Арккосинус отрицательного числа в уравнении

Алгебра

План урока:

Арккосинус

Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:

Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.

Задание. Решите ур-ние

Задание. Запишите корни ур-ния

Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.

Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:

Ответ: 7π/3 и 8π/3.

Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние

Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:

Наконец, решениями ур-ния

Решение уравнений tgx = a и ctgx = a

Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):

Таким образом, у ур-ния tgx = a существует очевидное решение

Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:

Задание. Решите ур-ние

Задание. Запишите формулу корней ур-ния

Далее рассмотрим ур-ние вида

Задание. Решите ур-ние

Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии

Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи \(y=cosx\) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если \(cosx=1\), то \(x=2\pi k,\ k\in\mathbb\); \(cosx=0\), то \(x=\frac\pi2+\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: \(0\leq x\leq \pi\) (верхняя половина числовой окружности).

\(arccos\frac12=\frac\pi3,\ \ arccos\left(-\frac<\sqrt<3>><2>\right)=\frac<5\pi><6>\)
\(arccos2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(0\leq arccosx\leq \pi\) . Область значений \(y\in[0;\pi]\)
3. Максимальное значение \(y_=\pi\) достигается в точке x =-1
Минимальное значение \(y_=0\) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение \(cosx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\pm\frac\pi3\) — это базовые корни.
Если взять верхний корень \(\frac\pi3\) и прибавить к нему полный оборот \(\frac\pi3+2\pi=\frac<7\pi><3>\), косинус полученного угла \(cos\frac<7\pi><3>=\frac12\), т.е. \(\frac<7\pi><3>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi3+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(-\frac\pi3+2\pi k\).
Получаем ответ: \(x=\pm\frac\pi3+2\pi k\)

Заметим, что полученный ответ является записью вида
\(x=\pm arccos\frac12+2\pi k\)
А т.к. арккосинус для \(\frac12\) точно известен и равен \(\frac\pi3\), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение \(cosx=0,8\)

Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x=\pm arccos0,8+2\pi k\)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для \(arccos(-a)\).

По построению: $$ \begin \angle DA’O=\angle BAO=\angle CAO=90^<\circ>\\ OD=OB=OC=1\\ OA’=OA=a \end \Rightarrow $$ (по катету и гипотенузе) \begin \Delta DA’O=\Delta BAO=\Delta CAO\Rightarrow\\ \Rightarrow \angle DOC=\angle A’OA-\alpha+\alpha=\angle A’OA=180^<\circ>=\pi\\ -arccosa+\pi=arccos(-a) \end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для \(y=arccosx\) область определения \(-1\leq x\leq 1\), область значений \(0\leq y\leq \pi\).
Обратная функция \(y=cosx\) должна иметь ограниченную область определения \(0\leq x\leq \pi\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(cos x=-1\)

\(x=\pi+2\pi k\)
б) \(cos x=\frac<\sqrt<2>><2>\)

\(x=\pm\frac\pi4+2\pi k\)
в) \(cos x=0\)

\(x=\pm\frac\pi2+2\pi k=\frac\pi2+\pi k\)
г) \(cos x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(cos x=0,7\)

\(x=\pm arccos(0,7)+2\pi k\)
e) \(cos x=-0,2\)

\(x=\pm arccos(-0,2)+2\pi k\)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8;\ \ arccos(-0,5);\ \ arccos\frac\pi7 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; \(\frac\pi7\approx 0,45\)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: \(\angle A_1OA\lt\angle A_2OA\angle A_3OA\)
$$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 2. Решение с помощью графика \(y=arccosx\)

Отмечаем на оси OX аргументы 0,8; -0,5; \(\frac\pi7\approx 0,45\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; \(\frac\pi7\); -0,5.
И записываем арккосинусы по возрастанию: \(arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5)\)

Пример 4*. Решите уравнения:
\(a)\ arccos(x^2-3x+3)=0\) \begin x^2-3x+3=cos0=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arccos^2x-arccosx-6=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: $$ t^2-t-6=0\Rightarrow (t-3)(t+2)=0\Rightarrow \left[ \begin t_1=3\\ t_2=-2\lt 0 — \text <не подходит>\end \right. $$ Возвращаемся к исходной переменной: \begin arccosx=3\\ x=cos3 \end Ответ: cos3

\(в)\ arccos^2x-\pi arccosx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(\pi^2)-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3\\ \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin arccosx_1=\frac\pi3\\ arccosx_2=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin x_1=cos\left(\frac\pi3\right)=\frac12\\ x_2=cos\left(\frac<2\pi><3>\right)=-\frac12 \end \right. \end Ответ: \(\left\<\pm\frac12\right\>\)

Обратная тригонометрическая функция: Арккосинус (arccos)

Определение

Арккосинус (arccos) – это обратная тригонометрическая функция.

Арккосинус x определяется как функция, обратная к косинусу x , при -1≤x≤1.

Если косинус угла у равен х (cos y = x), значит арккосинус x равняется y :

Примечание: cos -1 x означает обратный косинус, а не косинус в степени -1.

Например:

arccos 1 = cos -1 1 = 0° (0 рад)

График арккосинуса

Функция арккосинуса пишется как y = arccos (x) . График в общем виде выглядит следующим образом:

Свойства арккосинуса

Ниже в табличном виде представлены основные свойства арккосинуса с формулами.


источники:

http://reshator.com/sprav/algebra/10-11-klass/arkkosinus-reshenie-uravneniya-cosx-a/

http://microexcel.ru/arkkosinus/