Арккосинус решение уравнения cost a 10 класс

Урок-презентация «Арккосинус.Решение уравнения cost=a»

Разделы: Математика

Тип урока: изучение нового материала.

  • дидактические: сформировать у учащихся понятие арккосинуса; вывести общую формулу решения уравнения cos t = a; выработать алгоритм решения данного уравнения;
  • развивающие: развитие познавательного интереса, логического мышления, интеллектуальных способностей; формирование математической речи;
  • воспитательные: формировать эстетические навыки при оформлении записей в тетради и самостоятельность мышления у учащихся.

Оборудование: компьютер, мультимедийный проектор, экран, презентация «Арккосинус. Решение уравнения cos t =a» (Приложение 1) .

I. Организационный момент

Объявить тему и цели урока, познакомить учащихся с ходом проведения урока (слайд 1).

II. Актуализация опорных знаний

Повторить способ решения уравнения вида cos t = a, где а – действительное число, с помощью числовой окружности.

Решить уравнения: 1) cos t = ; 2) cos t = 1 (слайд 2).

Используем геометрическую модель – числовую окружность на координатной плоскости.

1) cos t = (слайд 3);

.

.

III. Изучение нового материала

Ввести проблемную ситуацию: любое ли тригонометрическое уравнение вида

cos t = a можно решить с помощью числовой окружности?

1) Предложить учащимся решить уравнение cos t = (слайд 5).

С помощью числовой окружности получим (слайд 6):

где t2 = – t1.

Когда впервые возникла ситуация с решение уравнений такого типа, ученым-математикам пришлось придумать способ её описания на математическом языке. В рассмотрение был введен новый символ arccos а (слайд 7).

Читается: арккосинус а; «arcus» в переводе с латинского значит «дуга» (сравните со словом «арка»). С помощью этого символа числа t1 и t2 записываются следующим образом: t1 = arccos , t2 = – arccos .

Теперь с помощью этого символа корни уравнения cos t = можно записать так: (слайд 8).

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arccos ?» (слайд 9).

Вывод: это число (длина дуги), косинус которого равен и которое принадлежит первой четверти числовой окружности.

2) Решить уравнение cos t = – (слайд 10).

С помощью числовой окружности и символа arccos а получим (слайд 11):

.

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arccos () ?» (слайд 12).

Вывод: это число (длина дуги), косинус которого равен и которое принадлежит второй четверти числовой окружности.

3) Сформулировать определение арккосинуса в общем виде (слайд 13):

Если │а│≤ 1, то

4) Рассмотреть примеры на вычисление арккосинуса.

Пример 1. Вычислите arccos (слайд 14).

Пусть

Значит, поскольку и Итак, arccos=

Пример 2. Вычислите arccos (слайд 15).

Пример 3. Вычислите arccos 0 (слайд 16).

Пример 4. Вычислите arccos 1 (слайд 17).

5) Сделать общий вывод о решении уравнения cos t = a (слайд 18).

Если │a│≤ 1, то уравнение cost = a имеет решения: .

6) Рассмотреть частные случи.

Выделим формулы для решения следующих уравнений: cos t = 0, cos t =1 , cos t = –1 (слайд 19).

7) Доказать теорему и рассмотреть её применение на практике.

Для любого а [-1;1] выполняется равенство arccos a + arccos (-a) = (слайд 20).

Применение теоремы (слайд 21).

На практике используется: arccos (-a) = — arccos a , где 0 ≤ а ≤ 1.

arccos= — arccos =

IV. Обобщение изученного материала

Составим алгоритм решения простейшего тригонометрического уравнения вида cos t = a:

  • составить общую формулу;
  • вычислить значение arccos a;
  • подставить найденное значение в общую формулу.

Пример 1. Решить уравнение cos t = (слайд 22 – 24).

Пример 2. Решить уравнение cos t = (слайд 25 – 27).

Пример 3. Решить уравнение cos t = (слайд 28).

Пример 4. Решить уравнение cos t = — 1,2 (слайд 29).

V. Подведение итогов урока (слайд 30)

Итак, сегодня на уроке мы ввели понятие арккосинуса; вывели общую формулу решения уравнения cos t = a и выработали алгоритм решения данного уравнения.

VI. Домашнее задание

Изучить теоретический материал.

Практическая часть (даётся задание в соответствии с используемым учебным пособием).

1. А.Г. Мордкович. Алгебра и начала анализа 10-11. Часть 1. Учебник.

2. А.Г. Мордкович и др. Алгебра и начала анализа, 10-11. Часть 2. Задачник.

3. А.Г. Мордкович, И.М. Смирнова. Математика-10 (для гуманитарных классов).

