База данных и системы уравнения базами данных

Базы данных и СУБД

Для правильной работы сайта нужны не только файлы с кодом страниц, но и базы данных. Для взаимодействия с БД используются системы управления базами данных (СУБД). В этой статье я расскажу о базах данных и СУБД, их разновидностях и основных отличиях.

Как работают базы данных

В базе данных может содержаться различная информация: личные данные пользователей, записи, даты, заказы, список клиентов и так далее. К примеру, если у вас интернет-магазин, то база данных вашего сайта может содержать прайс-листы, каталог товаров или услуг, отчеты, статистику и информацию о покупателях.

Любую информацию можно быстро заносить в базу данных и так же быстро извлекать ее при необходимости.

Важную роль играет взаимосвязь информации в базе данных: изменение одной строчки может привести к значительным изменениям других строк. Работать с данными таким образом гораздо проще и быстрее, чем если бы изменения касались только одного места.

Однако это не значит, что база данных обязательно должна быть у каждого сайта – к примеру, если у вас сайт-визитка, и никакой новой информации вы на сайте не размещаете, то база данных вам будет попросту не нужна.

Система управления базами данных (СУБД)

Система управления базами данных (сокращенно СУБД) – это программное обеспечение для создания и работы с базами данных.

Главная функция СУБД – это управление данными (которые могут быть как во внешней, так и в оперативной памяти). СУБД обязательно поддерживает языки баз данных, а также отвечает за копирование и восстановление информации после каких-либо сбоев.

Реляционные СУБД и язык SQL

Реляционные и объектно-реляционные СУБД являются одними из самых распространенных систем. Они представляют собой таблицы, в которых каждый столбец (он называется «field» или «поле») упорядочен и имеет определенное уникальное название. Последовательность строк (их называют «records» или «записи») определяется последовательностью ввода информации в таблицу. При этом обрабатывание столбцов и строк может происходить в любом порядке. Таблицы с данными связаны между собой специальными отношениями, благодаря чему с данными из разных таблиц можно работать – к примеру, объединять их при помощи одного запроса.

Для управления реляционными базами данных применяется особый язык программирования – SQL. Сокращение расшифровывается как «Structured query language», в переводе на русский – «язык структурированных запросов».

Команды, которые используются в SQL, делятся на:

  • манипулирующие данными,
  • определяющие данные,
  • управляющие данными.

Схема работы с базой данных выглядит следующим образом:

5 лучших СУБД

Далее я кратко расскажу о лучших СУБД, которые чаще всего используются при создании веб-проектов.

MySQL

MySQL является одной из самых популярных и распространенных СУБД, которая используется во многих компаниях (например, Facebook, Wikipedia, Twitter, LinkedIn, Alibaba и других). MySQL представляет собой реляционную СУБД, которая относится к свободному программному обеспечению: она распространяется на условиях GNU Public License. Как правило, эту систему управления базами данных определяют как хорошую, быструю и гибкую, рекомендованную к применению в небольших или средних проектах.

У MySQL есть множество различных преимуществ. Например, она поддерживает различные типы таблиц – как известные MyISAM и InnoDB, так и более экзотичные HEAP и MERGE. Кроме того, количество поддерживаемых типов постоянно растет. MySQL выполняет все команды быстро – возможно, сейчас это самая быстрая СУБД из всех существующих. С этой системой управления базами данных может одновременно работать неограниченное количество пользователей, а число строк в таблицах может достигать 50 миллионов.

Так как в сравнении с некоторыми другими системами MySQL поддерживает меньшее количество возможностей, то и работать с ней значительно проще, чем, к примеру, с PostgreSQL, о которой будет рассказано ниже.

Для работы с MySQL используется не только текстовый, но и графический режим. Это становится реальным благодаря приложению phpMyAdmin: для работы в приложении вам даже не нужно знать SQL-команды, а администрировать свою базу данных можно прямо через браузер.

MySQL – это выбор тех, кому необходима СУБД для проекта небольшого или среднего размера, быстрая и удобная в работе и без сложностей с администрированием.

PostgreSQL

Эта свободно распространяемая система управления базами данных относится к объектно-реляционному типу СУБД. Как и в случае с MySQL, работа с PostgreSQL основывается на языке SQL, однако, в отличие от MySQL, PostgreSQL поддерживает стандарт SQL-2011. Эта СУБД не имеет ограничений ни по максимальному размеру базы данных, ни по максимуму записей или индексов в таблице.

