Арктангенс котангенс и решение уравнений

Арктангенс и арккотангенс. Онлайн калькулятор

С помощю этого онлайн калькулятора можно найти арксинус и арккосинус от числа. Результат можно видеть как в градусах, так и в радианах. Теоретическую часть и численные примеры смотрите ниже.

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Арктангенс и арккотангенс − теория, примеры и решения

Функция арктангенс и ее график

Функция тангенс определена в интервале [−∞;+∞] кроме точек , . и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции тангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию тангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

, , , и т.д.

По теореме об обратной функции, на каждом из указанных отрезков функция tg x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arctg y. Поменяв местами x и y, получим:

y=arctg x.(1)

Функция (1) − это функция, обратная к функции

.

График функции арктангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).

Свойства функции арктангенс.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция является нечетной: .
  4. Функция возрастает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале для уравнения (2) существует одно t, для которого tg t=a. Это решение

Следовательно в интервале уравнение (2) имеет один корень. Так как тангенс периодичная функция с основным периодом π, то все корни уравнения (2) отличаются на πn (n∈Z), т.е.

.(3)

Решение уравнения (2) представлен на Рис.3:

Так как tg t − это ординат точки пересечения прямой OMt1 c прямым x=1, то для любого a на линии тангенса есть только одна точка T(1; a). Прямая OTt пересекается с окружностью с радиусом 1 в двух точках: . Но только точка соответствует интервалу , которое соответствует решению .

Пример 1. Решить тригонометрическое уравнение:

.

Решение. Воспользуемся формулой (3):

,
.

Пример 2. Решить тригонометрическое уравнение:

.

Решение. Воспользуемся формулой (3):

.

Используя онлайн калькулятор получим:

.

Функция арккотангенс и ее график

Как известно, функция котангенс определена в интервале [−∞;+∞] кроме точек -2π, —π 0, π, 2π. и не является монотонной функцией (Рис.4) (подробнее о функции котангенс смотрите на странице Тангенс и котангенс. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию кокотангенс можно разделить на интервалы, где она монотонна. Эти интервалы:

По теореме об обратной функции, на каждом из указанных интервалов функция ctg x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arcctg y. Поменяв местами x и y, получим:

y=arcctg x.(4)

Функция (4) − это функция, обратная к функции

.

График функции арккотангенс можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).

Свойства функции арккотангенс.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
  4. Функция убывает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

В интервале (0; π) для уравнения (5) существует одно t, для которого сtg t=a. Это t=arcctg a. Следовательно в интервале (0; π) уравнение (5) имеет один корень. Так как котангенс периодичная функция с основным периодом π, то общее решение уравнения (5) имеет следующий вид:

(6)

Решения уравнения (5) можно представить на единичной окружности (Рис.6):

ctg t − это абсцис точки пересечения прямой с прямым y=1. Любому числу a на линии котангенс соответствует только одна точка . Прямая пересекется с единичной окружностью в двух точках . Но только точка соответствует интервалу (0; π), которое соответствует решению .

Пример 1. Решить тригонометрическое уравнение:

.

Решение. Воcпользуемся формулой (6):

.

Так как в интервале (0; π), то

.

Пример 2. Решить следующее тригонометрическое уравнение:

.

Решение. Используя формулу (6), имеем

.

С помощью онлайн калькулятора вычисляем . Тогда

Основные формулы с арксинусом, арккосинусом, арктангенсом и арккотангенсом

Формулы с обратными тригонометрическими функциями: arcsin, arccos, arctg и arcctg

Ранее мы рассматривали обратные тригонометрические функции: арксинус, арккосинус, арктангенс и арккотангенс. Как и в случае с другими функциями, между ними существуют связи и зависимости, реализуемые в виде формул, которые можно использовать для решения задач.

Сейчас мы будем рассматривать основные формулы с использованием этих функций: какие они бывают, на какие группы их можно разделить, как их доказать и как решать задачи с их помощью.

Формулы котангенса арккотангенса, тангенса арктангенса, синуса арксинуса и косинуса арккосинуса

Для начала сгруппируем формулы, в которых содержатся основные свойства обратных тригонометрических функций. Мы уже обсуждали и доказывали их ранее, а здесь приведем, чтобы логика объяснения была более понятной и все формулы были в одной статье.

