Bi oh 2cl уравнение диссоциации

Электролитическая диссоциация

Материалы портала onx.distant.ru

Примеры решения задач

Задачи для самостоятельного решения

Степень диссоциации

Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

α = N′/N

Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

Классификация электролитов

Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные) . Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

Ассоциированные электролиты подразделяются на три типа:

      1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
      2. Ионные ассоциаты образуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К + , Cl — , а также возможно образование ионных пар (К + Cl — ), ионных тройников (K2Cl + , KCl2 — ) и ионных квадруполей (K2Cl2, KCl3 2- , K3Cl 2+ ).
      3. Комплексные соединения (как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
        Примеры комплексных ионов: [Cu(NH3)4] 2+ , [Fe(CN)6] 3+ , [Cr(H2O)3Cl2] + .

При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

Таблица. Характеристика растворов KI в различных растворителях

Концентрация электролита, С, моль/л Температура

t, о С

Растворитель Тип электролита
0,0125Н2ОНеассоциированный (сильный)
525Н2ОИонный ассоциат
0,00125С6Н6Ассоциированный (слабый)

Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α

Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

Диссоциация электролитов

Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

HCl → H + + Cl —

Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

NaOH → Na + + OH —

Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

NaHSO3 → Na + + HSO3

Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

HSO3 — → H + + SO3 2-

Аналогичным образом происходит диссоциация основных солей:

Mg(OH)Cl → MgOH + + Cl —

Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

MgOH + → Mg 2+ + OH —

Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

[Fe(CN)6] 3- → Fe 3+ + 6CN —

Константа диссоциации

При растворении слабого электролита К А в растворе установится равновесие:

КА ↔ К + + А —

которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации :

Kд = [К + ] · [А — ] /[КА] (2)

Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н + больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 — 4 , а К(HCN) = 4,9·10 — 10 .

Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α и концентрацией электролита c уравнением Оствальда:

Кд = (α 2· с)/(1-α) (3)

Для практических расчетов при условии, что α

Кд = α 2· с (4)

Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

ΔGT 0 = — RTlnKд (5)

Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

Примеры решения задач

Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

Следовательно, концентрации ионов К + и РО4 3- равны соответственно 0,075М и 0,025М.

Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН — (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 — 5 .

Решение. Уравнение диссоциации электролита:

Концентрации ионов: [NH4 + ] = α С ; [OH — ] = α С , где С – исходная концентрация NH 3 ·H 2 О моль/л. Следовательно:

Kд = αС · αС /(1 — αС)

Кд α 2 С

Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH 3 ·H 2 О . Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

α = √( Кд / С) = √(1,76× 10 — 5 / 0,03 ) = 0,024 или 2,4 %

[OH — ] = αС, откуда [OH — ] = 2,4·10 — 2 ·0,03 = 7,2·10 -4 моль/л.

Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

Решение. Уравнение диссоциации кислоты:

CH3CОOH → СН3СОО — + Н + .

α = [Н + ] / Сисх(CH3CОOH)

откуда [Н + ] = 9,4·10 — 2 ·0,002 = 1,88·10 -4 М.

Kд = [Н + ] 2 / Сисх(CH3CОOH)

Константу диссоциации можно также найти по формуле: Кд ≈ α 2 С .

Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10 — 4 . Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

Решение.

Кд = α 2 С , откуда получаем С исх (HNO 2 ) = 4,6·10 — 4 /(5·10 — 2 ) 2 = 0,184 М.

Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

Решение. Уравнение диссоциации муравьиной кислоты

В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н + и СООН — в водном растворе приведены ниже:

Вещество, ионНСООНН +СООН —
ΔGT 0 , кДж/моль— 373,00— 351,5

Изменение энергии Гиббса процесса диссоциации равно:

ΔGT 0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

lnKд = — Δ GT 0 /RT= — 21500/(8,31 298) = — 8,68

Откуда находим: Kд = 1,7× 10 — 4 .

Задачи для самостоятельного решения

1. К сильным электролитам в разбавленных водных растворах относятся:

  1. СН3СOOH
  2. Na3PO4
  3. NaCN
  4. NH3
  5. C2H5OH
  6. HNO2
  7. HNO3

13.2. К слабым электролитам в водных растворах относятся:

3. Определите концентрацию ионов NH4 + в 0,03 М растворе (NH4)2Fe(SO4)2;

4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

а) уменьшении концентрации HCOOH;

б) увеличении концентрации HCOOH;

в) добавлении в раствор муравьиной кислоты HCOONa;

г) добавлении в раствор муравьиной кислоты НCl.

8. Константа диссоциации хлорноватистой кислоты равна 5× 10 — 8 . Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н + в этом растворе.

0,002М; 1× 10 — 5 М.