Если говорить о преимуществах PostgreSQL, то в первую очередь это надежность транзакций и репликаций, возможность наследования и легкая расширяемость. PostgreSQL поддерживает различные расширения и варианты языков программирования, такие как PL/Perl, PL/Python и PL/Java. Также есть возможность загружать C-совместимые модули.

Многие отмечают, что в отличие от MySQL данная СУБД имеет хорошую и подробную документацию, которая дает ответы практически на все вопросы.

О том, что это более масштабная, чем MySQL, СУБД, говорит и тот факт, что PostgreSQL периодически сравнивают с такой мощной системой управления данных, как Oracle. Все это позволяет говорить о PostgreSQL как об одной из самых продвинутых СУБД на данный момент.

SQLite

На данный момент это одна из самых компактных СУБД. Также она является встраиваемой и реляционной.

SQLite позволяет хранить все данные в одном файле и, благодаря своему небольшому объему, отличается завидным быстродействием. SQLite значительно отличается от MySQL и PostgreSQL своей структурой: движок и интерфейс этой СУБД находятся в одной библиотеке – и именно это позволяет выполнять все запросы очень быстро. Другие СУБД (MySQL, PostgreSQL, Oracle и т.д.) используют парадигму «клиент-сервер», когда взаимодействие происходит через сетевой протокол.

Из недостатков можно отметить отсутствие системы пользователей и возможности увеличения производительности.

Oracle

Эта СУБД относится к объектно-реляционному типу. Название произошло от названия разработавшей эту систему фирмы Oracle. Наравне с SQL СУБД использует процедурное расширение под названием PL/SQL, а также язык Java.

Oracle – это система, отличающаяся стабильностью уже не один десяток лет, поэтому ее выбирают корпорации, для которых важна надежность восстановления после сбоев, отлаженная процедура бэкапа, возможность масштабирования и другие ценные возможности. К тому же эта СУБД обеспечивает отличную безопасность и эффектную защиту данных.

В отличие от других СУБД, стоимость покупки и использования Oracle достаточно высока, и именно это зачастую является значимым препятствием к ее использованию в небольших фирмах. Вероятно, именно это также является причиной того, что в рейтинге лучших СУБД на 2016 год в России Oracle находится лишь на 6-м месте.

MongoDB

Эта СУБД отличается тем, что она предназначена для хранения иерархических структур данных, и поэтому ее называют документоориентированной (она представляет собой документное хранилище без использования таблиц или схем). MongoDB имеет открытый исходный код.

Используя идентификатор, вы можете производить быстрые операции над объектом. Также эта СУБД хорошо показывает себя и при сложных взаимодействиях. В первую очередь речь идет о быстродействии – в некоторых случаях приложение, написанное на MongoDB, будет работать быстрее, чем такое же приложение, использующее SQL, т.к. MongoDB относится к классу СУБД NoSQL и пользуется объектным языком запросов, который значительно легче SQL.

Однако этот язык имеет и свои ограничения, и потому MongoDB следует использовать в случаях, когда нет необходимости в сложных и нетривиальных выборках.

Заключение

Выбор СУБД – это важный момент при создании своего ресурса. Отталкивайтесь от своих задач и возможностей, пробуйте и экспериментируйте, чтобы найти именно тот вариант, который будет наиболее подходящим.

База данных и системы уравнения базами данных

Одним из важнейших условий обеспечения эффективного функционирования любой организации является наличие развитой информационной системы. Информационная система реализует автоматизированный сбор, обработку и манипулирование данными, содержит технические средства обработки данных, программное обеспечение и обслуживающий персонал.

Современной формой информационных систем являются банки данных, которые включают в свой состав вычислительную систему, одну или несколько баз данных (БД), систему управления базами данных (СУБД) и набор прикладных программ (ПП). Основными функциями банков данных являются:

• хранение данных и их защита;

• изменение (обновление, добавление и удаление) хранимых данных;

• поиск и отбор данных по запросам пользователей;

• обработка данных и вывод результатов.

База данных обеспечивает хранение информации и представляет собой поименованную совокупность данных, организованных по определенным правилам, включающим общие принципы описания, хранения и манипулирования данными.

Система управления базами данных представляет собой пакет прикладных программ и совокупность языковых средств, предназначенных для создания, сопровождения и использования баз данных.

Прикладные программы (приложения) в составе банков данных служат для обработки данных, вычислений и формирования выходных документов по заданной форме.

