Базис системы линейных уравнений это

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

Что означает фраза «ранг матрицы равен $r$»? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde$.

Решить СЛАУ $ \left \ < \begin& 3x_1-6x_2+9x_3+13x_4=9\\ & -x_1+2x_2+x_3+x_4=-11;\\ & x_1-2x_2+2x_3+3x_4=5. \end \right.$. Если система является неопределённой, указать базисное решение.

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ \left( \begin 3 & -6 & 9 & 13 & 9 \\ -1 & 2 & 1 & 1 & -11 \\ 1 & -2 & 2 & 3 & 5 \end \right) \rightarrow \left|\begin & \text<поменяем местами первую и третью>\\ & \text<строки, чтобы первым элементом>\\ & \text <первой строки стала единица.>\end\right| \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ -1 & 2 & 1 & 1 & -11 \\ 3 & -6 & 9 & 13 & 9 \end \right) \begin \phantom <0>\\ II+I\\ III-3\cdot I\end \rightarrow \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 3 & 4 & -6 \end\right) \begin \phantom <0>\\ \phantom<0>\\ III-II\end \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right) $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $\rang A=\rang\widetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $\left( \begin 3 & -6 & 9 & 13 \\ -1 & 2 & 1 & 1 \\ 1 & -2 & 2 & 3 \end \right)$, так и в преобразованной матрице системы, т.е. в $\left( \begin 1 & -2 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end\right)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=\left| \begin 1 & -2 \\ 0 & 0 \end\right|=1\cdot 0-(-2)\cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:

$$ M_<2>^<(2)>=\left| \begin 2 & 3\\ 3 & 4 \end\right|=2\cdot 4-3\cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right)$ от нулевой строки:

$$ \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показать\скрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 3 & -6 & 0 & -4 \end\right) \begin \phantom <0>\\ II:3 \end \rightarrow \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 1 & -2 & 0 & -4/3 \end\right) \begin I-2\cdot II \\ \phantom <0>\end \rightarrow \\ \rightarrow \left(\begin 1 & 0 & 9 & 2 & -1/3\\ 0 & 1 & -2 & 0 & -4/3 \end\right). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $\left\ <\begin& x_1=\frac<2><3>;\\ & x_2=-4;\\ & x_3=-\frac<10><3>;\\ & x_4=1. \end\right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-\frac<1><3>x_4$ и $x_3=-2-\frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3\cdot \left(9+2x_2-\frac<1><3>x_4\right)-6x_2+9\cdot \left(-2-\frac<4><3>x_4\right)+13x_4=9. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Если система является неопределённой, указать базисное решение.

Похожий пример уже был решен в теме «метод Крамера» (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$ \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 4 & -11 & 21 & -2 & 3 & -1\\ -3 & 5 & -13 & -4 & 1 & -2 \end \right) \begin \phantom <0>\\ II-4\cdot I\\ III+3\cdot I\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -3 & 5 & -2 & -5 & -1\\ 0 & -1 & -1 & -4 & 7 & -2 \end \right) \rightarrow \\ \rightarrow \left|\begin & \text<поменяем местами вторую и третью>\\ & \text<строки, чтобы диагональным элементом>\\ & \text <второй строки стало число (-1).>\end\right|\rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & -3 & 5 & -2 & -5 & -1 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III-3\cdot I\end \rightarrow \\ \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & 0 & 8 & 10 & -26 & 5 \end \right). $$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $\rang A=\rang\widetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод «ступенек», что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$ \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 8 & 5 & -10 & 26 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III:8\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I-4\cdot III \\ II+III\\ \phantom<0>\end \rightarrow \\ \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin \phantom <0>\\ II\cdot (-1)\\ \phantom<0>\end \rightarrow \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I+2\cdot II \\ \phantom<0>\\ \phantom<0>\end \rightarrow\\ \rightarrow\left( \begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) $$

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Размерность и базис линейного пространства

Определения размерности и базиса

Линейное пространство называется n-мерным , если в нем существует система из линейно независимых векторов, а любая система из большего количества векторов линейно зависима. Число называется размерностью (числом измерений) линейного пространства и обозначается . Другими словами, размерность пространства — это максимальное число линейно независимых векторов этого пространства. Если такое число существует, то пространство называется конечномерным. Если же для любого натурального числа п в пространстве найдется система, состоящая из линейно независимых векторов, то такое пространство называют бесконечномерным (записывают: ). Далее, если не оговорено противное, будут рассматриваться конечномерные пространства.

