Очевидно, что геометрически подобные или даже физически идентичные системы нельзя относить к одному классу, если граничные условия для них не будут представлены одинаково (например, при различных профилях скоростей потока на входе в идентичные аппараты).

Объекты, относящиеся к одному классу и имеющие одинаковые численные значения π-комплексов в уравнениях и соответствующих граничных условиях, подобны, поскольку поля изменения физических характеристик, определяемые безразмерными переменными, отличаются лишь выбранными масштабными коэффициентов, отношения которых задают коэффициентами подобия. Поэтому π-комплексы называют также критериями или числами подобия, равенство которых для объектов, описываемых идентичными безразмерными уравнениями и граничными условиями, обеспечивает их подобие.

Изменение значений критериев подобия означает переход от одного объекта к другому в пределах объектов данного класса. При таком переходе условия подобия не соблюдаются, только при относительно небольших изменениях критериев или изменениях тех из них, которые слабо влияют на решение уравнений, можно говорить о неполном, или частичном, подобии. Такие случаи чаще всего встречаются на практике при изучении подобия реальных объектов. Например, при изменении геометрических размеров технологической установки затрудняется соблюдение постоянства критериев подобия, включающих объемные и поверхностные характеристики аппаратов, т. к. отношение объема к поверхности изменяется пропорционально их размерам.

Размерные физические параметры, входящие в критерии подобия, для подобных объектов могут иметь сильно различающиеся значения; важно только, чтобы мало отличались друг от друга значения самих критериев. Именно это свойство подобных систем составляет основу метода моделирования и позволяет корректно решать задачи масштабирования, т. е. использовать результаты исследований одного объекта при изучении другого, полностью или частично ему подобного, хотя и существенно отличающегося размерами либо режимами работы. Поэтому соблюдение постоянства критериев подобия – решающее условие успешного переноса исследований на иные объекты.

3.10.3. Анализ решения нормализованных уравнений

Важное следствие процедуры нормализации состоит в том, что число критериев подобия в безразмерных уравнениях и их граничных условиях всегда оказывается меньше числа физических параметров, входящих в исходные соотношения. С одной стороны, это устанавливает необходимое количество критериев подобия различных объектов, принадлежащих к одному классу, с другой – упрощает до некоторой степени решение целого ряда сложных задач.

Решения безразмерных уравнений с соответствующими граничными условиями определяют безразмерные переменные объекта как функции независимых переменных и критериев:

(3.80)

где х, у, z — безразмерные пространств. координаты; τ — безразмерная переменная, соответствующая времени; π1πn-критерии подобия.

Безразмерный вид функции Q зависит от вида уравнений и граничных условий и обычно не может быть записан в общей форме. Однако сам факт существования зависимости (3.80) приводит к различным выводам. Например, при решении задачи оценки некоторых параметров начальных уравнений по опытным данным выражение (3.80) позволяет установить, какими критериями определяется безразмерный комплекс, включающий неизвестный параметр. Далее можно попытаться найти данную связь в виде некоторой принятой (например, степенной) функциональной зависимости от остальных критериев. Для этого выполняют необходимый объем экспериментов в различных условиях (при которых изменяются значения критериев) и с помощью выбранной зависимости осуществляют соответствующие расчеты наблюдаемых результатов. Полученное соотношение может быть использовано уже для анализа целой группы объектов, критерии подобия которой отвечают изученной области изменения их значений. Такие исследования часто проводят при решении проблем гидромеханики, тепло- и массообмена и т. п. в химико-технологических процессах.

Дата добавления: 2015-01-29 ; просмотров: 2085 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Дешковский А., Койфман Ю.Г. Метод размерностей в решении задач

Дешковский А., Койфман Ю. Метод размерностей в решении задач //ФПВ. – 2002. – № 2. – С. 71-81.

При решении задач по физике на любом уровне необычайно важно определить наиболее приемлемый метод или методы, а уж затем перейти к «техническому» воплощению. Учителя-виртуозы (мы сознательно употребили это выражение, так как считаем во многом схожим прочтение музыкального произведения музыкантами-импровизаторами и учителями-виртуозами, нашедшими собственные, авторские подходы в трактовке и толковании физических закономерностей) уделяют много времени предварительному обсуждению проблемы. Говоря другими словами, обсуждение метода зачастую не менее важно, чем решение задачи, поскольку происходит своеобразный обмен методиками, соприкосновение различных точек зрения, что, собственно, и является целью процесса обучения. Процесс подготовки к решению задачи во многом напоминает процесс подготовки актера к спектаклю. Обсуждение ролей, характеров героев, обдумывание интонаций, музыкальных реприз и художественных декораций являются важнейшими элементами погружения актера в роль. Не случайно, что многие известные театральные работники ценят подготовительный процесс и вспоминают атмосферу репетиций и собственные находки. В процессе преподавания учитель использует различные методы или «спектр методов». Одним из общих методов решения является решение задач методом размерности. Суть данного метода заключается в том, что искомая закономерность может быть представлена в виде произведения степенных функций физических величин, от которых зависит искомая характеристика. Важным моментом в решении является нахождение этих величин. Анализ размерностей левой и правой частей соотношения позволяет определить аналитическую зависимость с точностью до постоянного множителя.

(1)

Здесь p– давление газа, т0 – масса молекулы, n – концентрация, u – скорость молекулы.