Приложение представляет собой программу или комплекс программ, использующих БД и обеспечивающих автоматизацию обработки информации из некоторой предметной области. Приложения могут создаваться как в среде СУБД, так и вне СУБД — с помощью системы программирования, к примеру, Delphi или C++ Builder , использующей средства доступа к БД.

Для работы с базой данных во многих случаях можно обойтись только средствам СУБД, скажем, создавая запросы и отчеты. Приложения разрабатывают главным образом в случаях, когда требуется обеспечить удобство работы с БД неквалифицированным пользователям или интерфейс СУБД не устраивает пользователя.

Важнейшим достоинством применения БД в информационных системах является обеспечение независимости данных от прикладных программ. Нет необходимости заниматься вопросами размещения данных в памяти, методами доступа к ним и т. д.

Такая независимость достигается поддерживаемым СУБД многоуровневым представлением данных в БД на логическом (пользовательском) и физическом уровнях.

В качестве основного критерия оптимальности функционирования базы данных, как правило, используются временные характеристики реализации запросов пользователей прикладными программами.

Средства для создания баз данных

Файловые системы

Развитие основных понятий представления данных

Любой вычислительный процесс представляет собой отображение некоторых входных данных в выходные.

Соотношение сложности представления обрабатываемых данных и алгоритма вычислений определяет два класса задач:

— вычислительные задачи – достаточно простое представление данных и сложный процесс вычислений;

— задачи обработки данных (невычислительные задачи) – простой алгоритм обработки данных и сложное представление обрабатываемых данных.

В соответствии с этим приходится уделять внимание как разработке алгоритма решения задачи, так и способам представления обрабатываемых данных.

Начиная с конца 60-х годов компьютеры начинают интенсивно использоваться для решения так называемых невычислительных задач, связанных с обработкой различного рода документов. При использовании файловых систем данные хранятся в файле, предназначенном только для решения этой задачи. В этом случае описание данных включено в прикладную программу. При изменении формата записей файла необходимо изменение прикладной программы. Таким образом, программная система, решающая поставленную задачу, определяет свои собственные данные и управляет ими.

Недостатки файловых систем

1. Структура записи файла известна только программе, в которой он создан. Изменение структуры требует изменения программ, использующих этот файл с данными. Таким образом, программы зависят от данных.

2. Проблемы с авторизацией доступа. Можно использовать средства ОС по разграничению доступа. Такое решение возможно, но неудобно. Нужны централизованные методы доступа к информации.

3. Проблемы с организацией многопользовательского доступа. Системы управления файлами обеспечивают многопользовательский режим, но имеют особенности, затрудняющие применение для БД. При чтении данных несколькими пользователя проблем не возникает. Внесение же изменений требует синхронизации действий пользователей. Обычно при открытии файла указывается режим (чтение/запись). Если к этому моменту файл открыт другим процессом в режиме изменения, то ОС либо сообщает, что файл невозможно открыть, либо действие блокируется до закрытия другого процесса. В любом случае либо одновременно несколько пользователей не могут модифицировать БД, либо процесс выполняется медленно.

В прикладной программе, использующей при решении задачи один или несколько отдельных файлов, за сохранность и достоверность данных отвечал программист, работающий с этой задачей. Использование базы данных предполагает работу с ней нескольких прикладных программ, решающих задачи разных пользователей.

Естественно, что за сохранность и достоверность интегрированных данных программист, решающий одну из прикладных задач, отвечать уже не может. Кроме того, расширение круга решаемых с использованием базы данных задач может приводить к появлению новых типов записей и отношений между ними. Такое изменение структуры базы данных не должно вести к изменению множества ранее разработанных и успешно функционирующих прикладных программных систем, работающих с базой данных. С другой стороны, возможное изменение любой из прикладных программ, в свою очередь, не должно приводить к изменению структуры данных. Все вышесказанное обусловливает необходимость отделения данных от прикладных программ.

Системы управления базами данных

Роль интерфейса между прикладными программами и базой данных, обеспечивающего их независимость, играет программный комплекс – система управления базами данных (СУБД).

СУБД – программный комплекс поддержки интегрированной совокупности данных, предназначенный для создания, ведения и использования базы данных многими пользователями (прикладными программами).

Основные функции системы управления базами данных.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация).

3. Обеспечение независимости прикладных программ и (логической и физической независимости).

4. Защита логической целостности базы данных.

5. Защита физической целостности.

6. Управление полномочиями пользователей на доступ к базе данных.

7. Синхронизация работы нескольких пользователей.

