Блок схема для уравнения с

Один из методов решения квадратных уравнений

Алгоритм решения данной задачи сначала должен быть представлен в виде словесного описания или графически в виде блок-схемы. Алгоритм вычисления корней квадратного уравнения может быть представлен в виде блок-схем, изображенных на рисунках, отображающих основные элементы блок-схем и алгоритм вычисления корней квадратного уравнения:

Изображение алгоритма в виде блок-схемы позволяет наглядно представить последовательность действий, необходимых для решения поставленной задачи, убедиться самому программисту в правильности понимания поставленной задачи.

После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму. Например, ниже приведен фрагмент программы решения квадратного уравнения, соответствующий приведенному выше алгоритму, составленному на языке Visual Basic.

procedure SqRoot(Editi,Edit2,Edit3:tEdit;Label2:tLabel);
var
a,b,c:real;
d:real;
xl,x2:real;
begin
<Ввод исходных данных>a:=StrToFloat(Editl.text);
b:=StrToFloat(Edit2.text);
с:=StrToFloat(Edj.t3.text);
< Вычисление дискриминанта >d:=Sqr(b)-4*a*c;
if d=0 then begin
Label2.color:=clRed;
Label2.font.color:=clRed;
Label2.caption:=’Дискриминант меньше нуля.’+#13+
‘Уравнение не имеет корней.’ end else
begin

х1:=(-b+Sqrt(d))/(2*a);
x2:=(-b-Sqrt(d))/(2*а);

Label2.font.color:=clBlack;
Label 2.caption=’Корни уравнения:’ +#13+’xl=1+FloatToStr(xl)
+#13+’x2=’+FloatToStr(x2);
end;
end.

Но программа, написанная на языке программирования, состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Поэтому чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, она должна быть переведена на язык команд процессора, то есть машинный язык. Задачу преобразования исходной программы в машинный код выполняет специальная программа — компилятор. Помимо преобразования исходной программы в машинную, компилятор выполняет проверку правильности записи инструкций исходной программы, т. е. осуществляет синтаксический анализ.

Компилятор создает исполняемую программу только в том случае, если в тексте исходной программы нет синтаксических ошибок. Однако генерация исполняемой программы машинного кода свидетельствует только об отсутствии в тексте программы синтаксических ошибок. Убедиться в правильности работы программы можно только во время ее тестирования – пробных запусках программы и при анализе полученных результатов. Например, если в программе нахождения корней квадратного уравнения допущена ошибка в записи выражения вычисления дискриминанта, то даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.

Решение квадратных уравнений средствами Visual Basic

Задача: Дано квадратное уравнение общего вида: ax 2 +bx+c=0. Ввести в память компьютера числовые коэффициенты: a, b, c, выполнить необходимый анализ введенной информации согласно известному из курса средней школы алгоритму решения квадратного уравнения: найти дискриминант d=b 2 -4ac и, проанализировав его знак, найти все действительные корни, если знак дискриминанта положительный, или сообщить о том, что действительных корней нет, если знак дискриминанта отрицательный.

Начать составление проекта решения данной задачи необходимо с ответа на вопрос: что нужно поместить на форму Form1?

Поместим на форму две кнопки: CommandButton1 и CommandButton2.

Для этого нужно воспользоваться Панелью элементов (объектов) управления General, которая расположена в левой части основного окна компилятора Visual Basic.

Первая кнопка CommandButton1 предназначается для начала работы программы согласно следующему алгоритму:

  1. ввод коэффициентов исходного уравнения a, b, c;
  2. расчет дискриминанта d=b 2 — 4ac;
  3. анализ знака дискриминанта, вычисление корней уравнения и вывод их на форму, если знак дискриминанта d>0 (положительный);
  4. вывод сообщения: «Решений нет», если знак дискриминанта d 2 -5x+6=0.

Далее рассмотрим процесс решения второго квадратного уравнения: 10x 2 +5x+200=0.

В окне InputBox вводим значение первого коэффициента уравнения a=10.

Ввод первого коэффициента a завершается нажатием кнопки Ok.

Аналогично в окне InputBox вводим значение второго коэффициента уравнения b=5.