4. А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа-10.Часть 1. Учебник (профильный уровень).

Урок в 10 классе на тему «Арккосинус числа а. Решение уравнений cos x = a»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Урок по алгебре и началам анализа в 10 классе.

Тема урока: Арккосинус числа а. Решение уравнений cos x = a.

Цели урока: ввести понятие арккосинуса числа а; выработать навык вычисления арксинуса числа а; вывести формулу корней простейших тригонометрических уравнений формулу cos x = a; научить применять формулу при решении простейших тригонометрических уравнений; изучить частные случай решения тригонометрических уравнений при а равном 0, -1, 1.

Изучение нового материла

Тригонометрическое уравнение— уравнение, содержащее неизвестное под знаком тригонометрической функции.

Уравнения вида sinx=a, cosx=a, tgx=a, ctgx=a называются простейшими тригонометрическими уравнениями.

Сегодня на уроке мы изучим понятие арккосинус числа а, научимся его вычислять и применять при решении простейших тригонометрических уравнений.

Arcus в переводе с латинского значит дуга , сравните со словом арка . Символ arcсos а , введенный математиками, содержит знак (arc), сosа — напоминание об исходной функции

Если |a|>1 , то уравнение cosx=a не имеет корней.

Например, уравнение cosx=−1,5 не имеет корней.

Если |a|≤1, то корни уравнения выражаются формулой x=±arccosa+2πk, k ∈ Z

Если |a|≤1, то arccosa (арккосинус а) — это такое число из отрезка [0;π], косинус которого равен а.

Говоря иначе: arccosa = x ⇒ cosx = a , | a |≤1, x ∈ [0;π]

Выражение arccos показывает, что косинус угла x равен ( cosx= ).

Далее просто находим точку этого косинуса на числовой окружности, что и является ответом:

число, являющееся значением оси x , соответствует точке на числовой окружности.

Обрати внимание! если cos =, то arccos=

В первом случае по точке на числовой окружности определяем значение косинуса, а во втором – наоборот, по значению косинуса находим точку на числовой окружности. Движение в обратную сторону. Это и есть арккосинус.

Теорема. Для любого a ∈ [−1;1] выполняется равенство arccosa+arccos(−a)=π

1.cosx=0 ⇒ x= +πk,k ∈ Z

2.cosx=1 ⇒ x=2πk,k ∈ Z

3.cosx=−1 ⇒ x=π+2πk,k ∈ Z

Решить уравнение cosx=

Используем формулу x=±arccosa+2πk, k ∈ Z и получаем ответ x=±arccos +2πk, k ∈ Z

3 Закрепление изученного материала

4 Подведение итогов

Курс повышения квалификации

Дистанционное обучение как современный формат преподавания

  • Сейчас обучается 925 человек из 80 регионов

Курс профессиональной переподготовки

Математика: теория и методика преподавания в образовательной организации

  • Сейчас обучается 684 человека из 75 регионов

Курс повышения квалификации

Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО

  • Сейчас обучается 309 человек из 69 регионов

Ищем педагогов в команду «Инфоурок»

Дистанционные курсы для педагогов

«Взбодрись! Нейрогимнастика для успешной учёбы и комфортной жизни»

Свидетельство и скидка на обучение каждому участнику

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

5 578 694 материала в базе

Материал подходит для УМК

«Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа (базовый и углублённый уровни) (в 2 частях)», Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г.

§ 15. Арккосинус. Решение уравнения cos t = a

Самые массовые международные дистанционные

Школьные Инфоконкурсы 2022

33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»

Другие материалы

  • 20.01.2018
  • 791
  • 1

  • 19.01.2018
  • 652
  • 3

  • 19.01.2018
  • 2506
  • 65

  • 18.01.2018
  • 880
  • 1

  • 17.01.2018
  • 218
  • 0

  • 17.01.2018
  • 2813
  • 62

  • 17.01.2018
  • 5343
  • 43

  • 16.01.2018
  • 2676
  • 8

Вам будут интересны эти курсы:

Оставьте свой комментарий

Авторизуйтесь, чтобы задавать вопросы.

Добавить в избранное

  • 21.01.2018 1112
  • DOCX 37 кбайт
  • 14 скачиваний
  • Оцените материал:

Настоящий материал опубликован пользователем Галиахметова Гульшат Ришатовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Автор материала

  • На сайте: 4 года и 2 месяца
  • Подписчики: 0
  • Всего просмотров: 4909
  • Всего материалов: 4

Московский институт профессиональной
переподготовки и повышения
квалификации педагогов

Дистанционные курсы
для педагогов

663 курса от 690 рублей

Выбрать курс со скидкой

Выдаём документы
установленного образца!