8. Управление ресурсами среды хранения.

9. Поддержка деятельности системного персонала.

1. Определение структуры создаваемой базы данных, ее инициализация и проведение начальной загрузки. В большинстве современных СУБД база данных представляется в виде совокупности таблиц.

2. Предоставление пользователям возможности манипулирования данными (выборка необходимых данных, выполнение вычислений, разработка интерфейса ввода/вывода, визуализация). Такие возможности в СУБД представляются либо на основе использования специального языка программирования, входящего в состав СУБД, либо с помощью графического интерфейса.

3. Обеспечение независимости прикладных программ и данных (логической и физической независимости). Важнейшим свойством СУБД является возможность поддерживать два независимых взгляда на базу данных – «взгляд пользователя», воплощаемый в логическом представлении данных, и его отражения в прикладных программах; и «взгляд системы» – физическое представление данных в памяти ЭВМ. Обеспечение логической независимости данных предоставляет возможность изменения (в определенных пределах) логического представления базы данных без необходимости изменения физических структур хранения данных. Таким образом, изменение логического представления данных в прикладных программах не приводит к изменению структур хранения данных. Обеспечение физической независимости данных предоставляет возможность изменять (в определенных пределах) способы организации базы данных в памяти ЭВМ не вызывая необходимости изменения «логического» представления данных. Таким образом, изменение способов организации базы данных не приводит к изменению прикладных программ.

4. Защита логической целостности базы данных.

Основной целью реализации этой функции является повышение достоверности данных в базе данных. Достоверность данных может быть нарушена при их вводе в БД или при неправомерных действиях процедур обработки данных, получающих и заносящих в БД неправильные данные. Для повышения достоверности данных в системе объявляются так называемые ограничения целостности, которые в определенных случаях «отлавливают» неверные данные. Так, во всех современных СУБД проверяется соответствие вводимых данных их типу, описанному при создании структуры. Система не позволит ввести символ в поле числового типа, не позволит ввести недопустимую дату и т.п. В развитых системах ограничения целостности описывает программист, исходя из содержательного смысла задачи, и их проверка осуществляется при каждом обновлении данных. Более подробно

5. Защита физической целостности. При работе ЭВМ возможны сбои в работе (например, из-за отключения электропитания), повреждение машинных носителей данных. При этом могут быть нарушены связи между данными, что приводит к невозможности дальнейшей работы. Развитые СУБД имеют средства восстановления базы данных. Важнейшим используемым понятием является понятие «транзакции». Транзакция – это единица действий, производимых с базой данных. В состав транзакции может входить несколько операторов изменения базы данных, но либо выполняются все эти операторы, либо не выполняется ни один. СУБД, кроме ведения собственно базы данных, ведет также журнал транзакций.

Необходимость использования транзакций в базах данных проиллюстрируем на упрощенном примере. Предположим, что база данных используется в некотором банке и один из клиентов желает перевести деньги на счет другого клиента банка. В базе данных хранится информация о количестве денег у каждого из клиентов. Нам нужно сделать два изменения в базе данных – уменьшить сумму денег на счете одного из клиентов и, соответственно, увеличить сумму денег на другом счете. Конечно, реальный перевод денег в банке представляет собой гораздо более сложный процесс, затрагивающий много таблиц, а возможно, и много баз данных. Однако суть остается та же – нужно либо совершить все действия (увеличить счет одного клиента и уменьшить счет другого), либо не выполнить ни одно из этих действий. Нельзя уменьшить сумму денег на одном счете, но не увеличить сумму денег на другом.

Предположим также, что после выполнения первого из действий (уменьшения суммы денег на счете первого клиента) произошел сбой. Например, могла прерваться связь клиентского компьютера с базой данных или на клиентском компьютере мог произойти системный сбой, что привело к перезагрузке операционной системы. Что в этом случае стало с базой данных? Команда на уменьшение денег на счете первого клиента была выполнена, а вторая команда – на увеличение денег на другом счете – нет, что привело бы к противоречивому, неактуальному состоянию базы данных.

Использование механизма транзакций позволяет находить решение в этом и подобных случаях. Перед выполнением первого действия выдается команда начала транзакции. В транзакцию включается операция снятия денег на одном счете и увеличения суммы на другом счете. Оператор завершения транзакций обычно называется COMMIT. Поскольку после выполнения первого действия транзакция не была завершена, изменения не будут внесены в базу данных. Изменения вносятся (фиксируются) только после завершения транзакции. До выдачи данного оператора сохранения данных в базе не произойдет. В нашем примере, поскольку оператор фиксации транзакции не был выдан, база данных «откатится» в первоначальное состояние – иными словами, суммы на счетах клиентов останутся те же, что и были до начала транзакции. Администратор базы данных может отслеживать состояние транзакций и в необходимых случаях вручную «откатывать» транзакции.

