Базисное решение системы линейных уравнений что это

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

Что означает фраза «ранг матрицы равен $r$»? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde$.

Решить СЛАУ $ \left \ < \begin& 3x_1-6x_2+9x_3+13x_4=9\\ & -x_1+2x_2+x_3+x_4=-11;\\ & x_1-2x_2+2x_3+3x_4=5. \end \right.$. Если система является неопределённой, указать базисное решение.

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ \left( \begin 3 & -6 & 9 & 13 & 9 \\ -1 & 2 & 1 & 1 & -11 \\ 1 & -2 & 2 & 3 & 5 \end \right) \rightarrow \left|\begin & \text<поменяем местами первую и третью>\\ & \text<строки, чтобы первым элементом>\\ & \text <первой строки стала единица.>\end\right| \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ -1 & 2 & 1 & 1 & -11 \\ 3 & -6 & 9 & 13 & 9 \end \right) \begin \phantom <0>\\ II+I\\ III-3\cdot I\end \rightarrow \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 3 & 4 & -6 \end\right) \begin \phantom <0>\\ \phantom<0>\\ III-II\end \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right) $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $\rang A=\rang\widetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $\left( \begin 3 & -6 & 9 & 13 \\ -1 & 2 & 1 & 1 \\ 1 & -2 & 2 & 3 \end \right)$, так и в преобразованной матрице системы, т.е. в $\left( \begin 1 & -2 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end\right)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=\left| \begin 1 & -2 \\ 0 & 0 \end\right|=1\cdot 0-(-2)\cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:

$$ M_<2>^<(2)>=\left| \begin 2 & 3\\ 3 & 4 \end\right|=2\cdot 4-3\cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right)$ от нулевой строки:

$$ \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показать\скрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 3 & -6 & 0 & -4 \end\right) \begin \phantom <0>\\ II:3 \end \rightarrow \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 1 & -2 & 0 & -4/3 \end\right) \begin I-2\cdot II \\ \phantom <0>\end \rightarrow \\ \rightarrow \left(\begin 1 & 0 & 9 & 2 & -1/3\\ 0 & 1 & -2 & 0 & -4/3 \end\right). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $\left\ <\begin& x_1=\frac<2><3>;\\ & x_2=-4;\\ & x_3=-\frac<10><3>;\\ & x_4=1. \end\right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-\frac<1><3>x_4$ и $x_3=-2-\frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3\cdot \left(9+2x_2-\frac<1><3>x_4\right)-6x_2+9\cdot \left(-2-\frac<4><3>x_4\right)+13x_4=9. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Если система является неопределённой, указать базисное решение.

Похожий пример уже был решен в теме «метод Крамера» (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$ \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 4 & -11 & 21 & -2 & 3 & -1\\ -3 & 5 & -13 & -4 & 1 & -2 \end \right) \begin \phantom <0>\\ II-4\cdot I\\ III+3\cdot I\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -3 & 5 & -2 & -5 & -1\\ 0 & -1 & -1 & -4 & 7 & -2 \end \right) \rightarrow \\ \rightarrow \left|\begin & \text<поменяем местами вторую и третью>\\ & \text<строки, чтобы диагональным элементом>\\ & \text <второй строки стало число (-1).>\end\right|\rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & -3 & 5 & -2 & -5 & -1 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III-3\cdot I\end \rightarrow \\ \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & 0 & 8 & 10 & -26 & 5 \end \right). $$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $\rang A=\rang\widetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод «ступенек», что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$ \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 8 & 5 & -10 & 26 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III:8\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I-4\cdot III \\ II+III\\ \phantom<0>\end \rightarrow \\ \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin \phantom <0>\\ II\cdot (-1)\\ \phantom<0>\end \rightarrow \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I+2\cdot II \\ \phantom<0>\\ \phantom<0>\end \rightarrow\\ \rightarrow\left( \begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) $$

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Метод Жордана-Гаусса для решения СЛАУ

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Основные понятия

Метод Жордана-Гаусса — один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса — в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã — обозначение расширенной матрицы системы.

Решить СЛАУ методом Жордана-Гаусса:

4 x 1 — 7 x 2 + 8 x 3 = — 23 2 x 1 — 4 x 2 + 5 x 3 = — 13 — 3 x 1 + 11 x 2 + x 3 = 16

Записываем расширенную матрицу системы:

à = 4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А :

A = 4 — 7 8 2 — 4 5 — 3 11 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным — в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Произвольный способ выбора разрешающих элементов

  • Первый этап:

Следует обратиться к 1-му столбцу матрицы Ã — необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 — 7 8 2 — 4 5 — 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I : 2 :

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I

Необходимо выполнить преобразования:

I — 4 × I I и I I I — ( — 3 ) × I I = I I I + 3 × I I

Запись I — 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I — 4 × I I = 4 — 7 8 — 23 — 4 1 — 2 5 / 2 — 13 / 2 = = 4 — 7 8 — 23 — 4 — 8 10 — 26 = 0 1 — 2 3

Записываются такие изменения следующим образом:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден — это 1. Обнуляем остальные элементы 2-го столбца:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I + 2 × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

I — ( — 2 ) × I I I = I + 2 × I I I и I I — ( — 3 2 ) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I →

→ 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1 .