Ввод второго коэффициента b так же завершается нажатием соответствующей кнопки Ok.

Наконец, в окне InputBox вводим значение третьего коэффициента нового уравнения c=200.

Ввод третьего коэффициента c так же завершается нажатием соответствующей кнопки Ok.

После этого программа, проанализировав полученную информацию, должна выдать в окне формы соответствующее сообщение о том, что данное уравнение не имеет решений.

И, наконец, рассмотрим процесс решения третьего квадратного уравнения: x 2 -8x+16=0.

Это уравнение имеет двукратный корень, так как его дискриминант d=0. Как и в двух предыдущих случаях, вводим коэффициенты квадратного уравнения. Первым вводим коэффициент a=1.

Далее вводим второй коэффициент уравнения b= –8.

Третий коэффициент уравнения c=16 вводим в последнюю очередь.

В итоге мы должны увидеть правильное решение третьего квадратного уравнения. Действительно последнее уравнение имеет два одинаковых корня.

Содержание

Лекция 1. Понятие алгоритма. Виды алгоритмов

Алгоритм является базовым понятием для тех, кто хочет начать программировать на любом языке программирования. Любая задача может быть формализована алгоритмически. Чтобы понять, с чего начать, рассмотрим основные виды алгоритмов.

Цель данной лекции – ознакомить студентов с понятием алгоритма; показать, что такая абстрактная вещь как алгоритм окружает нас в повседневной жизни.

Существует несколько определений понятия алгоритма. Приведем два самых распространенных.

Алгоритм – последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Алгоритм – это совокупность действий, приводящих к достижению результата за конечное число шагов.

Вообще говоря, первое определение не передает полноты смысла понятия алгоритм. Используемое слово «последовательность» сужает данное понятие, т.к. действия не обязательно должны следовать друг за другом – они могут повторяться или содержать условие.

  1. Дискретность (от лат. discretus — разделенный, прерывистый) – это разбиение алгоритма на ряд отдельных законченных действий (шагов).
  2. Детерминированность (от лат. determinate — определенность, точность) — любое действие алгоритма должно быть строго и недвусмысленно определено в каждом случае. Например, алгоритм проезда к другу, если к остановке подходят автобусы разных маршрутов, то в алгоритме должен быть указан конкретный номер маршрута 5. Кроме того, необходимо указать точное количество остановок, которое надо проехать, скажем, три.
  3. Конечность – каждое действие в отдельности и алгоритм в целом должны иметь возможность завершения.
  4. Массовость – один и тот же алгоритм можно использовать с разными исходными данными.
  5. Результативность – алгоритм должен приводить к достоверному решению.

Основная цель алгоритмизации – составление алгоритмов для ЭВМ с дальнейшим решением задачи на ЭВМ.

  1. Любой прибор, купленный в магазине, снабжается инструкцией по его использованию. Данная инструкция и является алгоритмом для правильной эксплуатации прибора.
  2. Каждый шофер должен знать правила дорожного движения. Правила дорожного движения однозначно регламентируют поведение каждого участника движения. Зная эти правила, шофер должен действовать по определенному алгоритму.
  3. Массовый выпуск автомобилей стал возможен только тогда, когда был придуман порядок сборки машины на конвейере. Определенный порядок сборки автомобилей – это набор действий, в результате которых получается автомобиль.

Существует несколько способов записи алгоритмов. На практике наиболее распространены следующие формы представления алгоритмов:

  1. словесная (запись на естественном языке);
  2. псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);
  3. графическая (изображения из графических символов – блок-схема);
  4. программная (тексты на языках программирования – код программы).

Рассмотрим подробно каждый вариант записи алгоритамов на примере следующей задачи. Требуется найти частное двух чисел.

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке. Ответ при этом получает человек, который выполняет команды согласно словесной записи.

Пример словесной записи:

  1. задать два числа, являющиеся делимым и делителем;
  2. проверить, равняется ли делитель нулю;
  3. если делитель не равен нулю, то найти частное, записать его в ответ;
  4. если делитель равен нулю, то в ответ записать «нет решения».

Словесный способ не имеет широкого распространения, так как такие описания: строго не формализуемы; страдают многословностью записей; допускают неоднозначность толкования отдельных предписаний.

Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи. В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя. Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. Ответ при этом получает человек, который выполняет команды согласно псевдокоду.

Приведем основные управляющие структуры псевдокода в табл. 1.1.

Таблица 1.1. Базовые управляющие структуры псевдокода
Название структурыПсевдокод
Присваивание
Повторение

В данном примере используется три переменные: делимое, делитель и частное. Делимое и делитель задаются исполнителем произвольными числами. Частное считается лишь в том случае, если делитель не равен нулю.

Графическая реализация алгоритма представляет собой блок-схему. Блок-схема состоит из блоков определенной формы, соединенных стрелками. Ответ при этом получает человек, который выполняет команды согласно блок-схеме. Более подробно о блок-схемах будет рассказано в Лекции 2.

Программная реализация алгоритма – это компьютерная программа, написанная на каком-либо алгоритмическом языке программирования, например: С++, Pascal, Basic и т.д. Программа состоит из команд определенного языка программирования. Отметим, что одна и та же блок-схема может быть реализована на разных языках программирования. Ответ при этом получает ЭВМ, а не человек. Более подробно о составлении программ на языке программирования С++ смотреть Лекцию 3.

Различают три основных вида алгоритмов:

  1. линейный алгоритм,
  2. разветвляющийся алгоритм,
  3. циклический алгоритм.

Линейный алгоритм – это алгоритм, в котором действия выполняются однократно и строго последовательно.

Самый простой пример реализации линейного алгоритма – путь из университета домой.

Словесный способ записи данного алгоритма:

  1. выйти из университета на остановку;
  2. подождать нужный автобус;
  3. сесть на нужный автобус;
  4. оплатить проезд;
  5. выйти на требуемой остановке;
  6. дойти до дома.

Очевидно, что данный пример относится к линейному алгоритму, т.к. все действия следуют одно за другим, без условий и повторений.

Разветвляющийся алгоритм – это алгоритм, в котором в зависимости от условия выполняется либо одна, либо другая последовательность действий.

Самый простой пример реализации разветвляющегося алгоритма – если на улице идет дождь, то необходимо взять зонт, иначе не брать зонт с собой.

Приведенный выше пример псевдокода по нахождению частного двух чисел также относится к разветвляющемуся алгоритму.

Циклический алгоритм – это алгоритм, команды которого повторяются некое количество раз подряд.

Самый простой пример реализации циклического алгоритма – при чтении книги будут повторяться одни и те же действия: прочитать страницу, перелистнуть и т.д.

Более подробно о линейном, разветвляющемся и циклическом алгоритмах смотреть Лекцию 2.

Краткие итоги

Любая задача может быть разбита на элементарные действия. Для любой математической задачи или ситуации из жизни можно составить алгоритм решения. Алгоритм может быть описан словесно, псевдокодом, графически или программно. Задача всегда решается с помощью базовых типов алгоритма – линейного, разветвляющегося или циклического.

Вопросы

  1. Что такое алгоритм?
  2. В чем состоит задача алгоритмизации?
  3. Какими свойствами обладает алгоритм?
  4. Какие виды алгоритма бывают?

Упражнения

  1. Составьте алгоритмы по походу в магазин за яблоками. Используйте линейный и разветвляющийся алгоритмы. Реализуйте их словесно.
  2. Составьте алгоритм по нахождению корней квадратного уравнения через дискриминант. Используйте разветвляющийся алгоритм. Реализуйте его псевдокодом.

Лекция 2. Блок-схемы. Графическая реализация алгоритмов

Блок-схемы представляют собой наглядную реализацию алгоритма. Рассмотрим, как графически представлять разные виды алгоритмов на математических задачах и ситуациях из жизни.

Цель данной лекции – ознакомить студентов с понятием блок-схемы; показать основные конструкции реализации разных видов алгоритма; показать принципы проверки блок-схем и получения по ним ответа.

Занятие 1. Понятие блок-схемы. Основные виды блоков

Блок-схема – это графическая реализация алгоритма.

Блок-схема представляет собой удобный и наглядный способ записи алгоритма.