Кроме того, в очевидных случаях СУБД самостоятельно принимает решение об «откате» транзакции.

Транзакции не обязательно могут быть короткими. Бывают транзакции, которые длятся несколько часов или даже несколько дней. Увеличение количества действий в рамках одной транзакции требует увеличения занимаемых системных ресурсов. Поэтому желательно делать транзакции по возможности короткими. В журнал транзакций заносятся все транзакции – и зафиксированные, и завершившиеся «откатом». Ведение журнала транзакций совместно с созданием резервных копий базы данных позволяет достичь высокой надежности базы данных.

Предположим, что база данных была испорчена в результате аппаратного сбоя компьютера, на котором был установлен сервер СУБД. В этом случае нужно использовать последнюю сделанную резервную копию базы данных и журнал транзакций. Причем применить к базе данных нужно только те транзакции, которые были зафиксированы после создания резервной копии. Большинство современных СУБД позволяют администратору воссоздать базу данных исходя из резервной копии и журнала транзакций. В таких системах в определенный момент БД копируется на резервные носители. Все обращения к БД записываются программно в журнал изменений. Если база данных разрушена, запускается процедура восстановления, в процессе которой в резервную копию из журнала изменений вносятся все произведенные изменения.

6. Управление полномочиями пользователей на доступ к базе данных.

Разные пользователи могут иметь разные полномочия по работе с данными (некоторые данные должны быть недоступны; определенным пользователям не разрешается обновлять данные и т.п.). В СУБД предусматриваются механизмы разграничения полномочий доступа, основанные либо на принципах паролей, либо на описании полномочий.

7. Синхронизация работы нескольких пользователей.

Достаточно часто может иметь место ситуация, когда несколько пользователей одновременно выполняют операцию обновления одних и тех же данных. Такие коллизии могут привести к нарушению логической целостности данных, поэтому система должна предусматривать меры, не допускающие обновление данных другим пользователям, пока работающий с этими данными пользователь полностью не закончит с ними работать. Основным используемым здесь понятием является «блокировка». Блокировки необходимы для того, чтобы запретить различным пользователям возможность одновременно работать с базой данных, поскольку это может привести к ошибкам.

Для реализации этого запрета СУБД устанавливает блокировку на объекты, которые использует транзакция. Существуют разные типы блокировок – табличные, страничные, строчные и другие, которые отличаются друг от друга количеством заблокированных записей.

Чаще других используется строчная блокировка – при обращении транзакции к одной строке блокируется только эта строка, остальные строки остаются доступными для изменения.

Таким образом, процесс внесения изменений в базу данных состоит из следующей последовательности действий: выдается оператор начала транзакции, выдается оператор изменения данных, СУБД анализирует оператор и пытается установить блокировки, необходимые для его выполнения, в случае успешной блокировки оператор выполняется, затем процесс повторяется для следующего оператора транзакции. После успешного выполнения всех операторов внутри транзакции выполняется оператор фиксации транзакции. СУБД фиксирует изменения, сделанные транзакцией, и снимает блокировки. В случае неуспеха выполнения какого-либо из операторов транзакция «откатывается», данные получают прежние значения, блокировки снимаются.

8. Управление ресурсами среды хранения.

БД располагается во внешней памяти ЭВМ. При работе в БД заносятся новые данные (занимается память) и удаляются данные (освобождается память). СУБД выделяет ресурсы памяти для новых данных, перераспределяет освободившуюся память, организует ведение очереди запросов к внешней памяти и т.п.

9. Поддержка деятельности системного персонала.

При эксплуатации базы данных может возникать необходимость изменения параметров СУБД, выбора новых методов доступа, изменения (в определенных пределах) структуры хранимых данных, а также выполнения ряда других общесистемных действий. СУБД предоставляет возможность выполнения этих и других действий для поддержки деятельности БД обслуживающему БД системному персоналу, называемому администратором БД.

Классификация СУБД

СУБД, как правило, разделяют по используемой модели данных (как и базы данных) на следующие типы: иерархические, сетевые, реляционные и объектно-ориентированные.

По характеру использования СУБД делят на персональные (СУБДП) и многопользовательские (СУБДМ).

