Au h2so4 разб уравнение реакции

Серная кислота

Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

АппаратНазначение и уравнения реакций
Печь для обжига4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

ЦиклонИз печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
ЭлектрофильтрВторой этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башняОсушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
ТеплообменникОчищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башняПолучение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота .

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , серная кислота взаимодействует с оксидом магния:

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например , серная кислота взаимодействует с гидрокарбонатом натрия:

Или с силикатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:

4. Т акже серная кислота вступает в обменные реакции с солями.

Например , серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Au h2so4 разб уравнение реакции

Вопрос по химии:

Au+H2so4 разб помогите плиз

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

реакция не идёт, H2SO4 разбавленная не реагирует с золотом

Знаете ответ? Поделитесь им!

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Химия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи — смело задавайте вопросы!

Химия — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются.

Металлы

Металлы — группа элементов, находящихся в виде простых веществ, обладающих металлическими свойствами:

1. Высокая теплопроводность

2. Высокая электропроводность

3. Металлический блеск

4. Высокая пластичность

5. Высокая ковкость

В Периодической системе находятся щелочные и щелочноземельные металлы, переходные металлы, актиноиды и лантаноиды.

Физические свойства металлов

Агрегатное состояние (при н.у.) — твердое (кроме ртути, она — жидкая). Имеют температуры плавления от -39С до 3410С. Бывают легкими (алюминий, магний, цинк) и тяжелыми (осмий, иридий). Имеют различные оттенки — желтый, красный и т.д.

Большинство металлов на внешнем уровне имеют от 1 до 3х электронов, поэтому намного чаще отдают электроны, чем принимают.

1. Реагируют с неметаллами

металл (кроме щелочных) + кислород → амфотерный/основной оксид

4Al + 3O2 → 2Al2O3

Б. Взаимодействие с водородом (с образованием солей)

металл + водород → гидрид металла

В. Взаимодействие с галогенами (с образованием хлоридов)

металл + галоген → галогенид металла

Г. Взаимодействие с серой (с образованием сульфидов)

металл + сера → сульфид металла

Д. Взаимодействие с азотом (с образованием нитридов)

металл + азот → нитрид металла

Е. Взаимодействие с фосфором (с образованием фосфидов)

металл + фосфор → фосфид металла

Ж. Взаимодействие с углеродом (с образованием карбидов)

металл + углерод → карбид металла

2. Взаимодействие металлов между собой

металл + металл → интерметаллическое соединение

3. Растворение металлов друг в друге без взаимодействия с образованием сплава

4. Взаимодействие кислоты с металлом

А. Взаимодействие кислоты с металлами, стоящими в ряду до или после водорода

кислота + металл до Н2 → сель металла в минимальной степени окисления + Н2↑

Fe + H2SO4(разб) → FeSO4 + H2↑

кислота + металл после Н2 ≠ реакция не идет

Б. Взаимодействие концентрированной серной кислоты с металлами

H2SO4(конц) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

H2SO4(конц) + щелочной/щелочноземельный металл и Mg/Zn → H2S/S/SO2 (в зависимости от условий) + сульфат металла в максимальной степени окисления + Н2О

Zn + 2H2SO4(конц) (t1)→ ZnSO4 + SO2↑ + 2H2O

3Zn + 4H2SO4(конц) (t2>t1)→ 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4(конц) (t3>t2)→ 4ZnSO4 + H2S↑ + 4H2O

H2SO4(конц) + остальные металлы → SO2 + сульфат металла в максимальной степени окисления + H2O

Cu + 2H2SO4(конц) (t)→ CuSO4 + SO2↑ + 2H2O

2Al + 6H2SO4(конц) (t)→ Al2(SO4)3 + 3SO2↑ + 6H2O

В. Взаимодействие концентрированной азотной кислоты с металлами

HNO3(конц) + Au, Pt, Ir, Rh, Ta, Os ≠ реакция не идет

HNO3(конц) + металл щелочной/щелочноземельный → N2O + нитрат металла в максимальной степени окисления + H2O