Учителя о ЕГЭ: секреты успешной подготовки

Время чтения: 11 минут

Объявлен конкурс дизайн-проектов для школьных пространств

Время чтения: 2 минуты

Инфоурок стал резидентом Сколково

Время чтения: 2 минуты

В Ленобласти школьники 5-11-х классов вернутся к очному обучению с 21 февраля

Время чтения: 1 минута

Полный перевод школ на дистанционное обучение не планируется

Время чтения: 1 минута

Тринадцатилетняя школьница из Индии разработала приложение против буллинга

Время чтения: 1 минута

Приемная кампания в вузах начнется 20 июня

Время чтения: 1 минута

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Арккосинус. Решение уравнения cos x=a

п.1. Понятие арккосинуса

В записи \(y=cosx\) аргумент x — это значение угла (в градусах или радианах), функция y – косинус угла, действительное число в пределах [-1;1]. Т.е., по заданному углу мы находим косинус.
Можно поставить обратную задачу: по заданному косинусу найти угол. Но одному значению косинуса соответствует бесконечное количество углов. Например, если \(cosx=1\), то \(x=2\pi k,\ k\in\mathbb\); \(cosx=0\), то \(x=\frac\pi2+\pi k,\ k\in\mathbb\) и т.д.
Поэтому, чтобы построить однозначную обратную функцию, ограничим значения углов x отрезком, на котором косинус принимает все значения из [-1;1], но только один раз: \(0\leq x\leq \pi\) (верхняя половина числовой окружности).

\(arccos\frac12=\frac\pi3,\ \ arccos\left(-\frac<\sqrt<3>><2>\right)=\frac<5\pi><6>\)
\(arccos2\) – не существует, т.к. 2> 1

п.2. График и свойства функции y=arccosx


1. Область определения \(-1\leq x\leq1\) .
2. Функция ограничена сверху и снизу \(0\leq arccosx\leq \pi\) . Область значений \(y\in[0;\pi]\)
3. Максимальное значение \(y_=\pi\) достигается в точке x =-1
Минимальное значение \(y_=0\) достигается в точке x =1
4. Функция убывает на области определения.
5. Функция непрерывна на области определения.

п.3. Уравнение cos⁡x=a

Значениями арккосинуса могут быть только углы от 0 до π (180°). А как выразить другие углы через арккосинус?

Углы в нижней части числовой окружности записывают через отрицательный арккосинус. А углы, которые превышают π по модулю, записывают через сумму арккосинуса и величины, которая ‘не помещается» в область значений арккосинуса.

1) Решим уравнение \(cosx=\frac12\).
Найдем точку \(\frac12\) в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках, соответствующих углам \(\pm\frac\pi3\) — это базовые корни.
Если взять верхний корень \(\frac\pi3\) и прибавить к нему полный оборот \(\frac\pi3+2\pi=\frac<7\pi><3>\), косинус полученного угла \(cos\frac<7\pi><3>=\frac12\), т.е. \(\frac<7\pi><3>\) также является корнем уравнения. Корнями будут и все другие углы вида \(\frac\pi3+2\pi k\) (с любым количеством добавленных или вычтенных полных оборотов). Аналогично, корнями будут все углы вида \(-\frac\pi3+2\pi k\).
Получаем ответ: \(x=\pm\frac\pi3+2\pi k\)

Заметим, что полученный ответ является записью вида
\(x=\pm arccos\frac12+2\pi k\)
А т.к. арккосинус для \(\frac12\) точно известен и равен \(\frac\pi3\), то мы его и пишем в ответе.
Но так бывает далеко не всегда.

2) Решим уравнение \(cosx=0,8\)

Найдем точку 0,8 в числовой окружности на оси косинусов (ось OX). Построим вертикаль – перпендикуляр, проходящий через точку. Он пересечёт числовую окружность в двух точках.
По определению верхняя точка – это угол, равный arccos⁡0,8.
Тогда нижняя точка – это тот же угол, но отложенный в отрицательном направлении обхода числовой окружности, т.е. (–arccos⁡0,8).
Добавление или вычитание полных оборотов к каждому из решений даст другие корни.
Получаем ответ:
\(x=\pm arccos0,8+2\pi k\)

п.4. Формула арккосинуса отрицательного аргумента

Докажем полезную на практике формулу для \(arccos(-a)\).

По построению: $$ \begin \angle DA’O=\angle BAO=\angle CAO=90^<\circ>\\ OD=OB=OC=1\\ OA’=OA=a \end \Rightarrow $$ (по катету и гипотенузе) \begin \Delta DA’O=\Delta BAO=\Delta CAO\Rightarrow\\ \Rightarrow \angle DOC=\angle A’OA-\alpha+\alpha=\angle A’OA=180^<\circ>=\pi\\ -arccosa+\pi=arccos(-a) \end

п.5. Примеры

Пример 1. Найдите функцию, обратную арккосинусу. Постройте графики арккосинуса и найденной функции в одной системе координат.