Выбор разрешающих элементов на главной диагонали матрицы системы

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом — второй, в 3-ем — третий и т.д.

  • Первый этап

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 → 2 — 4 5 | — 13 4 — 7 8 | — 23 — 3 11 1 | 16

Теперь разрешающий элемент — 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 1 — 2 5 / 2 | — 13 / 2 0 1 — 2 | 3 0 5 17 / 2 | — 7 / 2

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент — 1, поэтому никаких изменений производить не требуется:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент — 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = — 6 3 x 1 + x 2 + 2 x 4 = — 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = — 27 — 3 x 1 — 2 x 2 — 2 x 3 — 10 x 4 = 1

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | — 6 3 1 0 2 | 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором — второй строки, на третьем — третьей и т.д.

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | — 6 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | — 2 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I I — 3 × I I I I — 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5 → 1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I I ÷ ( — 1 ) → 1 1 / 3 2 / 3 5 / 3 | — 2 0 1 0 5 | 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I — 1 / 3 × I I I I I — 2 × I →

→ 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке — это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4 → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25 I I I ÷ ( — 2 ) → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 9 | — 25 I — 2 / 3 × I I I I V — 7 × I I I →

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39

Обнуляем четвертый столбец. Разрешающий элемент — — 39 2 :

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39 I V ÷ ( — 39 2 ) → 1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I — 5 × I V I I I — 3 / 2 × I V →

→ 1 0 0 0 | — 3 0 1 0 0 | — 5 0 0 1 0 | — 1 0 0 0 1 | 2 .

Ответ: x 1 = — 3 ; x 2 = — 5 ; x 3 = — 1 ; x 4 = 2

Метод Жордана-Гаусса

Вы будете перенаправлены на Автор24

Метод Жордана-Гаусса – это метод решения линейных уравнений путём полного исключения неизвестных. Данный метод является модификацией метода Гаусса, только в случае метода Жордана-Гаусса элементарные преобразования проводятся дальше.

История возникновения метода

Исторически метод Гаусса возник достаточно давно. Решение систем уравнений подобным способом было изложено ещё в древнем китайском математическом трактате под названием “Математика в девяти книгах”, представляющим собой разрозненное собрание решений различных прикладных математических задач.

Некоторые главы этого трактата датируются 150 г. до н.э.

В Европе же первым, кто занимался изучением этого метода, был Исаак Ньютон. Учёный изучил много книг по алгебре того времени и обнаружил, что ни в одной из них не предложено решений систем уравнений со множеством переменных, после чего он предложил свой способ решения.

Его работа на эту тему была опубликована в 1707 г., в это время Ньютон уже больше не работал в Кембридже. После этого в течение века метод появился во многих книгах и учебниках по алгебре.

В 1810 году известный немецкий учёный и математик К. Ф. Гаусс опубликовал свои дополнения к этому методу вместе с другими своими работами по линейной алгебре, после чего метод с получением верхней треугольной матрицы стал широко известен под его именем.

Затем в в конце XIX века геодезист и математик Жордан разработал на основе метода Гаусса свой усовершенствованный вариант с получением диагональной матрицы.

Примечательно, что он сделал это практически одновременно с другим учёным, тем не менее, в названии усовершенствованного метода отразилось только имя геодезиста Жордана.

Практическое применение метода Жордана-Гаусса

Метод Жордана и Гаусса используется для решения систем линейных уравнений, а также для получения обратных матриц и нахождения ранга матрицы. Также этот метод весьма полезен и часто применяем для решения технических задач со множеством неизвестных.

Готовые работы на аналогичную тему

Для решения получаемых на основе технических задач систем уравнений выделяют наибольшие по модулю переменные для уменьшения ошибки погрешности, а затем производят поочередное удаление лишних переменных из строчек матрицы.

Для решения технических задач методом Жордана-Гаусса также используются реализации на различных языках программирования, они позволяют получать более точные значения переменных.