9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH 3·H 2О, чтобы степень диссоциации NH 3·H 2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10 — 5 .

10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10 — 4 .

Электролитическая диссоциация. Ионно-молекулярные уравнения

Электролитами называют вещества, растворы и расплавы которых про-

водят электрический ток.

К электролитам относятся неорганические кислоты, а также основания, амфотерные гидроксиды и соли. Они распадаются в водных растворах и расплавах на катионы (К n + ) и анионы (А m — ).

Процесс распада молекул электролитов на ионы в среде раство­рителя получил название электролитической диссоциации (или ионизации).

Для количественной характеристики силы электролита используют понятие степени электролитической диссоциации (ионизации) — α, которая равна отношению числа молекул, распавшихся на ионы (n), к общему числу молекул электролита, введенных в раствор (N):

Такимобразом, α выражаютв долях единицы.

По степени диссоциации электролиты условно подразделяют на сильные (α » 1) и слабые (α 3+ +3 SO4 2– NаHCO3 = Nа + +НСО3

СuОНСl = CuOH + +Cl – Ва(ОН)2 = Ва 2+ +2ОН –

Слабые электролиты

· Гидроксиды металлов основного характера (кроме щелочных и щелочноземельных) и гидроксид аммония NH4OH.

Для слабых электролитов диссоциация – обратимый процесс, для которого справедливы общие законы равновесия.

Диссоциацию слабых электролитов характеризует константа равновесия, называемая константой диссоциации (ионизации) КД (табл.П.3):

CH3COOH CH3COO – + H +

Многоосновные кислоты и многокислотные основания диссоциируют ступенчато, и каждую ступень равновесного состояния характеризует своя константа диссоциации (причем Кд1 всегда больше Кд2 и т.д.), например при диссоциации H2S :1-я ступень H2S H + + HS – 6ּ10 -8 ;

2-я ступень HS – H + + S 2- 1·10 -14 ,

где [ ] ─ равновесные концентрации ионов и молекул.

1-я ступень Сu(OH)2 Cu(OH) + + OH –

2-я ступень Cu(OH) + Cu 2+ + OH –

Амфотерные гидроксиды, напримерPb(OH)2 ,диссоциируют по основному типу: Pb(OH)2 PbOH + + OH –

PbOH + Pb 2+ + OH –

и кислотному: H2PbO2 H + + HPbO2

HPbO2H + + PbO2 2 –

В растворах электролитов реакции протекают между ионами. Для записи ионных реакций применяют ионные уравнения. При составлении ионных уравнений реакций все слабые электролиты, газы и труднорастворимые электролиты записывают в молекулярной форме, все сильные электролиты (кроме труднорастворимых солей) в ион­ной форме. Примеры составления ионных уравнений реакций:

· образование труднорастворимых соединений:

· реакции с участием слабодиссоциирующих соединений:

СН3СООNa + НС1 = СН3COOH + NаС1

НС1 + NаОН = NаС1 + Н2O Н + + ОН – = Н2O

· образование газообразных веществ:

Пример 1. Осуществить превращения NаОН ® NаНSО3 ® Nа2SO3 .

Пример 2.Осуществить превращения Ni(ОН)2 ® (NiOH)2SO4 ® NiSO4.

Внимание! Основные соли, как правило, нерастворимы в воде, поэтому при написании ионных уравнений их не расписывают на ионы.

Задания к подразделу 3.2

Задания 121-140. Напишите в молекулярной и ионной формах уравнения возможных реакций предложенных оксидов с H2O, Na2O, KOH, HNO3.

121.N2O3; Na2O126.SO2; CuO131.MnO; P2O5136.N2O5; CuO
122.SnO; P2O5127.Cr2O3; Cl2O7132.BaO; Mn2O7137.P2O5; CoO
123.SO3; CaO128.CoO; ZnO133.CdO; SnO138.PbO; MgO
124.SiO2; NiO129.P2O3; FeO134.As2O5; CuO139.Cl2O7; MnO
125.PbO; N2O5130.Fe2O3; K2O135.Al2O3; SiO2140.SO3; TiO

Задания 141-160. Напишите для предложенных соединений уравнения диссоциации, а также в молекулярной и ионной формах уравнения возможных реакций взаимодействия их с H2SO4 и NaOH.