д л я α ∈ — 1 , 1 sin ( a r c c i s α ) = α , cos ( a r c cos α ) = α , д л я α ∈ ( — ∞ , ∞ ) t g ( a r c t g α ) = α , c t g ( a r c c t g α ) = α

Указанное в них легко сформулировать из самих определений обратных тригонометрических функций числа. Если вы забыли, как найти, например, тангенс арктангенса, все можно посмотреть в этой формуле.

Формулы арккотангенса котангенса, арктангенса тангенса и арксинуса синуса и арккосинуса косинуса

д л я — π 2 ≤ α ≤ π 2 a r c sin ( sin α ) = α , д л я 0 ≤ α ≤ π arccos ( cos α ) = α , д л я — π 2 α π 2 arctg ( tg α ) = α , д л я 0 α π arcctg ( ctg α ) = α

Здесь все также более-менее очевидно, как и в предыдущем пункте: эти формулы можно вывести из определений арксинуса, арккосинуса и др. Единственное, на что нужно обратить пристальное внимание: они будут верны только в том случае, если a (число или угол) будут входить в указанный предел. В противном случае расчет по формуле будет ошибочен, и применять ее нельзя.

Как соотносятся между собой арксинусы, арккосинусы, арктангенсы и арккотангенсы противоположных чисел

В этом блоке мы сформулируем важное утверждение:

Обратные тригонометрические функции отрицательного числа можно выразить через арксинус, арккосинус, арктангенс и арккотангенс противоположного ему положительного числа.

д л я α ∈ — 1 , 1 a r c c i s ( — α ) = — a r c sin α , a r c cos ( — α ) = π — a r c cos α , д л я α ∈ ( — ∞ , ∞ ) a r c t g ( — α ) = — a r c t g α , a r c c t g ( — α ) = π — arcctg α

Таким образом, если в расчетах нам встречаются эти функции для отрицательных чисел, мы можем от них избавиться, преобразовав их в аркфункции положительных чисел, с которыми иметь дело проще.

Формулы суммы: арксинус + арккосинус, арктангенс + арккотангенс

Они выглядят следующим образом:

д л я α ∈ — 1 , 1 a r c c i s α + a r c cos α = π 2 , д л я α ∈ ( — ∞ , ∞ ) a r c t g α + a r c c t g α = π 2

Из написанного видно, что арксинус некоторого числа можно вывести с помощью его арккосинуса, и наоборот. С арктангенсом и арккотангенсом аналогично – они соотносятся между собой аналогичным образом.

Формулы связи между прямыми и обратными тригонометрическими функциями

Знать связи между прямыми функциями и их аркфункциями очень важно для решения многих практических задач. Как же быть, если у нас есть необходимость вычислить, к примеру, тангенс арксинуса? Ниже приведен список основных формул для этого, которые полезно выписать себе.

— 1 ≤ α ≤ 1 , sin ( a r c sin α ) = α— 1 ≤ α ≤ 1 , sin ( a r c cos α ) = 1 — α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c t g α ) = α 1 + α 2— ∞ ≤ α ≤ + ∞ , sin ( a r c c t g α ) = 1 1 + α 2
— 1 ≤ α ≤ 1 , cos ( a r c sin α ) = 1 — α 2— 1 ≤ α ≤ 1 , cos ( a r c cos α ) = α— ∞ ≤ α ≤ + ∞ , cos ( a r c t g α ) = 1 1 + α 2— ∞ ≤ α ≤ + ∞ , cos ( a r c c t g α ) = 1 1 + α 2
— 1 α 1 , t g ( a r c sin α ) = α 1 — α 2α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , t g ( a r c cos α ) = 1 — α 2 α— ∞ ≤ α ≤ + ∞ , t g ( a r c t g α ) = αα ≠ 0 , t g ( a r c c t g α ) = 1 α
α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) , c t g ( a r c sin α ) = 1 — α 2 α— 1 α 1 , c t g ( a r c cos α ) = α 1 — α 2α ≠ 0 , c t g ( a r c t g α ) = 1 α— ∞ ≤ α ≤ + ∞ , c t g ( a r c c t g α ) = α

Теперь разберем примеры, как они применяются в задачах.

Вычислите косинус арктангенса из 5 .

Решение

У нас для этого есть подходящая формула следующего вида: cos ( a r c t g α ) = 1 1 + α 2

Подставляем нужное значение: cos ( a r c t g 5 ) = 1 1 + ( 5 ) 2 = 2 6

Вычислить синус арккосинуса 1 2 .