Объяснение сущности метода Жордана-Гаусса

Обычно матрица, полученная с помощью метода Жордана-Гаусса выглядит как диагональ с единицами, вот например:

$A = \begin 1& 0 &0 &a_1 \\ 0& 1 &0 &a_2 \\ 0 & 0 & 1 &a_3 \end$

Разница между методом Гаусса и методом Жордана-Гаусса состоит в том, что в случае метода Гаусса необходимо привести только нижнюю часть матрицы к нулям, тогда как в случае метода Жордана-Гаусса в каждой строчке матрицы остаётся лишь один коэффициент при переменной.

С помощью метода Гаусса можно найти базисное и общее решение системы уравнений, также как и с помощью метода Жордана-Гаусса.

Базисное решение системы уравнений – это решение, при котором все свободные переменные равны нулю.

Общее решение системы уравнений – это решение, при котором основные переменные выражаются через свободные переменные.

Также методом Жордана-Гаусса производят получение обратных матриц.

Получение обратной матрицы методом Жордана-Гаусса

Обратная матрица – это такая матрица, при умножении на которую из исходной матрицы получается единичная матрица. Обратные матрицы существуют только для квадратных и невырожденных матриц.

Сущность метода нахождения обратной матрицы состоит в том, чтобы записать рядом исходную матрицу и единичную, и затем, производить элементарные преобразования по методу Жордана-Гаусса одновременно к двум матрицам.

В результате мы получим диагональную единичную матрицу из исходной, а рядом с ней будет её обратная матрица, полученная из единичной матрицы.

Получение обратной матрицы методом Жордана-Гаусса.

Запишем рядом единичную матрицу и исходную:

$ \begin 1& 2 & 1& 0\\ 3 & 4& 0 & 1 \\ \end$

Теперь к нижней строчке прибавляем верхнюю строчку, умноженную на $-3$:

$ \begin 1& 2 & 1 & 0\\ 0 & -2 & -3 & 1 \\ \end$

Прибавляем к верхней строчке нижнюю:

$ \begin 1& 0 & -2 & 1\\ 0 & -2 & -3 & 1 \\ \end$

Делим вторую строку на $-2$:

$ \begin 1& 0 & -2 & 1\\ 0 & 1& 3/2 & -1/2 \\ \end$

Обратной исходной будет следующая матрица:

Чтобы решить СЛАУ методом Жордана-Гаусса, к матрице возможно применить те же элементарные преобразования, что и в случае решения методом Гаусса, а именно:

  • умножение любой строчки на константу, отличную от нуля;
  • вычитание или сложение двух любых строчек;
  • перестановка любых двух строчек местами;
  • удаление строчек, состоящих из одних нулей;
  • удаление лишних строк, пропорциональных друг другу.

Соответственно, чтобы решить систему линейных уравнений методом Гаусса-Жордана, необходимо выполнить ряд преобразований над получающейся после применения метода Гаусса матрицей.

Общий алгоритм решения системы уравнений методом Жордана-Гаусса

  1. Выбирают строчку, в которой первый элемент имеет ненулевое значение максимально приближенное к единице и ставят её на место первой строки. Такой элемент называют также “разрешающим”
  2. Приводят значение верхней левой ячейки к $1$ посредством деления или умножения всей верхней строки.
  3. Из оставшихся строчек вычитают верхнюю строчку, помноженную на коэффициент, стоящий на первом месте в строчке, над которой ведутся преобразования.
  4. Далее тоже самое проделывают необходимое количество раз с целью получения треугольной матрицы, в которой все элементы ниже главной диагонали, проходящей слева направо сверху вниз, равны нулю. Последовательность действий, описанных выше, называется прямым ходом преобразования матрицы.
  5. После получения треугольной матрицы затем вычитают последнюю строку из предпоследней, помножив последнюю строку на элемент из предпоследней. На данном этапе в последней и предпоследней строке остаётся по одному коэффициенту. Эту операцию повторяют пока не дойдут до верха матрицы, получив диагональную матрицу. Эти действия носят название обратного хода преобразования матрицы.

Задача. Решить систему линейных уравнений методом Гаусса-Жордана

$\begin 3x_1 + 2x_2 – 5x_3 = -1 \\ 2x_1 – x_2 + 3x_3 = 13 \\ x_1 + 2x_2 – x_3 = 9 \end$

Теперь запишем эту систему в виде расширенной матрицы:

$ \begin 3& 2 & -5 & -1\\ 2 & -1& 3 & 13 \\ 1 & 2 & -1 & 9 \\ \end$

Путём элементарных преобразований методом Гаусса получим следующую матрицу:

$ \begin 1& 2 & -1 & 9\\ 0 & 1& -1 & 1 \\ 0 & 0& 1 & 4 \\ \end$

Теперь начнём использовать обратный ход и преобразуем эту матрицу чтобы получить диагональ из единиц.

