Базисное решение системы линейных уравнений это

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

Что означает фраза «ранг матрицы равен $r$»? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $\widetilde$.

Решить СЛАУ $ \left \ < \begin& 3x_1-6x_2+9x_3+13x_4=9\\ & -x_1+2x_2+x_3+x_4=-11;\\ & x_1-2x_2+2x_3+3x_4=5. \end \right.$. Если система является неопределённой, указать базисное решение.

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$ \left( \begin 3 & -6 & 9 & 13 & 9 \\ -1 & 2 & 1 & 1 & -11 \\ 1 & -2 & 2 & 3 & 5 \end \right) \rightarrow \left|\begin & \text<поменяем местами первую и третью>\\ & \text<строки, чтобы первым элементом>\\ & \text <первой строки стала единица.>\end\right| \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ -1 & 2 & 1 & 1 & -11 \\ 3 & -6 & 9 & 13 & 9 \end \right) \begin \phantom <0>\\ II+I\\ III-3\cdot I\end \rightarrow \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 3 & 4 & -6 \end\right) \begin \phantom <0>\\ \phantom<0>\\ III-II\end \rightarrow \\ \rightarrow\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right) $$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $\rang A=\rang\widetilde = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на «ступеньках». Что это за «ступеньки» показано на рисунке:

На «ступеньках» стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Почему можно принять переменные $x_1$ и $x_3$ в качестве базисных? Для ответа на этот вопрос давайте вспомним, что ранг матрицы системы равен числу $r=2$. Это говорит о том, что все миноры данной матрицы, порядок которых выше 2, либо равны нулю, либо не существуют. Ненулевые миноры есть только среди миноров второго порядка. Выберем какой-либо ненулевой минор второго порядка. Мы можем выбирать его как в исходной матрице системы $A$, т.е. в матрице $\left( \begin 3 & -6 & 9 & 13 \\ -1 & 2 & 1 & 1 \\ 1 & -2 & 2 & 3 \end \right)$, так и в преобразованной матрице системы, т.е. в $\left( \begin 1 & -2 & 2 & 3 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 0 \end\right)$. Так как в преобразованной матрице системы побольше нулей, то будем работать именно с нею.

Итак, давайте выберем минор второго порядка, элементы которого находятся на пересечении строк №1 и №2, и столбцов №1 и №2:

$$ M_<2>^<(1)>=\left| \begin 1 & -2 \\ 0 & 0 \end\right|=1\cdot 0-(-2)\cdot 0=0. $$

Вывод: выбранный нами минор второго порядка не является базисным, ибо он равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №2 (он соответствует переменной $x_2$), то пара переменных $x_1$ и $x_2$ не могут быть базисными переменными.

Осуществим вторую попытку, взяв минор второго порядка, элементы которого лежат на пересечении строк №1, №2 и столбцов №3 и №4:

$$ M_<2>^<(2)>=\left| \begin 2 & 3\\ 3 & 4 \end\right|=2\cdot 4-3\cdot 3=-1. $$

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №3 (он соответствует переменной $x_3$) и столбца №4 (он соответствует переменной $x_4$), то пару переменных $x_3$ и $x_4$ можно принять в качестве базисных.

Сделаем и третью попытку, найдя значение минора, элементы которого расположены на пересечении строк №1, №2 и столбцов №1 и №3:

Вывод: выбранный нами минор второго порядка является базисным, ибо он не равен нулю. Так как элементы этого минора взяты из столбца №1 (он соответствует переменной $x_1$) и столбца №3 (он соответствует переменной $x_3$), то пару переменных $x_1$ и $x_3$ можно принять в качестве базисных.

Как видите, выбор базисных переменных не является однозначным. На самом деле количество вариантов выбора не превышает количество размещений из $n$ элементов по $r$, т.е. не больше чем $C_^$.

В рассматриваемом примере в качестве баисных были приняты переменные $x_1$ и $x_3$ – сугубо из соображений удобства дальнейшего решения. В чём это удобство состоит, будет видно чуток позже.