Решение

Для этого нам понадобится формула: sin ( a r c cos α ) = 1 — a 2

Подставляем в нее значения и получаем: sin ( a r c cos 1 2 ) = 1 — ( 1 2 ) 2 = 3 2

Обратите внимание, что непосредственные вычисления приводят к аналогичному ответу: sin ( a r c cos 1 2 ) = sin π 3 = 3 2

Если вы забыли, как правильно вычислять значения прямых и обратных функций, вы всегда можете вернуться к нашим предыдущим материалам, где мы разбирали это.

Доказательства формул синусов арккосинуса, арккотангенса и арктангенса

Для того, чтобы наглядно вывести полученные формулы, нам понадобятся основные тригонометрические тождества и собственно формулы основных обратных функций — косинуса арккосинуса и др. Мы их уже выводили ранее, поэтому тратить время на их доказательства не будем. Начнем сразу с формул синусов арккосинуса, арккотангенса и арктангенса. Используя тождество, получим:

sin 2 α + cos 2 α = 1 1 + c t g 2 α = 1 sin 2 α

Вспомним, что t g α · c t g α = 1 . Из этого можно получить:

sin α = 1 — cos 2 α , 0 ≤ α ≤ π sin α = t g α 1 + t g 2 α , — π 2 α π 2 sin α = 1 1 + c t g 2 α , 0 α π

У нас получилось, что мы выразили синус через необходимые аркфункции при заданном условии.

Теперь в первой формуле вместо a мы добавим arccos a. Итог — формула синуса арккосинуса.

Далее во вторую вместо a ставим arctg a. Это формула синуса арктангенса.

Аналогично с третьей – если мы добавим в нее arcctg a, будет формула синуса арктангенса.

Все наши расчеты можно сформулировать более емко:

  1. sin α = 1 — cos 2 α , 0 ≤ α ≤ π

Следовательно, sin ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) = 1 — a 2

  1. sin α = t g α 1 + t g α , — π 2 α π 2 ,

Следовательно, sin ( a r c t g α ) = t g ( a r c t g α ) 1 + t g 2 ( a r c t g α ) = α 1 + α 2

  1. sin α = 1 1 + c t g 2 α , 0 α π

Следовательно, sin ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

Выводим формулы косинуса арксинуса, косинуса арктангенса и косинуса арккотангенса.

Их мы выведем по имеющемуся шаблону:

  1. Из cos α = 1 — sin 2 α , — π 2 ≤ α ≤ π 2 следует, что

cos ( a r c sin α ) = 1 — sin 2 ( a r c sin α ) = 1 — a 2

  1. Из cos α = 1 1 + t g 2 α , — π 2 α π 2 следует, что
  2. Из cos α = c t g α 1 + c t g 2 α , 0 α π cos ( a r c t g α ) = 1 1 + t g 2 ( a r c t g α ) = 1 1 + α 2

следует, что cos ( a r c t g α ) = c t g ( a r c c t g α ) 1 + c t g 2 ( a r c c t g α ) = α 1 + α 2

Доказательства формул тангенсов арксинуса, арккосинуса и арккотангенса

  1. Исходим из t g α = sin α 1 — sin 2 α , — π 2 α π 2 . Получаем t g ( a r c sin α ) = sin ( a r c sin α ) 1 — sin 2 ( a r c sin α ) = α 1 — α 2 при условии, что — 1 α 1 .
  2. Исходим из t g α = 1 — cos 2 α cos α , α ∈ [ 0 , π 2 ) ∪ ( π 2 , π ] , получаем

t g ( a r c cos α ) = 1 — cos 2 ( a r c cos α ) cos ( a r c c os α ) = 1 — α 2 α при условии α ∈ ( — 1 , 0 ) ∪ ( 0 , 1 ) .

  1. Исходим из t g α = 1 c t g α , α ∈ ( 0 , π 2 ) ∪ ( π 2 , π ) , получаем t g ( a r c c t g α ) = 1 c t g ( a r c c t g α ) = 1 α при условии, что α ≠ 0 .

Теперь нам нужны формулы котангенсов арксинуса, арккосинуса и арктангенса. Вспомним одно из тригонометрических равенств:

c t g α = 1 t g α

Используя его, мы можем сами вывести необходимые формулы, используя формулы тангенса арксинуса, тангенса арккосинуса и тангенса арктангенса. Для этого понадобится поменять в них местами числитель и знаменатель.