141.HCl; Cr(OH)3151.Ca(OH)2; H3PO4
142.Cd(OH)2; H2S152.HNO3; Be(OH)2
143.Cu(OH)2; HBr153.H2Сr2O7; KOH
144.H2SO3; Sn(OH)2154.HCN; Ga(OH)3
145.H2SiO3; Pb(OH)2155.KOH; H2CO3
146.CH3COOH; Fe(OH)3156.HF; Be(OH)2
147.H2Se; Zn(OH)2157.NH4OH; HClO4
148.Fe(OH)2; H3AsO3158.Pb(OH)2; HNO2
149.RbOH; HI159.Mg(OH)2; HClO
150.H2Te; Al(OH)3160.Ga(OH)3; HMnO4

Задания 161-180. Напишите уравнения диссоциации солей и назовите их.

161.ZnCl2, MnOHCl, Ba(HSO3)2171.Pb(HSO4)2, NH4NO3, CoOHCl
162.K2HAsO3, AlOHCl2, Na2SO3172.Al(OH)2NO3, Fe2(SO4)3, KHSe
163.KHSO3, (PbOH)2SO4, CrBr3173.CsHTe, Ca3(PO4)2, MnOHBr
164.Fe(NO3)3, SnOHCl, NaHTe174.Mn(NO3)2, Bi(OH)2Cl, KHS
165.NaHSe, CoOHNO3, MgCl2175.Al2(SO4)3, CrOHCl2, KHSO3
166.CdOHBr, NiCl2, KH2PO4176.NaHSe, NiOHNO3, ZnSO4
167.CaBr2, (SnOH)2SO4, K2HPO4.177.CrOHSO4, BaBr2, CsHSO3
168.BaCl2, Ca(HCO3)2, AlOHCl2178.Cu(NO3 )2, CoOHCl, NaHS
169.NiBr2, (CoOH)2SO4, KHCO3.179.FeCl2, NaH2AsO4, KCrO2
170.NiOHCl, NiBr2, NaH2PO4180.AlOHBr2, Sr(HS)2, K2SO3

Задания 181-200. Напишите в молекулярной и ионной формах уравнения реакций для следующих превращений.

186.NiCl2  Ni(OH)2  NiOHCl  NiCl2; Ba(HS)2  BaS

Гидролиз солей

Гидролиз солей – это процесс взаимодействия ионов соли с молекулами воды, приводящий к смещению ионного равновесия воды и изменению рН среды.

Гидролиз является обратимым процессом. В реакциях гидролиза участву-

ют ионы слабых электролитов: катионы слабых оснований и анионы слабых кислот. Причина гидролиза – образование слабодиссоциированных или труднорастворимых продуктов. Следствием гидролиза является нарушение равновесия в системе H2O H + + OH — ; в результате среда становится либо кислой (рН 7).

· Соль, образованная сильным основанием и слабой кислотой, подвергается гидролизу по аниону. Реакция среды щелочная (pH > 7). Первая ступень гидролиза: Na2CO3 + HOH NaHCO3 + NaOH; CO3 2 — + HOH HCO3 – + OH —

· Соль, образованная слабым основанием и сильной кислотой, подвергается гидролизу по катиону. Реакция среды кислая (pH 2+ + HOH CuOH + + H +

· Соль, образованная слабым основанием и слабой кислотой, подвергается гидролизу по катиону и аниону. Характер среды определяется константами диссоциации образовавшихся слабых электролитов.

CH3COONH4 + HOH CH3COOH + NH4OH

CH3COO — + NH4 + + HOH CH3COOH + NH4OH

· При совместном гидролизе двух солей образуются слабое основание и слабая кислота: 2FeCl3 + 3Na2S +6H2O = 2Fe(OH)3 ¯ + 3H2S­ + 6NaCl

· Соль, образованная сильной кислотой и сильным основанием, гидролизу

не подвергается, реакция среды нейтральная: KNO3 + HOH ¹

Ионы K + и NO3 — не образуют с водой слабодиссоциирующих продуктов (KOH и HNO3 – сильные электролиты).

Задания к подразделу 3.3

Задания 201-220. Напишите в молекулярной и ионной формах уравнения реакций гидролиза солей, укажите значения рН растворов этих солей (больше или меньше семи).

201.NaNO2, Cu(NO3)2211.Na2HPO4, Mg(NO3)2
202.AlCl3, NaHCO3212.Al2 (SO4)3, Na2SeO3
203.Na3PO4, ZnCl2213.CuSO4, K3PO4
204.FeCl2, K2S214.Na2SO3, Fe2 (SO4)3
205.K2SO3, ZnSO4215.NaCN, FeSO4
206.NH4Cl, KClO216.Ba(CH3COO)2, CoSO4
207.Na2Se, MnCl2217.NiSO4, NaF
208.ZnSO4, BaS218.Pb(NO3)2, Ba(NO2)2
209.Ni (NO3)2, KNO2219.Cr2(SO4)3, Na CH3COO
210.NH4Br, Na2S220.KHS, MgSO4

Задания 221-240. Напишите в молекулярной и ионной формах уравнения реакций совместного гидролиза предложенных солей.