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \\ 0 & 0 & 0 & 0 & 0 \end\right)$ от нулевой строки:

$$ \left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right) $$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Почему меняются знаки? Что вообще значит это перенесение столбцов? показать\скрыть

Давайте обратимся к расширенной матрице системы, которая после преобразований имеет вид $\left( \begin 1 & -2 & 2 & 3 & 5\\ 0 & 0 & 3 & 4 & -6 \end\right)$. Перейдём от матрицы к уравнениям. Первая строка соответствует уравнению $x_1-2x_2+2x_3+3x_4=5$, а вторая строка соответствует уравнению $3x_3+4x_4=-6$. Теперь перенесём свободные переменные $x_2$ и $x_4$ в правые части уравнений. Естественно, что когда мы переносим выражение $4x_4$ в правую часть уравнения, то знак его изменится на противоположный, и в правой части появится $-4x_4$.

Если опять записать полученную систему в виде матрицы, то мы и получим матрицу с перенесёнными за черту столбцами.

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$ \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 3 & -6 & 0 & -4 \end\right) \begin \phantom <0>\\ II:3 \end \rightarrow \left( \begin 1 & 2 & 5 & 2 & -3\\ 0 & 1 & -2 & 0 & -4/3 \end\right) \begin I-2\cdot II \\ \phantom <0>\end \rightarrow \\ \rightarrow \left(\begin 1 & 0 & 9 & 2 & -1/3\\ 0 & 1 & -2 & 0 & -4/3 \end\right). $$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $\left\ <\begin& x_1=\frac<2><3>;\\ & x_2=-4;\\ & x_3=-\frac<10><3>;\\ & x_4=1. \end\right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-\frac<1><3>x_4$ и $x_3=-2-\frac<4><3>x_4$ в левую часть первого уравнения, получим:

$$ 3x_1-6x_2+9x_3+13x_4=3\cdot \left(9+2x_2-\frac<1><3>x_4\right)-6x_2+9\cdot \left(-2-\frac<4><3>x_4\right)+13x_4=9. $$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Если система является неопределённой, указать базисное решение.

Похожий пример уже был решен в теме «метод Крамера» (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$ \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 4 & -11 & 21 & -2 & 3 & -1\\ -3 & 5 & -13 & -4 & 1 & -2 \end \right) \begin \phantom <0>\\ II-4\cdot I\\ III+3\cdot I\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -3 & 5 & -2 & -5 & -1\\ 0 & -1 & -1 & -4 & 7 & -2 \end \right) \rightarrow \\ \rightarrow \left|\begin & \text<поменяем местами вторую и третью>\\ & \text<строки, чтобы диагональным элементом>\\ & \text <второй строки стало число (-1).>\end\right|\rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & -3 & 5 & -2 & -5 & -1 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III-3\cdot I\end \rightarrow \\ \rightarrow \left( \begin 1 & -2 & 4 & 0 & 2 & 0\\ 0 & -1 & -1 & -4 & 7 & -2\\ 0 & 0 & 8 & 10 & -26 & 5 \end \right). $$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $\rang A=\rang\widetilde = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод «ступенек», что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$ \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 8 & 5 & -10 & 26 \end \right) \begin \phantom <0>\\ \phantom<0>\\ III:8\end \rightarrow \left( \begin 1 & -2 & 4 & 0 & 0 & -2\\ 0 & -1 & -1 & -2 & 4 & -7\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I-4\cdot III \\ II+III\\ \phantom<0>\end \rightarrow \\ \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & -1 & 0 & -11/8 & 11/4 & -15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin \phantom <0>\\ II\cdot (-1)\\ \phantom<0>\end \rightarrow \left( \begin 1 & -2 & 0 & -5/2 & 5 & -15\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) \begin I+2\cdot II \\ \phantom<0>\\ \phantom<0>\end \rightarrow\\ \rightarrow\left( \begin 1 & 0 & 0 & 1/4 & -1/2 & -15/2\\ 0 & 1 & 0 & 11/8 & -11/4 & 15/4\\ 0 & 0 & 1 & 5/8 & -5/4 & 13/4 \end \right) $$

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Решение систем линейных уравнений методом Жордана-Гаусса

Разрешенная система уравнений

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Дать характеристику системе уравнений.