Блок-схема состоит из функциональных блоков разной формы, связанных между собой стрелками. В каждом блоке описывается одно или несколько действий. Основные виды блоков представлены в табл. 2.1.

Таблица 2.1. Виды блоков
Форма блокаНазначение блока
начало и конец блок-схемы
блок ввода данных
блок выполнения действия
блок условия
блок вывода данных

Любая команда алгоритма записывается в блок-схеме в виде графического элемента – блока, и дополняется словесным описанием. Блоки в блок-схемах соединяются линиями потока информации. Направление потока информации указывается стрелкой. В случае потока информации сверху вниз и слева направо стрелку ставить не обязательно. Блоки в блок-схеме имеют только один вход и один выход (за исключением логического блока – блока с условием).

Блок начала блок-схемы имеет один выход и не имеет входов, блок конца блок-схемы имеет один вход и не имеет выходов. Блок условия – единственный блок, имеющий два выхода, т.к. соответствует разветвляющемуся алгоритму. На одном выходе указывается «да», на другом – «нет». Все остальные блоки имеют один вход и один выход. Блок выполнения действия может содержать присвоение значения переменной (например » «) или вычисление (например » «).

Математические выражения и логические высказывания должны быть описаны математическим языком, т.к. блок-схема не должна иметь привязки к какому-то определенному языку программирования. Одна и таже блок-схема может быть реализована в программах на разных языках программирования. К примеру, функция в блок-схеме будет выглядеть таким образом: , а не таким образом: .

Все три вида алгоритмов реализуются в блок-схеме названными выше типами блоков. К примеру, в линейном алгоритме могут присутствовать все блоки, кроме блока условия. В разветвляющемся и циклическом алгоритмах могут быть использованы все названные виды блоков, но обязательным является блок условия. Внутри блока условия записывается условие, про которое можно однозначно ответить, истинно оно или ложно Если условие истинно, то выполняются действия, соответствующие стрелке «да», иначе стрелке «нет».

Занятие 2. Графическая реализация линейного алгоритма

Приведем простейшие примеры, соответствующие линейному алгоритму.

Пример 1. Вася хочет позвонить Пете по городскому телефону. Необходимо составить блок-схему, описывающую порядок действий Васи.

Решение. Чтобы позвонить по городскому телефону, нужно знать номер Пети. Значит, сначала надо найти номер телефона Пети, набрать его и поговорить с Петей. На этом цель Васи (поговорить с Петей по телефону) будет достигнута. Результат блок схемы представлен на рис. 2.1.

Пример 2. Ученику требуется купить учебник. Составить блок-схему, описывающую порядок действий ученика.

Решение. Сначала ученику нужно взять деньги, потом прийти в книжный магазин и заплатить за учебник. На этом цель (покупка учебника) будет достигнута. Результат блок схемы представлен на рис. 2.2.

Пример 3. Даны числа . Вычислить сумму и разность чисел и .

Решение. Сначала следует задать значения для чисел и , согласно условиям задачи. После этого их уже можно будет использовать в расчетах для получения суммы и разности по формулам: . Полученные значения суммы и разности нужно будет показать на экране, и мы используем блок вывода данных. Если не выводить данные на экран, то пользователь нашего алгоритма не узнает, какие получились значения суммы и разности. Результат блок схемы представлен на рис. 2.3.

В блок-схеме на рис. 2.3а каждое действие расположено в отдельном блоке. В блок-схеме рис. 2.3б объединены между собой схожие по смыслу операции. В дальнейшем мы будем объединять некоторые действия в один блок. Это очень удобно и визуально упрощает чтение блок-схемы.

Занятие 3. Графическая реализация разветвляющегося алгоритма

В разветвляющемся алгоритме обязательным блоком является блок условия, который представлен на рис. 2.4.