К персональным СУБД относятся Visual FoxPro , Paradox , Clipper , dBase , Access и др. К многопользовательским СУБД относятся, например, СУБД Oracle и Informix . Многопользовательские СУБД включают в себя сервер БД и клиентскую часть, работают в неоднородной вычислительной среде — допускаются разные типы ЭВМ и различные операционные системы. Поэтому на базе СУБДМ можно создать информационную систему, функционирующую по технологии клиент-сервер. Универсальность многопользовательских СУБД отражается соответственно на высокой цене и компьютерных ресурсах, требуемых для их поддержки.

СУБДП представляет собой совокупность языковых и программных средств, предназначенных для создания, ведения и использования БД.

Персональные СУБД обеспечивают возможность создания персональных БД и недорогих приложений, работающих с ними, и при необходимости создания приложений, работающих с сервером БД.

Управляющим компонентом многих СУБД является ядро, выполняющее следующие функции:

— управление данными во внешней памяти;

— управление буферами оперативной памяти (рабочими областями, в которые осуществляется подкачка данных из базы для повышения скорости работы);

Транзакция — это последовательность операций над БД, рассматриваемая СУБД как единое целое. Под транзакцией понимается воздействие на БД, переводящее ее из одного целостного состояния в другое. Воздействие выражается в изменении данных в таблицах базы.

Если одно из изменений, вносимых в БД в рамках транзакции, завершается неуспешно, должен быть произведен откат к состоянию базы данных, имевшему место до начала транзакции. Следовательно, все изменения, внесенные в БД в рамках транзакции либо одновременно подтверждаются, либо не подтверждается ни одно из них.

При выполнении транзакция может быть либо успешно завершена, и СУБД зафиксирует произведенные изменения во внешней памяти. При сбое в аппаратной части ПК, ни одно из изменений не отразится в БД. Понятие транзакции необходимо для поддержания логической целостности БД.

Обеспечение целостности БД — необходимое условие успешного функционирования БД. Целостность БД — свойство БД, означающее, что база данных содержит полную и непротиворечивую информацию, необходимую и достаточную для корректного функционирования приложений. Для обеспечения целостности БД накладывают ограничения целостности в виде некоторых условий, которым должны удовлетворять хранимые в базе данные. Примером таких условий может служить ограничение диапазонов возможных значений атрибутов объектов, сведения о которых хранятся в БД, или отсутствие повторяющихся записей в таблицах реляционных БД.

Обеспечение безопасности достигается в СУБД шифрованием прикладных программ, данных, защиты паролем, поддержкой уровней доступа к базе данных, к отдельной таблице.

Расширение возможностей пользователя СУБДП достигается за счет подключения систем построения графиков и диаграмм, а также подключения модулей, написанных на языках программирования.

Поддержка функционирования в сети обеспечивается:

• средствами управления доступом пользователей к совместно используемым данным, т. е. средствами блокировки файлов (таблиц), записей, полей, которые в разной степени реализованы в разных СУБДП;

• средствами механизма транзакций, обеспечивающими целостность БД при функционировании в сети.

Поддержка взаимодействия с Windows-приложениями позволяет СУБДП внедрять в отчет сведения, хранящиеся в файлах, созданных с помощью других приложений, например, в документе Word или в рабочей книге Excel , включая графику и звук. Для этого в СУБДП поддерживаются механизмы, разработанные для среды Windows , такие как: DDE < Dynamic Data Exchange динамический обмен данными) и OLE < Object Linking and Embedding связывание и внедрение объектов).

Уровни представления данных

Современные подходы к созданию БД предполагают их трёхуровневую организацию. Этот способ организации БД был предложен American National Standards Institute ( ANSI ) и используется повсеместно.

На самом верхнем (внешнем) уровне может быть множество моделей. Этот уровень определяет точку зрения на БД отдельных пользователей (приложений). Каждое приложение видит и обрабатывает только те данные, которые необходимы именно ему.

На концептуальном уровне БД представлена в наиболее общем виде, который объединяет все внешние представления предметной области. На концептуальном уровне имеем обобщённую модель предметной области, для которой создавалась БД. Концептуальное представление только одно. При разработке концептуальной модели усилия направлены на структуризацию данных и выявление взаимосвязей, без рассмотрения особенностей реализации и эффективности разработки.

Внутренний (физический) уровень – это собственно данные, расположенные на внешних носителях информации. Внутренняя модель определяет размещение данных, методы доступа, технику индексирования.