Решение:

1. Входит ли в состав системы линейных уравнений противоречивое уравнение? (Если коэффициенты , в этом случае уравнение имеет вид: и называется противоречивым.)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные. (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

  • В нашем примере неизвестная входит в первое уравнение с коэффициентом единица, во второе уравнение не входит, то есть является первой разрешенной .
  • Аналогично — содержится только во втором уравнении а только в первом.

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной, если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

  • Наша система является разрешенной т.к. каждое уравнение содержит в себе разрешенные неизвестные )

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными ( ), а не входящие в набор — свободными ( ).

В общем случае разрешенная система уравнений имеет вид:

!На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением системы уравнений называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным, если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным, если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Решение:

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения.

  • В нашем случае мы можем включить в набор разрешенных неизвестных из первого уравнения — и , а из второго уравнения только . То есть набор может состоять из ( ) или ( ).

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор.

  • допустим мы включили в набор неизвестные и , тогда общее решение будет выглядеть так:

4. Находим частное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

  • Пусть , , , тогда из общего решения находим:

Ответ: частное решение (один из вариантов)

5. Находим базисное решение. Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

  • , то из общего решения получаем , и базисное решение:

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число, а остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое, а все остальные уравнения оставить без изменения, то получится система, равносильная данной. (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число, а все остальные уравнения оставить без изменения, то получится система, равносильная данной.

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

  1. Уравнение с разрешающим элементом делится на этот элемент (умножается на )
  2. Уравнение с разрешающим элементом умножается на подходящие множители и прибавляется ко всем другим уравнениям для того, чтобы исключить неизвестную .

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1

Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти: два общих и два соответствующих базисных решения

Решение:

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.

Равносильная система с разрешенными неизвестными и имеет вид:

Теперь можем записать Общее решение:

Приравниваем свободные переменные и нулю и получаем: .

Базисное решение:

Для того чтобы найти второе общее и соответствующее ему базисное решение, в полученной разрешенной системе в каком-либо уравнении необходимо выбрать какой-либо другой разрешающий элемент. (дело в том, что линейное уравнение может содержать несколько общих и базисных решений). Если разрешенная система уравнений, равносильная исходной системе содержит неизвестных и уравнений, то число общих и соответствующих базисных решений исходной системы равно числу сочетаний и . Количество сочетаний можно вычислить по формуле:

В нашем случае выбран разрешающий элемент (-1) в первом уравнении при (строка 7). Далее производим преобразование Жордана. Получаем новую разрешенную систему (строки 10,11) c новыми разрешенными неизвестными и :

Записываем второе общее решение:

И соответствующее ему базисное решение:

Метод Жордана-Гаусса для решения СЛАУ

В данной статье мы рассмотрим метод Жордана-Гаусса для решения систем линейных уравнений, отличие метода Гаусса от метода Жордана-Гаусса, алгоритм действий, а также приведем примеры решений СЛАУ.

Основные понятия

Метод Жордана-Гаусса — один из методов, предназначенный для решения систем линейных алгебраических уравнений.

Этот метод является модификацией метода Гаусса — в отличие от исходного (метода Гаусса) метод Жордана-Гаусса позволяет решить СЛАУ в один этап (без использования прямого и обратного ходов).

Матричная запись СЛАУ: вместо обозначения А в методе Жордана-Гаусса для записи используют обозначение Ã — обозначение расширенной матрицы системы.

Решить СЛАУ методом Жордана-Гаусса:

4 x 1 — 7 x 2 + 8 x 3 = — 23 2 x 1 — 4 x 2 + 5 x 3 = — 13 — 3 x 1 + 11 x 2 + x 3 = 16

Записываем расширенную матрицу системы:

à = 4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16

Напоминаем, что слева от черты записывается матрица системы А :

A = 4 — 7 8 2 — 4 5 — 3 11 1

На каждом шаге решения необходимо выбирать разрешающие элементы матрицы. Процесс выбора может быть различным — в зависимости от того, как выбираются элементы, решения будут отличаться. Можно выбирать в качестве разрешающих элементов диагональные элементы матрицы, а можно выбирать произвольно.

В этой статье мы покажем оба способа решения.

Произвольный способ выбора разрешающих элементов

  • Первый этап:

Следует обратиться к 1-му столбцу матрицы Ã — необходимо выбрать ненулевой (разрешающий) элемент.