Как выразить арксинус через арккосинус, арктангенс и арккотангенс и так далее

Мы связали между собой прямые и обратные тригонометрические функции. Полученные формулы дадут нам возможность связать и одни обратные функции с другими, то есть выразить одни аркфункции через другие аркфункции. Разберем примеры.

Здесь мы можем заменить арксинус на арккосинус, арктангенс и арккотангенс соответственно, и получить искомую формулу:

a r c sin α = a r c cos 1 — α 2 , 0 ≤ α ≤ 1 — a r c cos 1 — a 2 , — 1 ≤ α 0 a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 a r c sin α = a r c c t g 1 — α 2 α , 0 α ≤ 1 a r c c t g 1 — α 2 α — π , — 1 ≤ α ≤ 0

А так мы выразим арккосинус через остальные обратные функции:

a r c cos α = a r c sin 1 — α 2 , 0 ≤ α ≤ 1 π — arcsin 1 — α 2 , — 1 ≤ α 0 a r c cos α = a r c t g 1 — α 2 α , 0 α ≤ 1 π + arctg 1 — α 2 α , — 1 α 0 arccosα = arcctg α 1 — α 2 , — 1 α 1

Формула выражения арктангенса:

a r c t g α = a r c sin α 1 + α 2 , — ∞ α + ∞ a r c t g α = a r c cos 1 1 + α 2 , α ≥ 0 — a r c cos 1 1 + α 2 , α 0 a r c t g α = a r c c t g 1 α , α ≠ 0

Последняя часть – выражение арккотангенса через другие обратные функции:

a r c c t g α = a r c sin 1 1 + α 2 , α ≥ 0 π — a r c sin 1 1 + α 2 , α 0 a r c c t g α = a r c cos α 1 + α 2 , — ∞ α + ∞ a r c c t g α = a r c t g 1 α , α ≠ 0

Теперь попробуем доказать их, опираясь на основные определения обратных функций и ранее выведенных формул.

Возьмём a r c sin α = a r c t g α 1 — α 2 , — 1 α 1 и постараемся вывести доказательство.

Мы знаем, что a r c t g α 1 — α 2 — это число, величина которого составляет от минус половины пи до плюс половины пи. Из формулы синуса арктангенса получим:

sin ( a r c t g α 1 — α 2 ) = α 1 — α 2 1 + ( α 1 — α 2 ) 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 + α 2 1 — α 2 = α 1 — α 2 1 1 — α 2 = α

Получается, что a r c t g α 1 — α 2 при условии 1 a 1 – это и есть арксинус числа a .

Вывод: a r c sin a = a r c t g a 1 — a 2 , — 1 a 1

Прочие формулы доказываются по аналогии.

В завершение разберем один пример применения формул на практике.

Условие Вычислить синус арккотангенса минус корня из 3 .

Решение

Нам понадобится формула выражения арккотангенса через арксинус: a r c c t g α = a r c sin 1 1 + a 2 , α ≥ 0 π — arcsin 1 1 + a 2 , α 0
Подставим в нее α = — 3 и получим ответ – 1 2 . Непосредственное вычисление дало бы нам те же результаты: sin ( a r c c t g ( — 3 ) ) = sin 5 π 6 = 1 2 Для решения задачи можно взять и другую формулу, выражающую синус через котангенс: sin α = 1 1 + c t g 2 α , 0 α π

В итоге у нас бы вышло: sin ( a r c c t g ( — 3 ) ) = 1 1 + c t g 2 ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Или возьмем формулу синуса арккотангенса и получим тот же ответ: sin ( a r c c t g α ) = 1 1 + α 2 sin ( a r c c t g ( — 3 ) ) = 1 1 + ( — 3 ) 2 = 1 2

Прочие формулы с обратными функциями

Мы рассмотрели самые основные формулы, которые понадобятся вам при решении задач. Однако это не все формулы с аркфункциями: есть и ряд других, специфичных, которые употребляются нечасто, но все же их знание может быть полезно. Запоминать их особого смысла нет: проще вывести их тогда, когда они нужны.

