Библиотека питон для решения уравнений

Библиотека Sympy: символьные вычисления в Python

Что такое SymPy ? Это библиотека символьной математики языка Python. Она является реальной альтернативой таким математическим пакетам как Mathematica или Maple и обладает очень простым и легко расширяемым кодом. SymPy написана исключительно на языке Python и не требует никаких сторонних библиотек.

Документацию и исходный код этой библиотеки можно найти на ее официальной странице.

Первые шаги с SymPy

Используем SymPy как обычный калькулятор

В библиотеке SymPy есть три встроенных численных типа данных: Real , Rational и Integer . С Real и Integer все понятно, а класс Rational представляет рациональное число как пару чисел: числитель и знаменатель рациональной дроби. Таким образом, Rational(1, 2) представляет собой 1/2 , а, например, Rational(5, 2) — соответственно 5/2 .

Библиотека SymPy использует библиотеку mpmath , что позволяет производить вычисления с произвольной точностью. Таким образом, ряд констант (например, пи, e), которые в данной библиотеке рассматриваются как символы, могут быть вычислены с любой точностью.

Как можно заметить, функция evalf() дает на выходе число с плавающей точкой.

В SymPy есть также класс, представляющий такое понятие в математике, как бесконечность. Он обозначается следующим образом: oo .

Символы

В отличие от ряда других систем компьютерной алгебры, в SymPy можно в явном виде задавать символьные переменные. Это происходит следующим образом:

После их задания, с ними можно производить различные манипуляции.

С символами можно производить преобразования с использованием некоторых операторов языка Python. А именно, арифметических ( + , -` , «* , ** ) и логических ( & , | ,

Библиотека SymPy позволяет задавать форму вывода результатов на экран. Обычно мы используем формат такого вида:

Алгебраические преобразования

SymPy способна на сложные алгебраические преобразования. Здесь мы рассмотрим наиболее востребованные из них, а именно раскрытие скобок и упрощение выражений.

Раскрытие скобок

Чтобы раскрыть скобки в алгебраических выражениях, используйте следующий синтаксис:

При помощи ключевого слова можно добавить поддержку работы с комплексными переменными, а также раскрытие скобок в тригонометрических функциях.

Упрощение выражений

Если вы хотите привести выражение к более простому виду (возможно, сократить какие-то члены), то используйте функцию simplify .

Также надо сказать, что для определенных видов математических функций существуют альтернативные, более конкретные функции для упрощения выражений. Так, для упрощения степенных функций есть функция powsimp , для тригонометрических — trigsimp , а для логарифмических — logcombine , radsimp .

Вычисления

Вычисления пределов

Для вычисления пределов в SymPy предусмотрен очень простой синтаксис, а именно limit(function, variable, point) . Например, если вы хотите вычислить предел функции f(x) , где x -> 0 , то надо написать limit(f(x), x, 0) .

Также можно вычислять пределы, которые стремятся к бесконечности.

Дифференцирование

Для дифференцирования выражений в SymPy есть функция diff(func, var) . Ниже даны примеры ее работы.

Проверим результат последней функции при помощи определения производной через предел.

tan 2 (𝑥)+1 Результат тот же.

Также при помощи этой же функции могут быть вычислены производные более высоких порядков. Синтаксис функции будет следующим: diff(func, var, n) . Ниже приведено несколько примеров.

Разложение в ряд

Для разложения выражения в ряд Тейлора используется следующий синтаксис: series(expr, var) .

Интегрирование

В SymPy реализована поддержка определенных и неопределенных интегралов при помощи функции integrate() . Интегрировать можно элементарные, трансцендентные и специальные функции. Интегрирование осуществляется с помощью расширенного алгоритма Риша-Нормана. Также используются различные эвристики и шаблоны. Вот примеры интегрирования элементарных функций:

Также несложно посчитать интеграл и от специальных функций. Возьмем, например, функцию Гаусса:

Результат вычисления можете посмотреть сами. Вот примеры вычисления определенных интегралов.

Также можно вычислять определенные интегралы с бесконечными пределами интегрирования (несобственные интегралы).

Решение уравнений

При помощи SymPy можно решать алгебраические уравнения с одной или несколькими переменными. Для этого используется функция solveset() .

Как можно заметить, первое выражение функции solveset() приравнивается к 0 и решается относительно х . Также возможно решать некоторые уравнения с трансцендентными функциями.

Системы линейных уравнений

SymPy способна решать широкий класс полиномиальных уравнений. Также при помощи данной библиотеки можно решать и системы уравнений. При этом переменные, относительно которых должна быть разрешена система, передаются в виде кортежа во втором аргументе функции solve() , которая используется для таких задач.