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов ( базисных векторов ).

Теорема 8.1 о разложении вектора по базису. Если — базис n-мерного линейного пространства , то любой вектор может быть представлен в виде линейной комбинации базисных векторов:

и притом единственным образом, т.е. коэффициенты определяются однозначно. Другими словами, любой вектор пространства может быть разложен по базису и притом единственным образом.

Действительно, размерность пространства равна . Система векторов линейно независима (это базис). После присоединения к базису любого вектора , получаем линейно зависимую систему (так как это система состоит из векторов n-мерного пространства). По свойству 7 линейно зависимых и линейно независимых векторов получаем заключение теоремы.

Следствие 1. Если — базис пространства , то , т.е. линейное пространство является линейной оболочкой базисных векторов.

В самом деле, для доказательства равенства двух множеств достаточно показать, что включения и выполняются одновременно. Действительно, с одной стороны, любая линейная комбинация векторов линейного пространства принадлежит самому линейному пространству, т.е. . С другой стороны, любой вектор пространства по теореме 8.1 можно представить в виде линейной комбинации базисных векторов, т.е. . Отсюда следует равенство рассматриваемых множеств.

Следствие 2. Если — линейно независимая система векторов линейного пространства и любой вектор может быть представлен в виде линейной комбинации (8.4): , то пространство имеет размерность , а система является его базисом.

В самом деле, в пространстве имеется система линейно независимых векторов, а любая система из большего количества векторов n)» png;base64,iVBORw0KGgoAAAANSUhEUgAAAEAAAAAWBAMAAACCkIcHAAAAMFBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlTPQ5AAAAD3RSTlMAAX1hEMCpIZfQQeAxUfDvHPe4AAABRklEQVQoz2NgIAyYD+CS4TUAU2YMDBbBWBUwxoJI9icMDFd/YTfCuwBIsCowMLB9xK6ALQFInHdgYJAOBPOZFqIpYP8OJDoFGBjqFcB8Fk1DNEc8AuIIIMN+gUcMigqWtgNmQBcypgHxJyA/XyYrDCKhrQKmOVY8M9QHel8PqOAvEG894fQJaqglWIWk2C+G9QsYGPUFGNiBPmT/2cCyAGatZQuQrJUOYACZYC/AwAJUwPz1GTw0GU1TQFS9AmO0AFgByAq2j94T4Aa0g2n7BSw/gBTQCpAjpQNYNxpBHAlxAtDZAsx/PBkYgY5kiACZxxoQDvEmVJ5xKwPHA2UGhlQgW1MA6F7mZwaoAfWJgfdHAwPjJpBzHBh4GBjcwb5HBCQwllygQS2mgDupcAQACZ4tuBX4FUATDC4ASUdMF3DJMxkQkWIB7TREH/AzV/MAAAAASUVORK5CYII=» style=»vertical-align: middle;» /> линейно зависима, поскольку каждый вектор из этой системы линейно выражается через векторы . Значит, и — базис .

Теорема 8.2 о дополнении системы векторов до базиса. Всякую линейно независимую систему векторов n-мерного линейного пространства можно дополнить до базиса пространства.

В самом деле, пусть — линейно независимая система векторов n-мерного пространства . Рассмотрим линейную оболочку этих векторов: . Любой вектор образует с векторами линейно зависимую систему , так как вектор линейно выражается через остальные. Поскольку в n-мерном пространстве существует линейно независимых векторов, то и существует вектор , который не принадлежит . Дополняя этим вектором линейно независимую систему , получаем систему векторов , которая также линейно независимая. Действительно, если бы она оказалась линейно зависимой, то из пункта 1 замечаний 8.3 следовало, что , а это противоречит условию . Итак, система векторов линейно независимая. Значит, первоначальную систему векторов удалось дополнить одним вектором без нарушения линейной независимости. Продолжаем аналогично. Рассмотрим линейную оболочку этих векторов: . Если , то — базис и теорема доказана. Если , то дополняем систему вектором и т.д. Процесс дополнения обязательно закончится, так как пространство конечномерное. В результате получим равенство , из которого следует, что — базис пространства . Теорема доказана.