В 1-ом столбце есть 3 ненулевых элемента: 4, 2, -3. Можно выбрать любой, но, по правилам, выбирается тот, чей модуль ближе всего к единице. В нашем примере таким числом является 2.

Цель: обнулить все элементы, кроме разрешающего, т.е. необходимо обнулить 4 и -3:

4 — 7 8 2 — 4 5 — 3 11 1

Произведем преобразование: необходимо сделать разрешающий элемент равным единице. Для этого делим все элементы 2-ой строки на 2. Такое преобразование имеет обозначение: I I : 2 :

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16

Теперь обнуляем остальные элементы: 4 и -3:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I

Необходимо выполнить преобразования:

I — 4 × I I и I I I — ( — 3 ) × I I = I I I + 3 × I I

Запись I — 4 × I I означает, что от элементов 1-ой строки вычитаются соответствующие элементы 2-ой строки, умноженные на 4.

Запись I I I + 3 × I I означает, что к элементам 3-ей строки прибавляются соответствующие элементы 2-ой строки, умноженные на 3.

I — 4 × I I = 4 — 7 8 — 23 — 4 1 — 2 5 / 2 — 13 / 2 = = 4 — 7 8 — 23 — 4 — 8 10 — 26 = 0 1 — 2 3

Записываются такие изменения следующим образом:

4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2

Необходимо обнулить 2-ой столбец, следовательно, нужно выбрать разрешающий элемент: 1, -2, 5. Однако 2-ую строку матрицы мы использовали в первом этапе, так что элемент -2 не может быть использован.

Поскольку необходимо выбирать число, чей модуль ближе всего к единице, то выбор очевиден — это 1. Обнуляем остальные элементы 2-го столбца:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I + 2 × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

Теперь требуется обнулить элементы 3-го столбца. Поскольку первая и вторая строки уже использованы, поэтому остается только один вариант: 37 / 2 . Обнуляем с его помощью элементы третьего столбца:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

I — ( — 2 ) × I I I = I + 2 × I I I и I I — ( — 3 2 ) × I I I = I I + 3 2 × I I

получим следующий результат:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I I ÷ 2 → 4 — 7 8 | — 23 2 — 4 5 / 2 | — 13 / 2 — 3 11 1 | 16 I — 4 × I I I I I — ( — 3 ) × I I →

→ 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I I — ( — 2 ) × I I I I — 5 × I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 0 1 0 | 1 1 0 0 | — 2 0 0 1 | — 1 .

Выбор разрешающих элементов на главной диагонали матрицы системы

Принцип выбора разрешающих элементов строится на простом отборе соответствующих элементов: в 1-ом столбце выбирается элемент 1-го столбца, во 2-ом — второй, в 3-ем — третий и т.д.

  • Первый этап

В первом столбце необходимо выбрать элемент первой строки, т.е. 4. Но поскольку в первом столбце есть число 2, чей модуль ближе к единице, чем 4, то можно поменять местами первую и вторую строку:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 → 2 — 4 5 | — 13 4 — 7 8 | — 23 — 3 11 1 | 16

Теперь разрешающий элемент — 2. Как показано в первом способе, делим первую строку на 2, а затем обнуляем все элементы:

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 1 — 2 5 / 2 | — 13 / 2 0 1 — 2 | 3 0 5 17 / 2 | — 7 / 2

На втором этапе требуется обнулить элементы второго столбца. Разрешающий элемент — 1, поэтому никаких изменений производить не требуется:

0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I → 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2

На третьем этапе необходимо обнулить элементы третьего столбца. Разрешающий элемент — 37/2. Делим все элементы на 37/2 (чтобы сделать равными 1), а затем обнуляем:

0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Ответ: x 1 = — 2 ; x 2 = 1 ; x 3 = — 1 .