Трёхуровневая организация БД позволяет обеспечить логическую и физическую независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения, без корректировки других приложений, работающих с этой же БД.

Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, использующих эту БД.

Классификация моделей данных

Модель данных – это набор правил, по которым организуются данные.

Это очень простое определение можно уточнить. Модель данных – это некоторая абстракция, которая, будучи приложена к конкретным данным, позволяет пользователям и разработчикам трактовать их как информацию, то есть сведения, содержащие не только данные, но и взаимосвязи между ними.

Принято выделять три группы моделей данных: инфологические, даталогические и физические.

ТОП-10 систем управления базами данных в 2019 году

Умение выбрать СУБД важно при разработке любого ПО. Мы собрали 10 систем управления базами данных и разобрались в их преимуществах.

Популярные системы управления базами данных

РазработчикЛицензияНаписана на
OracleOracle CorporationПроприетарнаяAssembly, C, C++
MySQLOracle CorporationGPL v2 или проприетарнаяC, C++
Microsoft SQL ServerMicrosoft CorporationПроприетарнаяC, C++
PostgreSQLPostgreSQL Global Development GroupЛицензия PostgreSQL (бесплатное ПО с открытым исходным кодом, либеральная лицензия)C
MongoDBMongoDB Inc.Различные варианты лицензированияC++, C, JavaScript
DB2IBMПроприетарная EULAAssembly, C, C++
Microsoft AccessMicrosoft CorporationПробное ПО
RedisSalvatore SanfilippoЛицензия BSDANSI C

Рейтинг СУБД

SQL-базы данных

1. Oracle

Oracle RDBMS (она же Oracle Database) на первом месте среди СУБД. Система популярна у разработчиков, проста в использовании, у нее понятная документация, поддержка длинных наименований, JSON, улучшенный тег списка и Oracle Cloud.

  • Разработчик: Oracle Corporation
  • Написана на:Assembly, C, C++
  • Блог: Oracle NoSQL
  • Скачать: Oracle NoSQL
  • Последняя версия: 18.3

Особенности

  • Обрабатывает большие данные.
  • Поддерживает SQL, к нему можно получить доступ из реляционных БД Oracle.
  • Oracle NoSQL Database с Java/C API для чтения и записи данных.

2. MySQL

MySQL работает на Linux, Windows, OSX, FreeBSD и Solaris. Можно начать работать с бесплатным сервером, а затем перейти на коммерческую версию. Лицензия GPL с открытым исходным кодом позволяет модифицировать ПО MySQL.

Эта система управления базами данных использует стандартную форму SQL. Утилиты для проектирования таблиц имеют интуитивно понятный интерфейс. MySQL поддерживает до 50 миллионов строк в таблице. Предельный размер файла для таблицы по умолчанию 4 ГБ, но его можно увеличить. Поддерживает секционирование и репликацию, а также Xpath и хранимые процедуры, триггеры и представления.

  • Разработчик: Oracle Corporation
  • Написана на C, C++
  • Последняя версия: 8.0.16
  • Скачать: MySql

Особенности

  • Масштабируемость.
  • Лёгкость использования.
  • Безопасность.
  • Поддержка Novell Cluster.
  • Скорость.
  • Поддержка многих операционных систем.

3. Microsoft SQL Server

Самая популярная коммерческая СУБД. Она привязана к Windows, но это плюс, если вы пользуетесь продуктами Microsoft. Зависит от платформы. И графический интерфейс, и программное обеспечение основаны на командах. Поддерживает SQL, непроцедурные, нечувствительные к регистру и общие языки баз данных.

Особенности

  • Высокая производительность.
  • Зависимость от платформы.
  • Возможность установить разные версии на одном компьютере.
  • Генерация скриптов для перемещения данных.

4. PosgreSQL

Масштабируемая объектно-реляционная база данных, работающая на Linux, Windows, OSX и некоторых других системах. В PostgreSQL 10 есть такие функции, как логическая репликация, декларативное разбиение таблиц, улучшенные параллельные запросы, более безопасная аутентификация по паролю на основе SCRAM-SHA-256.

  • Разработчик: PostgreSQL Global Development Group
  • Написана на C
  • Используется в компаниях: Apple, Cisco, Fujitsu, Skype, and IMDb
  • Последняя версия: 11.2
  • Блог: PostgreSQL
  • Скачать: PostgreSQL

Особенности

  • Поддержка табличных пространств, а также хранимых процедур, объединений, представлений и триггеров.
  • Восстановление на момент времени (PITR).
  • Асинхронная репликация.