1. Базис линейного пространства определяется неоднозначно. Например, если — базис пространства , то система векторов при любом также является базисом . Количество базисных векторов в разных базисах одного и того же конечномерного пространства, разумеется, одно и то же, так как это количество равно размерности пространства.

2. В некоторых пространствах, часто встречающихся в приложениях, один из возможных базисов, наиболее удобный с практической точки зрения, называют стандартным.

3. Теорема 8.1 позволяет говорить, что базис — это полная система элементов линейного пространства, в том смысле, что любой вектор пространства линейно выражается через базисные векторы.

4. Если множество является линейной оболочкой , то векторы называют образующими множества . Следствие 1 теоремы 8.1 в силу равенства позволяет говорить, что базис — это минимальная система образующих линейного пространства , так как нельзя уменьшить количество образующих (удалить хотя бы один вектор из набора ) без нарушения равенства .

5. Теорема 8.2 позволяет говорить, что базис — это максимальная линейно независимая система векторов линейного пространства, так как базис — это линейно независимая система векторов, и ее нельзя дополнить каким-либо вектором без потери линейной независимости.

6. Следствие 2 теоремы 8.1 удобно применять для нахождения базиса и размерности линейного пространства. В некоторых учебниках оно берется за определение базиса, а именно: линейно независимая система векторов линейного пространства называется базисом, если любой вектор пространства линейно выражается через векторы . Количество базисных векторов определяет размерность пространства . Разумеется, что эти определения эквивалентны приведенным выше.

Примеры базисов линейных пространств

Укажем размерность и базис для примеров линейных пространств, рассмотренных выше.

1. Нулевое линейное пространство не содержит линейно независимых векторов. Поэтому размерность этого пространства полагают равной нулю: . Это пространство не имеет базиса.

2. Пространства имеют размерности 1, 2, 3 соответственно. Действительно, любой ненулевой вектор пространства , образует линейно независимую систему (см. пункт 1. замечаний 8.2), а любые два ненулевых век тора пространства коллинеарны, т.е. линейно зависимы (см. пример 8.1). Следовательно, , а базисом пространства является любой ненулевой вектор. Аналогично доказывается, что и . Базисом пространства служат любые два неколлинеарных вектора, взятые в определенном порядке (один из них считается первым базисным вектором, другой — вторым). Базисом пространства являются любые три некомпланарных (не лежащих в одной или параллельных плоскостях) вектора, взятые в определенном порядке. Стандартным базисом в является единичный вектор на прямой. Стандартным базисом в считается базис , со стоящий из двух взаимно перпендикулярных единичных векторов плоскости. Стандартным базисом в пространстве считается базис , составленный из трех единичных попарно перпендикулярных векторов, образующих правую тройку.

3. Пространство содержит не более, чем , линейно независимых векторов. В самом деле, возьмем столбцов из и составим из них матрицу размеров . Если n» png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQCAMAAACIsme9AAAAM1BMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADbQS4qAAAAEHRSTlMActEwobEQRsAhMfCRYeCBZdtIVwAAAMRJREFUKM+dkdsSwyAIRJUKivHC/39tJY6Npplm0jxEHT3A7hrzx/dyAZ8RnOUhYaLYh4SVOA9Z+ZbAbTn64O6YDfVZWhhvzlWIU/t9ZCSblkbehZkhJEHHBDhkpGhkOzk4MzazQFtDf4SCTXmkL9ddGYynLLovocsAKFf2coKji5MjBl1Wf8dUeTru1ZPwSMO3nrCEuio3LFUxaIpUhlHC19lLPLnbZUglrVuaY822QL8SrLtJGECn77dxGugicer19OYNWVcGI0RZra4AAAAASUVORK5CYII=» />, то столбцы линейно зависимы по теореме 3.4 о ранге матрицы. Следовательно, . В пространстве не трудно найти п линейно независимых столбцов. Например, столбцы единичной матрицы

линейно независимы. Следовательно, . Пространство называется n-мерным вещественным арифметическим пространством . Указанный набор векторов считается стандартным базисом пространства . Аналогично доказывается, что , поэтому пространство называют n-мерным комплексным арифметическим пространством .