Факторизация

Другим мощным методом исследования полиномиальных уравнений является факторизация многочленов (то есть представление многочлена в виде произведения многочленов меньших степеней). Для этого в SymPy предусмотрена функция factor() , которая способна производить факторизацию очень широкого класса полиномов.

Булевы уравнения

Также в SymPy реализована возможность решения булевых уравнений, что по сути означает проверку булевого выражения на истинность. Для этого используется функция satisfiable() .

Данный результат говорит нам о том, что выражение (x & y) будет истинным тогда и только тогда, когда x и y истинны. Если выражение не может быть истинным ни при каких значениях переменных, то функция вернет результат False .

Линейная алгебра

Матрицы

Матрицы в SymPy создаются как экземпляры класса Matrix :

В отличие от NumPy , мы можем использовать в матрицах символьные переменные:

И производить с ними разные манипуляции:

Дифференциальные уравнения

При помощи библиотеки SymPy можно решать некоторые обыкновенные дифференциальные уравнения. Для этого используется функция dsolve() . Для начала нам надо задать неопределенную функцию. Это можно сделать, передав параметр cls=Function в функцию symbols() .

Теперь f и g заданы как неопределенные функции. мы можем в этом убедиться, просто вызвав f(x) .

Теперь решим следующее дифференциальное уравнение:

Чтобы улучшить решаемость и помочь этой функции в поиске решения, можно передавать в нее определенные ключевые аргументы. Например, если мы видим, что это уравнение с разделяемыми переменными, то мы можем передать в функцию аргумент hint=’separable’ .

Бесплатные кодинг марафоны с ревью кода

Наш телеграм канал проводит бесплатные марафоны по написанию кода на Python с ревью кода от преподавателя

Руководство по SciPy: что это, и как ее использовать

Математика — это масса понятий, которые являются одновременно важными и сложными. Для работы с ними в Python есть библиотека SciPy. В этом материале вы познакомитесь с ее функциями на примерах.

Что такое SciPy?

SciPy — это библиотека Python с открытым исходным кодом, предназначенная для решения научных и математических проблем. Она построена на базе NumPy и позволяет управлять данными, а также визуализировать их с помощью разных высокоуровневых команд. Если вы импортируете SciPy, то NumPy отдельно импортировать не нужно.

NumPy vs SciPy

И NumPy, и SciPy являются библиотеками Python, которые используются для математического и числового анализов. NumPy содержит данные массивов и операции, такие как сортировка, индексация, а SciPy состоит из числового кода. И хотя в NumPy есть функции для работы с линейной алгеброй, преобразованиями Фурье и т. д., в SciPy они представлены в полном виде вместе с массой других. А для полноценного научного анализа в Python нужно устанавливать и NumPy, и SciPy, поскольку последняя построена на базе NumPy.

Пакеты в SciPy

В SciPy есть набор пакетов для разных научных вычислений:

НазваниеОписание
clusterАлгоритмы кластерного анализа
constantsФизические и математические константы
fftpackБыстрое преобразование Фурье
integrateРешения интегральных и обычных дифференциальных уравнений
interpolateИнтерполяция и сглаживание сплайнов
ioВвод и вывод
linalgЛинейная алгебра
ndimageN-размерная обработка изображений
odrМетод ортогональных расстояний
optimizeОптимизация и численное решение уравнений
signalОбработка сигналов
sparseРазреженные матрицы
spatialРазреженные структуры данных и алгоритмы
specialСпециальные функции
statsСтатистические распределения и функции

Подробное описание можно найти в официальной документации.

Эти пакеты нужно импортировать для использования библиотеки. Например:

Прежде чем рассматривать каждую функцию в подробностях, разберемся с теми из них, которые являются одинаковыми в NumPy и SciPy.

Базовые функции

Взаимодействие с NumPy

SciPy построена на базе NumPy, поэтому можно использовать функции последней для работы с массивами. Чтобы узнать о них подробнее, используйте функции help() , info() или source() .

help():

Функция help() подойдет для получения информации о любой функции. Ее можно использовать двумя способами:

Вот пример для обоих:

При исполнении этого кода, первая help() вернет информацию о подмодуле cluster . А вторая — попросит пользователя ввести название модуля, ключевого слова и др., о чем требуется предоставить дополнительную информацию. Для выхода достаточно ввести quit и нажать Enter.

info():

Эта функция возвращает информацию о конкретных функциях, модулях и так далее.

source():

Исходный код можно получить только для тех объектов, которые были написаны на Python. Функция не вернет ничего важного, если методы или объекты были написаны, например, на C. Синтаксис простой:

Специальные функции

SciPy предоставляет набор специальных функций, используемых в математической физике: эллиптические настраиваемые функции, гамма, бета и так далее. Для их поиска нужно использовать функцию help() .