NoSQL-базы данных

5. MongoDB

Самая популярная NoSQL система управления базами данных. Лучше всего подходит для динамических запросов и определения индексов. Гибкая структура, которую можно модифицировать и расширять. Поддерживает Linux, OSX и Windows, но размер БД ограничен 2,5 ГБ в 32-битных системах. Использует платформы хранения MMAPv1 и WiredTiger.

  • Разработчик: MongoDB Inc. в 2007
  • Написана на C++
  • Последняя версия: 4.1.9
  • Блог: MongoDB
  • Скачать: MongoDB

Особенности

  • Высокая производительность.
  • Автоматическая фрагментация.
  • Работа на нескольких серверах.
  • Поддержка репликации Master-Slave.
  • Данные хранятся в форме документов JSON.
  • Возможность индексировать все поля в документе.
  • Поддержка поиска по регулярным выражениям.

6. DB2

Работает на Linux, UNIX, Windows и мейнфреймах. Эта СУБД идеально подходит для хост-сред IBM. Версию DB2 Express-C нельзя использовать в средах высокой доступности (при репликации, кластеризации типа active-passive и при работе с синхронизируемым доступом к разделяемым данным).

  • Разработчик: IBM
  • Написана на C, C++, Assembly
  • Последняя версия: 11.1
  • Скачать: DB2

Особенности DB2 11.1

  • Улучшенное встроенное шифрование.
  • Упрощённая установка и развёртывание.

7. Microsoft Access

Система управления базами данных от Microsoft, которая сочетает в себе реляционное ядро БД Microsoft Jet с графическим интерфейсом пользователя и инструментами разработки ПО.

Идеально подходит для начала работы с данными, но производительность не рассчитана на большие проекты. В MS Access можно использовать C, C#, C++, Java, VBA и Visual Rudimental.NET. Access хранит все таблицы БД, запросы, формы, отчёты, макросы и модули в базе данных Access Jet в виде одного файла.

  • Разработчик: Microsoft Corporation
  • Последняя версия: 16.0
  • Скачать: Microsoft Access

Особенности

  • Можно использовать VBA для создания многофункциональных решений с расширенными возможностями управления данными и пользовательским контролем.
  • Импорт и экспорт в форматы Excel, Outlook, ASCII, dBase, Paradox, FoxPro, SQL Server и Oracle.
  • Формат базы данных Jet.

8. Cassandra

СУБД активно используется в банковском деле, финансах, а также в Facebook и Twitter. Поддерживает Windows, Linux и OSX. Для запросов к БД Cassandra используется SQL-подобный язык — Cassandra Query Language (CQL).

  • Разработчик: Apache Software Foundation
  • Написана на: Java
  • Последняя версия: 3.11.4
  • Блог: Cassandra
  • Скачать: Cassandra

Особенности

  • Линейная масштабируемость.
  • Быстрое время отклика.
  • Поддержка MapReduce и Apache Hadoop.
  • Максимальная гибкость.
  • P2P архитектура.

9. Redis

Redis или Remote Dictionary Server — СУБД с открытым исходным кодом, которая снабжена механизмами журналирования и снимков. Поддерживаются списки, строки, хэши, наборы. Используется для БД, брокеров сообщений и кэшей. Все операции в Redis атомарные. Система написана на языке C и поддерживается практически всеми языками программирования.

  • Разработчик: Salvatore Sanfilippo
  • Последняя версия: 5.0.5
  • Блог: Redis
  • Скачать: Redis

Особенности

  • Автоматическая обработка отказа.
  • Транзакции.
  • Сценарии LUA.
  • Вытеснение LRU-ключей.
  • Поддержка Publish/Subscribe.

10. Elasticsearch

Легко масштабируемая поисковая система корпоративного уровня с открытым исходным кодом. Благодаря обширному и продуманному API обеспечивает чрезвычайно быстрый поиск, работает в том числе с приложениями для обнаружения данных. Используется такими компаниями, как Википедия, The Guardian, StackOverflow, GitHub. ElasticSearch позволяет создавать копии индексов и сегментов.

  • Разработчик: Elastic NV
  • Написана на Java
  • Последняя версия: 7.2.0
  • Блог: Elasticsearch
  • Скачать: Elasticsearch


источники:

http://bd-subd.ru/lekcii/bazi-dannih-i-subd.htm

http://proglib.io/p/databases-2019