4. Напомним, что любое решение однородной системы можно представить в виде , где , a — фундаментальная система решений. Следовательно, , т.е. базисом пространства решений однородной системы служит ее фундаментальная система решений, а размерность пространства , где — количество неизвестных, а — ранг матрицы системы.

5. В пространстве матриц размеров можно выбрать 6 матриц:

которые линейно независимы. Действительно, их линейная комбинация

равна нулевой матрице только в тривиальном случае . Прочитав равенство (8.5) справа налево, заключаем, что любая матрица из линейным образом выражается через выбранные 6 матриц, т.е. . Следовательно, , а матрицы являются базисом (стандартным) этого пространства. Аналогично доказывается, что .

6. Для любого натурального в пространстве многочленов с комплексными коэффициентами можно найти п линейно независимых элементов. Например, многочлены линейно независимы, так как их линейная комбинация

равна нулевому многочлену только в тривиальном случае . Поскольку эта система многочленов линейно независима при любом натуральном л, пространство бесконечномерное. Аналогично делаем вывод о бесконечной размерности пространства многочленов с действительными коэффициентами. Пространство многочленов степени не выше, чем , конечномерное. Действительно, векторы образуют базис (стандартный) это го пространства, так как они линейно независимы и любой многочлен из можно представить в виде линейной комбинации этих векторов:

7. Пространство непрерывных функций является бесконечно мерным. Действительно, для любого натурального многочлены , рассматриваемые как непрерывные функции, образуют линейно независимые системы (см. предыдущий пример).

В пространстве тригонометрических двучленов (частоты ) с действительными коэффициентами базис образуют одночлены . Они линейно независимы, так как тождественное равенство возможно только в тривиальном случае . Любая функция вида линейно выражается через базисные: .

8. Пространство действительных функций, определенных на множестве , в зависимости от области определения может быть конечномерным или бесконечномерным. Если — конечное множество, то пространство конечномерное (например, ). Если — бесконечное множество, то пространство бесконечномерное (например, пространство последовательностей).

9. В пространстве любое положительное число , не равное единице, может служить базисом. Возьмем, например, число . Любое положительное число можно выразить через , т.е. представить в виде , где . Следовательно, размерность этого пространства равна 1, а число является базисом.

10. Пусть — базис вещественного линейного пространства . Определим на линейные скалярные функции , положив:

При этом, в силу линейности функции , для произвольного вектора получаем .

Итак, определены элементов (ковекторов) сопряженного пространства . Докажем, что — базис .

Во-первых, покажем, что система линейно независима. В самом деле, возьмем линейную комбинацию этих ковекторов и приравняем ее нулевой функции

Подставляя в это равенство , получаем . Следовательно, система элементов пространства линейно независима, так как равенство возможно только в тривиальном случае.

Во-вторых, докажем, что любую линейную функцию можно представить в виде линейной комбинации ковекторов . Действительно, для любого вектора в силу линейности функции получаем:

т.е. функция представлена в виде линейной комбинации функций (числа — коэффициенты линейной комбинации). Следовательно, система ковекторов является базисом сопряженного пространства и (для конечномерного пространства ).

Системы линейных уравнений. Основные понятия. Переменные, входящие в уравнения системы

Страницы работы

Содержание работы

Глава 7 Системы линейных уравнений.

Определение 1:Системой линейных уравнений называется система вида:

Определение 2: Решением системы линейных уравнений называется упорядоченный набор чисел при подстановке которых в исходную систему каждое из уравнений обращается в тождество.