Разберем одну из них, называемую формулой половинного угла. Она выглядит следующим образом:

sin 2 α 2 = 1 — cos α 2

Если угол альфа при этом больше нуля, но меньше числа пи, то у нас выходит:

sin α 2 = 1 — cos α 2

Учитывая данное условие, заменяем упомянутый угол на arccos. В итоге наша предварительная формула выглядит так:

sin a r c cos α 2 = 1 — cos ( a r c cos α ) 2 ⇔ sin a r c cos α 2 = 1 — α 2

Отсюда мы выводим итоговую формулу, в которой арксинус выведен через арккосинус:

a r c cos α 2 = a r c sin 1 — α 2

Мы перечислили не все связи, которые имеются между обратными тригонометрическими функциями, а лишь наиболее употребляемые из них. Важно подчеркнуть, что ценность имеют не столько сами сложные формулы, что мы привели в статье: заучивать их наизусть не нужно. Гораздо важнее уметь самому делать нужные преобразования, и тогда сложные вычисления не потребуется хранить в голове.

В продолжение темы в следующей статье мы рассмотрим преобразование выражений с арксинусом, арккосинусом, арктангенсом и арккотангенсом.

Арктангенс, арккотангенс – свойства, графики, формулы

Арктангенс, arctg

Определение и обозначения

Арктангенс обозначается так:
.

График функции арктангенс

График арктангенса получается из графика тангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, множество значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арктангенса.

Арккотангенс, arcctg

Определение и обозначения

Арккотангенс обозначается так:
.

График функции арккотангенс

График арккотангенса получается из графика котангенса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккотангенса.

Четность

Функция арктангенс является нечетной:
arctg(– x ) = arctg(–tg arctg x ) = arctg(tg(–arctg x )) = – arctg x

Функция арккотангенс не является четной или нечетной:
arcctg(– x ) = arcctg(–ctg arcctg x ) = arcctg(ctg(π–arcctg x )) = π – arcctg x ≠ ± arcctg x .

Свойства – экстремумы, возрастание, убывание

Функции арктангенс и арккотангенс непрерывны на своей области определения, то есть для всех x . (см. доказательство непрерывности). Основные свойства арктангенса и арккотангенса представлены в таблице.

y = arctg xy = arcctg x
Область определения и непрерывность– ∞– ∞
Множество значений
Возрастание, убываниемонотонно возрастаетмонотонно убывает
Максимумы, минимумынетнет
Нули, y = 0x = 0нет
Точки пересечения с осью ординат, x = 0y = 0y = π/ 2
π
0

Таблица арктангенсов и арккотангенсов

В данной таблице представлены значения арктангенсов и арккотангенсов, в градусах и радианах, при некоторых значениях аргумента.

xarctg xarcctg x
град.рад.град.рад.
– ∞– 90°180°π
– 60°150°
– 1– 45°135°
– 30°120°
0090°
30°60°
145°45°
60°30°
+ ∞90°0

Формулы

Формулы суммы и разности

при

при 0,\;xy > 1″ style=»width:122px;height:18px;vertical-align:-10px;background-position:-138px -570px»>

при 1″ style=»width:122px;height:18px;vertical-align:-10px;background-position:-261px -570px»>

при -1″ style=»width:76px;height:18px;vertical-align:-10px;background-position:-550px -570px»>

при 0,\;xy

при

Выражения через логарифм, комплексные числа

Выражения через гиперболические функции

Производные

Производные высших порядков:
Пусть . Тогда производную n-го порядка арктангенса можно представить одним из следующих способов:
;
.
Символ означает мнимую часть стоящего следом выражения.

Аналогично для арккотангенса. Пусть . Тогда
;
.

Интегралы

Делаем подстановку x = tg t и интегрируем по частям:
;
;
;

Выразим арккотангенс через арктангенс:
.

Разложение в степенной ряд

При |x| ≤ 1 имеет место следующее разложение:
;
.

Обратные функции

Обратными к арктангенсу и арккотангенсу являются тангенс и котангенс, соответственно.

Следующие формулы справедливы на всей области определения:
tg(arctg x ) = x
ctg(arcctg x ) = x .

Следующие формулы справедливы только на множестве значений арктангенса и арккотангенса:
arctg(tg x ) = x при
arcctg(ctg x ) = x при .

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 14-07-2014 Изменено: 23-12-2018


источники:

http://zaochnik.com/spravochnik/matematika/trigonometrija/osnovnye-formuly-s-arksinusom-arkkosinusom-arktang/

http://1cov-edu.ru/mat_analiz/funktsii/obratnie_trigonometricheskie/arctg/