4 — 7 8 | — 23 2 — 4 5 | — 13 — 3 11 1 | 16 I ÷ 2 → 2 — 4 5 / 2 | — 13 / 2 4 — 7 8 | — 23 — 3 11 1 | 16 I I — 4 × I I I I + 3 × I → 0 1 — 2 | 3 1 — 2 5 / 2 | — 13 / 2 0 5 17 / 2 | — 7 / 2 I + 2 × I I I I I — 5 × I I →

→ 0 1 — 2 | 3 1 0 — 3 / 2 | — 1 / 2 0 0 37 / 2 | — 37 / 2 I I I ÷ 37 2 → 1 0 — 3 / 2 | — 1 / 2 0 1 — 2 | 3 0 0 1 | — 1 I + 2 × I I I I I + 3 / 2 × I I I → 1 0 0 | — 2 0 1 0 | 1 0 0 1 | — 1

Решить СЛАУ методом Жордана-Гаусса:

3 x 1 + x 2 + 2 x 3 + 5 x 4 = — 6 3 x 1 + x 2 + 2 x 4 = — 10 6 x 1 + 4 x 2 + 11 x 3 + 11 x 4 = — 27 — 3 x 1 — 2 x 2 — 2 x 3 — 10 x 4 = 1

Записать расширенную матрицу данной системы Ã :

3 1 2 5 | — 6 3 1 0 2 | 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1

Для решения используем второй способ: выбор разрешающих элементов на главной диагонали системы. На первом этапе выбираем элемент первой строки, на втором — второй строки, на третьем — третьей и т.д.

Необходимо выбрать разрешающий элемент первой строки, т.е. 3. Затем обнуляем все элементы столбца, разделяя на 3 все элементы:

3 1 2 5 | — 6 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I ÷ 3 → 1 1 / 3 2 / 3 5 / 3 | — 2 3 1 0 2 | — 10 6 4 11 11 | — 27 — 3 — 2 — 2 — 10 | 1 I I — 3 × I I I I — 6 × I I V + 3 × I →

→ 1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5

Необходимо обнулить элементы второго столбца. Для этого выделяем разрешающий элемент, но элемент первой строки второго столбца равен нулю, поэтому необходимо менять строки местами.

Поскольку в четвертой строке есть число -1, то меняем местами вторую и четвертую строки:

1 1 / 3 2 / 3 5 / 3 | — 2 0 0 — 2 — 3 | — 4 0 2 7 1 | — 15 0 — 1 0 — 5 | — 5 → 1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4

Теперь разрешающий элемент равен -1. Делим элементы второго столбца на -1, а затем обнуляем:

1 1 / 3 2 / 3 5 / 3 | — 2 0 — 1 0 — 5 | — 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I I ÷ ( — 1 ) → 1 1 / 3 2 / 3 5 / 3 | — 2 0 1 0 5 | 5 0 2 7 1 | — 15 0 0 — 2 — 3 | — 4 I — 1 / 3 × I I I I I — 2 × I →

→ 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4

На третьем этапе необходимо также обнулить элементы третьего столбца. Для этого находим разрешающий элемент в третьей строке — это 7. Но на 7 делить неудобно, поэтому необходимо менять строки местами, чтобы разрешающий элемент стал -2:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 7 — 9 | — 25 0 0 — 2 — 3 | — 4 → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25

Теперь делим все элементы третьего столбца на -2 и обнуляем все элементы:

1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 — 2 — 3 | — 4 0 0 7 — 9 | — 25 I I I ÷ ( — 2 ) → 1 0 2 / 3 0 | — 11 / 3 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 9 | — 25 I — 2 / 3 × I I I I V — 7 × I I I →

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39

Обнуляем четвертый столбец. Разрешающий элемент — — 39 2 :

1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 — 39 / 2 | — 39 I V ÷ ( — 39 2 ) → 1 0 0 — 1 | — 5 0 1 0 5 | 5 0 0 1 3 / 2 | 2 0 0 0 1 | 2 I + I V I I — 5 × I V I I I — 3 / 2 × I V →

→ 1 0 0 0 | — 3 0 1 0 0 | — 5 0 0 1 0 | — 1 0 0 0 1 | 2 .

Ответ: x 1 = — 3 ; x 2 = — 5 ; x 3 = — 1 ; x 4 = 2


источники:

http://www.grandars.ru/student/vysshaya-matematika/metod-gaussa.html

http://zaochnik.com/spravochnik/matematika/issledovanie-slau/metod-zhordana-gaussa/