4Ba + 10HNO3(конц) → 4Ba(NO3)2 + N2O↑ + 5H2O

HNO3(конц) + остальные металлы при температуре → NO2 + нитрат металла в максbмальной степени окисления + H2O

Ag + 2HNO3(конц) → AgNO3 + NO2↑ + H2O

С Fe, Co, Ni, Cr и Al взаимодействует только при нагревании, так как при обычных условиях эти металлы азотной кислотой пассивируются — становятся химически стойкими

Г. Взаимодействие разбавленной азотной кислоты с металлами

HNO3(разб) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

Очень пассивные металлы (Au, Pt) могут быть растворены царской водкой — смесью одного объема концентрированной азотной кислоты с тремя объемами концентрированной соляной кислоты. Окислителем в ней является атомарный хлор, отщепляющийся от хлорида нитрозила, который образуется в результате реакции: HNO3 + 3HCl → 2H2O + NOCl + Cl2

HNO3(разб) + металл щелочной/щелочноземельный → NH3(NH4NO3) + нитрат металла в максимальной степени окисления + H2O

NH3 превращается в NH4NO3 в избытке азотной кислоты

4Ca + 10HNO3(разб) → 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл в ряду напряжений до Н2 → NO/N2O/N2/NH3 (в зависимости от условий) + нитрат металла в максимальной степени окисления + Н2О

С остальными металлами, стоящими в ряду напряжений до водорода и неметаллами, HNO3(разб) образует соль, воду и, в основном NO, но, может, в зависимости от условий и N2O, и N2, и NH3/NH4NO3 (чем больше разбавлена кислота, тем ниже степень окисления азота в выделяющемся газообразной продукте)

3Zn + 8HNO3(разб) → 3Zn(NO3)2 + 2NO↑ + 4H2O

4Zn + 10HNO3(разб) → 4Zn(NO3)2 + N2O↑ + 5H2O

5Zn + 12HNO3(разб) → 5Zn(NO3)2 + N2↑ + 6H2O

4Zn + 10HNO3(оч.разб) → 4Zn(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл после Н2 → NO + нитрат металла в максимальной степени окисления + H2O

С малоактивными металлами, стоящими после Н2, HNO3разб образует соль, воду и NO

3Cu + 8HNO3(разб) → 3Cu(NO3)2 + 2NO↑ + 4H2O

5. Для восстановления неметаллов из их оксидов часто используют магнийтермию.

CO2 + 2Mg → C + 2MgO

SiO2 + 2Mg (t)→ Si + 2MgO

N2O + Mg (t)→ N2 + MgO

6. Соль менее активного металла + металл более активный → металл менее активный↓ + соль

Более активный металл вытесняет менее активный металл (стоящий правее в ряду напряжения) из раствора его соли, при этом образуется новая соль, а менее активный металл выделяется в свободном виде (оседает на пластинке активного металла). Исключение — щелочные и щелочноземельные металлы в растворе взаимодействуют с водой.

Соли, обладающие окислительными свойствами, в растворе вступают с металлами и в другие окислительно-восстановительные реакции.

FeSO4 + Zn → Fe↓ + ZnSO4

Hg(NO3)2 + Cu → Hg↓ + Cu(NO3)2

2FeCl3 + Fe → 3FeCl2

FeCl3 + Cu → FeCl2 + CuCl2

HgCl2 + Hg → Hg2Cl2

2CrCl3 + Zn → 2CrCl2 + ZnCl2

Металлы могут вытеснять друг друга и из расплавов солей (реакция осуществляется без доступа воздуха). При этом надо помнить, что:

а) при плавлении многие соли разлагаются

б) ряд напряжения металлов определяет относительную активность металлов только в водных растворах (так, например, Аl в водных растворах менее активен, чем щелочноземельные металлы, а в расплавах — более активен)


источники:

http://online-otvet.ru/himia/5cea80bb96f4e19a2915b350

http://scienceforchildren.ru/metally