Диссоциация кислот, оснований, амфотерных гидроксидов и солей в водных растворах

Кислоты — это электролиты, которые при диссоциации образуют только один вид катионов — катионы водорода Н + . Составим уравнение электролитической диссоциации сильных кислот: а) одноосновной азотной кислоты HNО3 и б) двухосновной серной кислоты H2SO4:

Число ступеней диссоциации зависит от основности слабой кислоты Нх(Ас), где х — основность кислоты.

Пример: Составим уравнения электролитической диссоциации слабой двухосновной угольной кислоты Н2СО3.

Первая ступень диссоциации (отщепление одного иона водорода Н + ):

Константа диссоциации по первой ступени:

Вторая ступень диссоциации (отщепление иона водорода Н + от сложного иона НСО3 — ):

Растворы кислот имеют некоторые общие свойства, которые, согласно теории электролитической диссоциации, объясняются присутствием в их растворах гидратированных ионов водорода Н + (Н3О + ).

Основания — это электролиты, которые при диссоциации образуют только один вид анионов — гидроксид-ионы ОН — .

Составим уравнение электролитической диссоциации однокислотного основания гидроксида калия КОН:

Сильное двухкислотное основание Ca(OH)2 диссоциирует так:

Слабые многокислотные основания диссоциируют ступенчато. Число ступеней диссоциации определяется кислотностью слабого основания Ме(ОН)у, где у — кислотность основания.

Составим уравнения электролитической диссоциации слабого двухкислотного основания — гидроксида железа (II) Fe(OH)2.

Первая ступень диссоциации (отщепляется один гидроксид-ион ОН — ):

Вторая ступень диссоциации (отщепляется гидроксид-ион ОН — от сложного катиона FeOH + ):

Основания имеют некоторые общие свойства. Общие свойства оснований обусловлены присутствием гидроксид-ионов ОН — .

Каждая ступень диссоциации слабых многоосновных кислот и слабых многокислотных оснований характеризуется определенной константой диссоциации: K1, K2, K3, причем K1 > K2 > K3. Это объясняется тем, что энергия, которая необходима для отрыва иона Н + или ОН — от нейтральной молекулы кислоты или основания, минимальна. При диссоциации по следующей ступени энергия увеличивается, потому что отрыв ионов происходит от противоположно заряженных частиц.

Амфотерные гидроксиды могут реагировать и с кислотами, и с основаниями. Теория электролитической диссоциации объясняет двойственные свойства амфотерных гидроксидов.

Амфотерные гидроксиды — это слабые электролиты, которые при диссоциации образуют одновременно катионы водорода Н + и гидроксид-анионы ОН — , т. е. диссоциируют по типу кислоты и по типу основания.

К амфотерным гидроксидам относятся Ве(ОН)2, Zn(OH)2, Sn(OH)2, Al(OH)3, Cr(OH)3 и другие. Амфотерным электролитом является также вода Н2O.

В амфотерных гидроксидах диссоциация по типу кислот и по типу оснований происходит потому, что прочность химических связей между атомами металла и кислорода (Ме—О) и между атомами кислорода и водорода (О—Н) почти одинаковая. Поэтому в водном растворе эти связи разрываются одновременно, и амфотерные гидроксиды при диссоциации образуют катионы Н + и анионы ОН — .

Составим уравнение электролитической диссоциации гидроксида цинка Zn(OH)2 без учета ее ступенчатого характера:

Нормальные соли — сильные электролиты, образующие при диссоциации катионы металла и анионы кислотного остатка.

Составим уравнения электролитической диссоциации нормальных солей: а) карбоната калия K2CO3, б) сульфата алюминия Al2(SO4)3:

Кислые соли — сильные электролиты, диссоциирующие на катион металла и сложный анион, в состав которого входят атомы водорода и кислотный остаток.

Составим уравнения электролитической диссоциации кислой соли гидрокарбоната натрия NaHCО3.

Сложный анион НСО3 — (гидрокарбонат-ион) частично диссоциирует по уравнению:

Основные соли — электролиты, которые при диссоциации образуют анионы кислотного остатка и сложные катионы состоящие из атомов металла и гидроксогрупп ОН — .

Составим уравнение электролитической диссоциации основной соли Fe(OH)2Cl — дигидроксохлорида железа (III):

Сложный катион частично диссоциирует по уравнениям:

Для обеих ступеней диссоциации Fe(OH)2 + .


источники:

http://zdamsam.ru/a4265.html

http://al-himik.ru/dissociacija-kislot-osnovanij-amfoternyh-gidroksidov-i-solej-v-vodnyh-rastvorah/