Внутри блока условия записывается условие. Если данное условие верно, то выполняются блоки, идущие по стрелке «да», т.е. «Набор действий 1». Если условие оказывается неверным, т.е. ложным, то выполняются блоки, идущие по стрелке «нет», а именно «Набор действий 2». Разветвление заканчивается, когда обе стрелки («да» и «нет») соединяются. На рис. 2.5 представлен еще один вариант использования блока условия. Бывают задачи, в которых, исходя из условия, необходимо либо выполнить действие, либо пропустить его. Если условие верно выполняется, то следуют блоки, соответствующие стрелке «да», т.е. «Набор действий 1». Если же условие оказывается ложным, то следует перейти по стрелке «нет». Т.к. стрелке «нет» не соответствует ни одного блока с действием, то ни одного действия не будет выполнено. Т.е. получается, что мы пропустили и не выполнили «Набор действий 1».

В разветвляющемся алгоритме возможна запись сразу нескольких условий, которые могут объединяться союзом «ИЛИ» или пересекаться союзом «И». Рассмотрим случай двух условий: «условие 1» и «условие 2».

Если необходимо, чтобы оба условия были верными одновременно, то следует использовать логическое пересечение «И»:

Если достаточно, чтобы только одно условие выполнялось – либо первое, либо второе, то следует использовать логическое объединение «ИЛИ»:

Приведем простейшие примеры, соответствующие разветвляющемуся алгоритму.

Пример 4. Джон звонит Полу по городскому телефону, но трубку может взять не только Пол. Составить блок-схему, описывающую действия Джона в этом случае.

Решение. В отличие от примера 1, здесь присутствует условие – Пол ли взял трубку телефона. На данное условие можно однозначно ответить: «да», Пол, или «нет», кто-то другой. Если трубку взял Пол, то Джону нужно с ним поговорить, и цель будет достигнута. Если трубку взял кто-то другой, то необходимо позвать Пола к телефону, поговорить с ним, и цель также будет достигнута. Третьего варианта, например, «не туда попали» или «его нет дома» мы не рассматриваем. Результат блок-схемы представлен на рис. 2.6.

Пример 5. Ученику требуется купить учебник. В магазине в наличие оказался нужный учебник в жесткой и мягкой обложке. Составить блок-схему, описывающую действия ученика.

Решение. В данном примере присутствует условие: «Нужна жесткая обложка».

Ученик может согласиться с этим высказыванием, тогда он выполнит действие, соответствующее стрелке «да» и купит учебник в жесткой обложке.

Если ученик не соглашается с данным условием, то будет выполняться действие, соответствующее стрелке «нет», и в этом случае ученик купит учебник в мягкой обложке.

И в том, и в другом случае, цель будет достигнута и задача будет выполнена, т.к. ученик купит учебник.

Результат блок схемы представлен на рис. 2.7.

Пример 6. Даны числа . Вычислить сумму и разность чисел и . Сравнить полученные значения и и указать большее из них.

Решение. Как и в примере 3, сначала необходимо задать значения и . Затем рассчитать сумму и разность по формулам: , и вывести полученные числа на экран (блок вывода данных). Когда значения и будут получены, следует сравнить их между собой. Условие запишется в виде: . Если полученная сумма будет больше разности , то мы пойдем по стрелке «да» и выведем фразу » «. Если же условие окажется ложным (т.е. ), то пойдем по стрелке «нет» и выведем фразу » «. Результат блок схемы представлен на рис. 2.8.

Занятие 4. Графическая реализация циклического алгоритма

В рассмотрении циклического алгоритма следует выделить несколько понятий.

Тело цикла – это набор инструкций, предназначенный для многократного выполнения.

Итерация – это единичное выполнение тела цикла.

Переменная цикла – это величина, изменяющаяся на каждой итерации цикла.

Каждый цикл должен содержать следующие необходимые элементы:

  1. первоначальное задание переменной цикла,
  2. проверку условия,
  3. выполнение тела цикла,
  4. изменение переменной цикла.

Циклы бывают двух видов – с предусловием и с постусловием. В цикле с предусловием сначала проверяется условие входа в цикл, а затем выполняется тело цикла, если условие верно. Цикл с предусловием представлен на рис. 2.9. Цикл с предусловием также может быть задан с помощью счетчика. Это удобно в тех случаях, когда точно известно количество итераций. В общем виде блок-схема, реализующая цикл с предусловием, представлена ниже. Сначала задается начальное значение переменной цикла, затем условие входа в цикл, тело цикла и изменение переменной цикла. Выход из цикла осуществляется в момент проверки условия входа в цикл, когда оно не выполняется, т.е. условие ложно. Цикл с предусловием может ни разу не выполниться, если при первой проверке условия входа в цикл оно оказывается ложным.