Экспоненциальные и тригонометрические функции

Набор специальных функций SciPy включает такие, с помощью которых можно искать экспоненты и решать тригонометрические задачи.

Есть и масса других функций из SciPy, с которым стоит познакомиться.

Интегральные функции

Есть и функции для решения интегралов. В их числе как обычные дифференциальные интеграторы, так и методы трапеций.

В SciPy представлена функция quad , которая занимается вычислением интеграла функции с одной переменной. Границы могут быть ±∞ (± inf ) для обозначения бесконечных пределов. Синтаксис этой функции следующий:

А здесь она внедрена в пределах a и b (могут быть бесконечностями).

В этом примере функция a находится в пределах 0 и 1. После выполнения вывод будет такой:

Двойные интегральные функции

SciPy включает также и dblquad , которая используется для вычисления двойных интегралов. Двойной интеграл, как известно, состоит из двух реальных переменных. Функция dblquad() принимает функцию, которую нужно интегрировать, в качестве параметра, а также 4 переменных: две границы и функции dy и dx .

В SciPy есть другие функции для вычисления тройных интегралов, n интегралов, интегралов Ромберга и других. О них можно узнать подробнее с помощью help .

Функции оптимизации

В scipy.optimize есть часто используемые алгоритмы оптимизации:

Функция Розенброка

Функция Розенброка ( rosen ) — это тестовая проблема для оптимизационных алгоритмов, основанных на градиентах. В SciPy она определена следующим образом:

Nelder-Mead

Это числовой метод, который часто используется для поиска минимума/максимума функции в многомерном пространстве. В следующем примере метод использован вместе с алгоритмом Нелдера — Мида.

Функции интерполяции

В сфере числового анализа интерполяция — это построение новых точек данных на основе известных. Библиотека SciPy включает подпакет scipy.interpolate, состоящий из сплайновых функций и классов, одно- и многомерных интерполяционных классов и так далее.

Одномерная интерполяция

Одномерная интерполяция — это область построения кривой, которая бы полностью соответствовала набору двумерных точек данных. В SciPy есть функция interp1d , которая используется для создания одномерной интерполяции.

Вывод:

Многомерная интерполяция

Многомерная интерполяция (пространственная интерполяция) — это тип интерполяции функций, который состоит из более чем одной переменной. Следующий пример демонстрирует работу функции interp2a .

При интерполяции на двумерную сетку функция использует массивы x, y и z для приближения функции f: «z = f(x, y)» и возвращает функцию, у которой вызываемый метод использует сплайновую интерполяцию для поиска значения новых точек.

Вывод:

Функции преобразования Фурье

Анализ Фурье — это метод, который помогает представлять функцию в виде суммы периодических компонентов и восстанавливать сигнал из них. Функции fft используются для получения дискретной трансформации Фурье реальной или комплексной последовательности.

Похожим образом можно найти обратное значение с помощью функции ifft .

Функции обработки сигналов

Обработка сигналов — это область анализа, модификации и синтеза сигналов: звуков, изображений и т. д. SciPy предоставляет некоторые функции, с помощью которых можно проектировать, фильтровать и интерполировать одномерные и двумерные данные.

Фильтрация:

Фильтруя сигнал, можно удалить нежелаемые составляющие. Для выполнения упорядоченной фильтрации используется функция order_filter . Она выполняет операцию на массиве. Синтаксис следующий:

a — N-мерный массив с входящими данными

domain — массив масок с тем же количеством размерностей, что и у массива a

rank — неотрицательное число, которое выбирает элементы из отсортированного списка (0, 1…)

Сигналы

Подпакет scipy.signal также состоит из функций, с помощью которых можно генерировать сигналы. Одна из таких — chirp . Она является генератором частотно-модулированного сигнала, а ее синтаксис следующий:

Вывод:

Линейная алгебра

Линейная алгебра работает с линейными уравнениями и их представлениями с помощью векторных пространств и матриц. SciPy построена на базе библиотек ATLAS LAPACK и BLAS и является очень быстрой в сфере решения проблем, связанных с линейной алгеброй. В дополнение к функциям из numpy.linalg scipy.linalg также предоставляет набор продвинутых функций. Если numpy.linalg не используется вместе с ATLAS LAPACK и BLAS, то scipy.linalg работает намного быстрее.