Зависимость (1) на языке размерностей имеет вид:

(2)

(3)

Сравнение размерности левой и правой части дает систему уравнений

(4)

(5)

Обратим внимание на то, что коэффициент пропорциональности нельзя определить, используя метод размерностей, но, тем не менее, мы получили неплохое приближение к известному соотношению (основное уравнение мо-лекулярно-кинетической теории).

Рассмотрим несколько задач, на примере решения которых продемонстрируем суть метода размерностей.

(6)

Представим все вышеупомянутые величины:

(7)

С учетом (7) перепишем искомую закономерность выражением

(8)

(9)

Теперь уже нетрудно записать систему уравнений:

(10)

(11)

(12)

Задача 2. Эксперименты показали, что скорость звука в газах зависит от давления и плотности среды. Сравните скорости звука в газе для двух состояний .

На первый взгляд кажется, что нам необходимо ввести в рассмотрение температуру газа, так как хорошо известно, что скорость звука зависит от температуры. Однако (сравните с рассуждением выше) давление может быть выражено как функция плотности (концентрации) и температуры среды. Поэтому одна из величин (давление, плотность, температура) является «лишней». Поскольку по условию задачи нам предлагается сравнить скорости разных давлений и плотностей, то разумно исключить из рассмотрения температуру. Отметим, что если бы нам надо было сделать сравнение для разных давлений и температур, то мы бы исключили плотность.

(13)

(14)

(15)

Решение (15) дает .

(16)

(17)

(18)

Задача 3. На цилиндрический столб намотан канат. За один из концов каната тянут с силой F. Для того чтобы канат не скользил по столбу, когда на столб намотан лишь один виток, второй конец удерживается с силой f. С какой силой нужно удерживать этот конец каната, если на столб намотано n витков? Как изменится сила f, если выбрать столб вдвое большего радиуса? (Сила f не зависит от толщины каната.)

(19)

(20)

так как а = 1; с = 0 ( a – коэффициент пропорциональности, связанный с μ). Для второго, третьего, . п-го намотанного витка запишем аналогичные выражения:

(21)

(22)

Хорошо известно, что «метод размерностей» зачастую с успехом применяется в гидродинамике и аэродинамике. В некоторых случаях он позволяет «оценить решение» достаточно быстро и с хорошей степенью надежности.

Задача 4. Оцените силу сопротивления тел, движущихся в жидкости.

(23)

(24)

(25)

где . Коэффициент с характеризует обтекаемость тел и принимает различные значения для тел: для шара с = 0,2 – 0,4, для круглого диска с = 1,1 – 1,2, для каплеобразного тела с » 0,04. (Яворский Б.М., Пинский А.А. Основы физики. – Т. 1. – М.: Наука, 1974.)

До сих пор мы рассматривали примеры, в которых коэффициент пропорциональности оставался безразмерной величиной, однако это не означает, что мы должны всегда следовать этому. Вполне возможно сделать коэффициент пропорциональности «размерным», зависящим от размера основных величин. Например, вполне уместно представить гравитационную постоянную . Говоря другими словами, наличие размерности у гравитационной постоянной означает, что ее численное значение зависит от выбора основных величин. (Здесь нам кажется уместным сделать ссылку на статью Д.В.Сивухина «О международной системе физических величин», УФН, 129, 335, 1975.)

Задача 5. Определите энергию гравитационного взаимодействия двух точечных масс т1 и т2, находящихся на расстоянии r друг от друга.

(26)

(27)

Анализируя соотношение (26), найдем, что

(28)

Задача 6. Найдите силу взаимодействия между двумя точечными зарядами q1 и q2, находящимися на расстоянии r.

(29)

(30)

Проделав все преобразования, получим систему уравнений

(31)

(32)

(33)

В соотношении (33) отсутствует безразмерный коэффициент 4π, который был введен по историческим причинам.

Задача 7. Определите напряженность гравитационного поля бесконечного цилиндра радиусом r0 и плотностью r на расстоянии R (R > r0) от оси цилиндра.

(34)

(35)

Составим систему уравнений:

(36)

(37)

Отметим, что замена переменной позволила упростить решение задачи.

Решить же предложенную задачу методом размерностей без замены переменной весьма сложно.

Рассмотрим задачу, которую можно решить, применяя принцип разбиения «одинаковой» размерности на «разные».

Задача 8. Оцените дальность полета и высоту тела, брошенного под углом a к горизонту. Сопротивлением воздуха пренебречь.

. (38)

(39)

(40)

(41)

Данный метод является более сложным, однако хорошо работает, если имеется возможность различить величины, измеряемые одной и той же единицей измерения. Например: инерционная и гравитационная масса («инерционные» и «гравитационные» килограммы), вертикальное и горизонтальное расстояние («вертикальные» и «горизонтальные» метры), сила тока в одной и другой цепи и т.п.

Суммируя все вышеизложенное, отметим:

1. Метод размерностей может быть использован в случае, если искомая величина может быть представлена в виде степенной функции.

2. Метод размерностей позволяет качественно решить задачу и получить ответ с точностью до коэффициента.

3. В некоторых случаях метод размерностей является единственным способом решить задачу и хотя бы оценить ответ.

4. Анализ размерностей при решении задач широко используется в научных исследованиях.

5. Решение задач методом размерностей является дополнительным или вспомогательным методом, позволяющим лучше понять взаимодействие величин, их влияние друг на друга.


источники:

http://helpiks.org/2-32075.html

http://alsak.ru/item/9-11.html