Сначала к средней и верхней строчкам необходимо добавить последнюю строчку, получается:

$ \begin 1& 2 & 0 & 13\\ 0 & 1& 0 & 5 \\ 0 & 0 & 1 & 4 \\ \end$

А теперь к верхней строчке прибавим среднюю, умноженную на $-2$:

$ \begin 1& 0 & 0 & 3\\ 0 & 1& 0 & 5 \\ 0 & 0 & 1 & 4 \\ \end$

Получаем следующую систему:

$\begin x_1 = 3 \\ x_2 = 5 \\ x_3 = 4 \end$

Решить систему линейных уравнений методом Жордана-Гаусса:

$\begin x_1 – 8x_2 + x_3 — 9x_4 = 6 \\ x_1 – 4x_2 – x_3 — 5x_4 = 2 \\ -3x_1 + 2x_2 + 8x_3 + 5x_4 = 4 \\ 5x_1 + 2x_2 + 2x_3 + 3x_4 = 12 \end$

Сначала запишем систему в матричном виде:

$ \begin 1& -8 & 1 & -9 & 6 \\ -1 & -4& -1 & -5 & 2 \\ -3 & 2 & 8 & 5 & 4 \\ 5& 2 & 2 & 3 & 12 \\ \end$

Затем преобразуем до треугольной:

К самой верхней строчке прибавляем вторую строчку, домноженную на $-1$. К третьей строчке прибавляем утроенную самую верхнюю строчку, затем к последней строчке прибавляем самую верхнюю, помноженную на $-5$:

$ \begin 1& -8 & 1 & -9 & 6 \\ 0 & 4& -2 & 4 & -4 \\ 0 & -22 & 11 & -22 & 22 \\ 0& 42 & -3 & 48 & -18 \\ \end$

Теперь вторую строчку необходимо поделить на $2$, третью строчку на на $11$, а самую нижнюю строку делим на 3:

$ \begin 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0 & -2 & 1 & -2 & 2 \\ 0& 14 & -1 & 16 & -6 \\ \end$

Удаляем третью строчку, так как она пропорциональна со второй. А к последней строке прибавляем вторую, предварительно домноженную на $-7$:

$ \begin 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0& 0 & 6 & 2 & 8 \\ \end$

Теперь сокращаем последнюю строчку с $2$:

$ \begin 1& -8 & 1 & -9 & 6 \\ 0 & 2& -1 & 2 & -2 \\ 0& 0 & 3 & 1 & 4 \\ \end$

В полученной матрице количество строк и столбцов неодинаково, а значит, она имеет бесконечное множество решений. Продолжаем дальнейшее преобразование системы, для этого необходимо в третьем столбце получить числа с равным модулем, поэтому сначала верхнюю строку умножаем на $-3$, а среднюю на $3$:

$ \begin -3& 24 & -3 & 27 & -18 \\ 0 & 6& -3 & 6 & -6 \\ 0& 0 & 3 & 1 & 4 \\ \end$

Складываем поочередно первую строчку с третьей, а затем вторую с третьей:

$ \begin -3& 24 & 0 & 28 & -14 \\ 0 & 6 & 0 & 7 & -2 \\ 0& 0 & 3 & 1 & 4 \\ \end$

Домножаем вторую строчку на $-4$ чтобы получить одинаковые по модулю числа во втором столбце нашей матрицы:

$ \begin -3& 24 & 0 & 28 & -14 \\ 0 & -24 & 0 & -28 & 8 \\ 0& 0 & 3 & 1 & 4 \\ \end$

Складываем верхнюю строчку со второй:

$ \begin -3& 0 & 0 & 0 & -6 \\ 0 & -24 & 0 & -28 & 8 \\ 0& 0 & 3 & 1 & 4 \\ \end$

Теперь необходимо разделить верхнюю строчку на $-3$, среднюю строчку на $-24$, а последнюю строчку нужно разделить на 3:

$ \begin 1 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 7/6 & -1/3 \\ 0& 0 & 1 & 1/3 & 4/3 \\ \end$

Если переписать в виде системы, получим следующее:

$\begin x_1 = 2 \\ x_2 + \frac<7><6>x_4 = -\frac<1> <3>\\ x_3 + \frac<1><3>x_4 = \frac<4> <3>\\ \end$

А теперь просто выражаем базисные переменные:

$\begin x_1 = 2 \\ x_2 = -\frac<7><6>x_4 — \frac<1> <3>\\ x_3 = -\frac<1><3>x_4 + \frac<4> <3>\\ \end$

Данная система является общим решением уравнения.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 12 12 2021


источники:

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-zhordana-gaussa/

http://spravochnick.ru/matematika/metod_zhordana-gaussa/