Нахождение обратной матрицы

С математической точки зрения обратная матрица A — это матрица B, где AB = I, а I — это единичная матрица, состоящая из единиц по диагонали. Это можно обозначить как B=A-1. В SciPy такого можно добиться с помощью метода linalg.inv .

Нахождение определителей

Значение, полученное арифметическим путем из коэффициентов матрицы является определителем квадратной матрицы. В SciPy это делается с помощью функции det с таким синтаксисом:

det(a, overwrite_a=False, check_finite=True)

a — (M, M) — это квадратная матрица

overwrite_a(bool, optional) — разрешает перезаписывать данные

check_finite(bool, optional) — для проверки состоит ли матрица только из конечных чисел

Разреженные собственные значения

Разреженные собственные значения — это набор скаляров, связанных с линейными уравнениями. ARPACK предоставляет способ быстрого нахождения этих значений (собственных векторов). Вся функциональность скрыта в двух интерфейсах: scipy.sparse.linalg.eigs и scipy.sparse.linalg.eigsh .

Интерфейс eigs позволяет находить собственные значения реальных или комплексных несимметричных квадратных матриц, а eigsh содержит интерфейсы реальных симметричных или комплексных Эрмитовых матриц.

Функция eigh решает обобщенную проблему собственного значения для комплексной Эрмитовой или реально симметричной матрицы

Разреженные структуры данных и алгоритмы

Разреженные данные состоят из объектов, которые в свою очередь состоят из линий, точек, поверхностей и так далее. Пакет scipy.spatial из SciPy может вычислять диаграммы Вороного, триангуляцию и другое с помощью библиотеки Qhull. Он также включает реализации KDTree для точечных запросов ближайших соседей.

Триангуляции Делоне

С математической точки зрения триангуляции Делоне для набора дискретных точек на плоской поверхности — это триангуляция, где ни одна точка из представленных не расположена внутри описанной окружности любого треугольника.

Вывод:

Функции многомерной обработки изображений

Обработка изображений — это выполнение операций над изображением по получению информации или улучшенной копии этого изображения из оригинала. Пакет scipy.ndimage состоит из нескольких функций обработки и анализа изображений, которые нужны для работы с массивами с произвольной размерностью.

Свертка и корреляция

В SciPy есть несколько функций для свертки и корреляции изображений.

  • Функция correlate1d используется для вычисления одномерной корреляции по заданной оси
  • Функция correlate предлагает многомерную корреляцию для любого массива с определенным ядром
  • Функция convolve1d используется для вычисления одномерной свертки вдоль заданной оси
  • Функция convolve предлагает многомерную свертку для любого массива с определенным ядром

Файловый ввод/вывод

Пакет scipy.io предоставляет несколько функций, которые помогают управлять файлами в разных форматах, включая MATLAB, файлы IDL, Matrix Market и другие.

Для использования его нужно сначала импортировать:

Математические библиотеки Python

Боитесь математики? Не раз пытались решить задачки по математике с помощью технологий? Не вы одни. Сегодня в Python можно решить почти все математические задачи. В данной статье мы рассмотрим способы имплементации различных математических операций в Python.

Содержание статьи

Python является универсальным языком, который используется в процессе веб-разработки создания сайта, работе с базами данных и научными вычислениями. В данном руководстве будет рассмотрено, как математические библиотеки Python повлияли на научные вычисления.

Итак, давайте разберем самые популярные математические библиотеки Python.

Python библиотеки для математики

Python стал очень популярным из-за обилия библиотек. Каждая библиотека ориентирована на разработку приложений и решений всех проблем, что могут возникнуть во время процесса. Математические операции удобно выполняются в Python из-за его внимания к минимализму в сочетании с полезностью. Для математических операций в Python есть сразу несколько библиотек.

Библиотека Math в Python

Math является самым базовым математическим модулем Python. Охватывает основные математические операции, такие как сумма, экспонента, модуль и так далее. Эта библиотека не используется при работе со сложными математическими операциями, такими как умножение матриц. Расчеты, выполняемые с помощью функций библиотеки math, также выполняются намного медленнее. Тем не менее, эта библиотека подходит для выполнения основных математических операций.

Пример: Вы можете найти экспоненту от 3, используя функцию exp() библиотеки math следующим образом:


источники:

http://pythonru.com/biblioteki/scipy-python

http://python-scripts.com/math-libs