Определение 3: Основной матрицей системы линейных уравнений называется матрица А размерности , образованная из коэффициентов при неизвестных:

Определение 4: Основная матрица А системы дополненная столбцом свободных членов, называется расширенной матрицей системы и обозначается .

Определение 5: Система уравнений называется совместной, если она имеет хотя бы одно решение и несовместной если у неё нет.

Определение 6: Система уравнений называется однородной, если все свободные члены равны нулю.

Определение 7: Неизвестная хi в системе линейных уравнений называется базисной, если она встречается в единственном уравнении системы и имеет коэффициент равный единице.

Определение 8: Система уравнений имеет базисный вид, то есть приведена к единичному базису, если в каждом уравнении выделена одна базисная переменная.

Приведём системы базисного вида:

Расширенная матрица этой системы:

Нетрудно увидеть, что базисными переменными в приведённом примере являются переменные х1, х3, х4.

Определение 9: Переменные входящие в уравнения системы и не являющиеся базисными называются свободными переменными.

Определение 10: Две системы линейных уравнений называются равносильными, если множества их решений совпадают. Все несовместные системы равносильны.

Перечислим элементарные преобразования систем, приводящие к равносильным системам:

2. Умножение на число правой и левой части любого уравнения.

3. Прибавление к левой и правой части i-ого уравнения соответствующих частей j – ого уравнения, умноженных на число .

4. Перестановка местами i-ого и j-ого уравнений.

7.2 Решение системы линейных уравнений методом Жордана-Гаусса.

Этот метод позволяет привести к базисному виду совместную систему уравнений.

Элементарные преобразования будем осуществлять по следующей схеме.

1. Выбираем разрешающий элемент в каком либо уравнении и если этот элемент расширенной матрицы не является единицей, то элементы разрешающей строки делим на этот элемент.

2. Разрешающий столбец с помощью элементарных преобразований заполняем нулями.

3. Получаем новую расширенную матрицу, в которой снова выбираем другую разрешающую строку и повторяем все действия.

4. В случае возникновения нулевой строки ее вычеркиваем.

5. В случае возникновения строки вида: 1+0х2+0хn=bi система не имеет решений, то есть является несовместной.

Рассмотрим пример решения системы с использованием столбца контрольных сумм КΣ, которые представляют собой суммы всех коэффициентов, соответствующих уравнений. Эти числа преобразуются по тем же правилам, что и остальные элементы матрицы. Контроль состоит в том, что на каждом этапе проверяется совпадение контрольной суммы с суммой всех коэффициентов данного уравнения. Решим систему уравнений.

Составим расширенную матрицу системы, причем в первом столбце будут контрольные суммы, а в последнем будем указывать базисные переменные. Легко видеть что в первом уравнении такой переменной будет переменная х4.

выберем разрешающий элемент во второй строке, пусть это будет . Используя элементарные преобразования, получим матрицу у которой все остальные элементы разрешающего столбца были нулевые, для этого выполняются следующие элементарные преобразования:

1. Разрешающая строка умножается на (-2) и складывается с первой строкой, результат записываем на место первой строки.

2. Разрешающая строка умножается на (-3) и складывается с третьей строкой, результат записывается на место третьей строки.

В результате получаем матрицу:

Используя столбец контрольных сумм, сделаем проверку:

Следующим шагом необходимо выбрать разрешающий элемент в третьей строке. В качестве такого элемента можно взять элемент , но для того чтобы этот элемент стал равным единице, умножим элементы третьей строки на (-1). Получим матрицу вида:

используя элементарные преобразования, преобразуем разрешающий столбец матрицы так, чтобы все элементы кроме разрешающего (базисного) стали равны нулю, для этого выполняем следующие элементарные преобразования.

1. Разрешающая строка умножается на (-1) и складывается со второй строкой, результат записывается на место второй строки.

2. Разрешающая строка умножается на (-1) и суммируется с первой строкой, результат записывается на место первой строки.


источники:

http://mathhelpplanet.com/static.php?p=razmernost-i-bazis-linyeinogo-prostranstva

http://vunivere.ru/work70872