Для \(y=arccosx\) область определения \(-1\leq x\leq 1\), область значений \(0\leq y\leq \pi\).
Обратная функция \(y=cosx\) должна иметь ограниченную область определения \(0\leq x\leq \pi\) и область значений \(-1\leq y\leq 1\).
Строим графики:

Графики симметричны относительно прямой y=x.
Обратная функция найдена верно.

Пример 2. Решите уравнения:

a) \(cos x=-1\)

\(x=\pi+2\pi k\)
б) \(cos x=\frac<\sqrt<2>><2>\)

\(x=\pm\frac\pi4+2\pi k\)
в) \(cos x=0\)

\(x=\pm\frac\pi2+2\pi k=\frac\pi2+\pi k\)
г) \(cos x=\sqrt<2>\)

\(\sqrt<2>\gt 1,\ \ x\in\varnothing\)
Решений нет
д) \(cos x=0,7\)

\(x=\pm arccos(0,7)+2\pi k\)
e) \(cos x=-0,2\)

\(x=\pm arccos(-0,2)+2\pi k\)

Пример 3. Запишите в порядке возрастания: $$ arccos0,8;\ \ arccos(-0,5);\ \ arccos\frac\pi7 $$

Способ 1. Решение с помощью числовой окружности

Отмечаем на оси косинусов (ось OX) точки с абсциссами 0,8; -0,5; \(\frac\pi7\approx 0,45\)
Значения арккосинусов (углы) считываются на верхней половине окружности: чем меньше косинус (от 1 до -1), тем больше угол (от 0 до π).
Получаем: \(\angle A_1OA\lt\angle A_2OA\angle A_3OA\)
$$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 2. Решение с помощью графика \(y=arccosx\)

Отмечаем на оси OX аргументы 0,8; -0,5; \(\frac\pi7\approx 0,45\). Восстанавливаем перпендикуляры на кривую, отмечаем точки пересечения. Из точек пересечения с кривой восстанавливаем перпендикуляры на ось OY — получаем значения арккосинусов по возрастанию: $$ arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5) $$Способ 3. Аналитический
Арккосинус – функция убывающая: чем больше аргумент, тем меньше функция.
Поэтому располагаем данные в условии аргументы по убыванию: 0,8; \(\frac\pi7\); -0,5.
И записываем арккосинусы по возрастанию: \(arccos0,8\lt arccos\frac\pi7\lt arccos(-0,5)\)

Пример 4*. Решите уравнения:
\(a)\ arccos(x^2-3x+3)=0\) \begin x^2-3x+3=cos0=1\\ x^2-3x+2=0\\ (x-2)(x-1)=0\\ x_1=1,\ x_2=2 \end Ответ:

\(б)\ arccos^2x-arccosx-6=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: $$ t^2-t-6=0\Rightarrow (t-3)(t+2)=0\Rightarrow \left[ \begin t_1=3\\ t_2=-2\lt 0 — \text <не подходит>\end \right. $$ Возвращаемся к исходной переменной: \begin arccosx=3\\ x=cos3 \end Ответ: cos3

\(в)\ arccos^2x-\pi arccosx+\frac<2\pi^2><9>=0\)
\( \text<ОДЗ:>\ -1\leq x\leq 1 \)
Замена переменных: \(t=arccos x,\ 0\leq t\leq \pi\)
Решаем квадратное уравнение: \begin t^2-\pi t+\frac<2\pi^2><9>=0\\ D=(\pi^2)-4\cdot \frac<2\pi^2><9>=\frac<\pi^2><9>,\ \ \sqrt=\frac\pi3\\ \left[ \begin t_1=\frac<\pi-\frac\pi3><2>=\frac\pi3\\ t_2=\frac<\pi+\frac\pi3><2>=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin arccosx_1=\frac\pi3\\ arccosx_2=\frac<2\pi> <3>\end \right. \Rightarrow \left[ \begin x_1=cos\left(\frac\pi3\right)=\frac12\\ x_2=cos\left(\frac<2\pi><3>\right)=-\frac12 \end \right. \end Ответ: \(\left\<\pm\frac12\right\>\)


источники:

http://infourok.ru/urok-v-klasse-na-temu-arkkosinus-chisla-a-reshenie-uravneniy-cos-a-2489998.html

http://reshator.com/sprav/algebra/10-11-klass/arkkosinus-reshenie-uravneniya-cosx-a/