В цикле с постусловием сначала выполняется тело цикла, а потом проверяется условие. Циклический алгоритм с постусловием представлен на рис. 2.10.

Если условие верно, то итерация повторяется, если же неверно, то осуществляется выход из цикла. В отличие от цикла с предусловием, любой цикл с постусловием всегда выполнится хоть раз.

Примечание. Как видно из представленных блок-схем для циклов с предусловием и постусловием, условие записывается внутри блока условия (формы ромба), как и в разветвляющемся алгоритме. Принципиальная разница между разветвляющимся и циклическим алгоритмами при графической реализации состоит в том, что в циклическом алгоритме в обязательном порядке присутствует стрелка, идущая наверх. Именно эта стрелка обеспечивает многократный повтор тела цикла.

Приведем простейшие примеры, соответствующие циклическому алгоритму.

Пример 7. Вася звонит Пете, но у Пети может быть занята линия. Составить блок-схему действий Васи в этом случае.

Решение. Когда телефонная линия занята, то необходимо снова и снова набирать номер, пока Петя не закончит предыдущий разговор, и телефонная линия не окажется вновь свободной. Блок-схема представлена на рис. 2.11.

Здесь тело цикла состоит из одного действия «Набрать номер Пети», т.к. именно это действие следует повторять, пока линия будет занята. Под итерацией цикла понимается очередная попытка дозвониться до Пети. Как таковой переменной цикла здесь нет, т.к. ситуация взята из жизни. Выход из цикла происходит в тот момент, когда условие «У Пети занято» стало неверным, т.е. телефонная линия свободна – действительно, нет необходимости больше набирать номер Пети. В данном примере применен цикл с постусловием, т.к. сначала необходимо набрать номер Пети, ведь иначе мы не можем ответить на вопрос – занята ли линия у Пети.

Пример 8. Ученику требуется купить учебник. Составить блок-схему, описывающую действия ученика в случае, если учебника нет в ряде магазинов.

Решение. Действия ученика в данном примере очевидны: когда он приходит в первый и любой последующий магазины, то возможны два варианта – учебник имеется в наличии или учебника нет в продаже. Если учебника нет в продаже, то ученику следует пойти в другой книжный магазин и спросить данный учебник, и т.д. пока учебник не будет куплен, т.к. перед учеником стоит конечная цель – купить учебник. Мы будем использовать цикл с предусловием, т.к. сначала требуется найти магазин, имеющий в наличии данный учебник. Цикл будет выполняться, пока условие «В данном магазине нет учебника» будет верным, а выход из цикла осуществится, когда условие станет ложным, т.е. когда ученик придет в магазин, в котором есть данный учебник. Действительно, в этом случае ученик купит нужный ему учебник и не будет больше искать книжные магазины. Результат блок-схемы представлен на рис. 2.12.

Здесь тело цикла состоит из одного действия «Найти другой книжный магазин». Переменной цикла в явном виде нет, но можно подразумевать номер магазина, в который пришел ученик в очередной раз. Как любой другой цикл с предусловием, данный цикл может ни разу не выполниться (не иметь итераций), если в первом же магазине окажется нужный учебник.

Примечание. Если в данную задачу добавить условие выбора учебника в жесткой или мягкой обложке, как в примере 5, то оно появится после выхода из цикла. На реализацию циклического алгоритма данное условие не повлияет.

Пример 9. Даны числа . Известно, что число меняется от -10 до 10 с шагом 5, и не изменяется. Вычислить сумму и разность чисел и для всех значений и .

Решение. В отличие от примеров 3 и 6 здесь число меняется от -10 до 10 с шагом 5. Это означает, что число является переменной цикла. Сначала равно -10 – это первоначальное задание переменной цикла. Далее будет изменяться с шагом 5, и т.д. пока не будет достигнуто значение 10 – это соответствует изменению переменной цикла. Итерации надо повторять, пока выполняется условие » «. Итак, будет принимать следующие значения: -10, -5, 0, 5, 10. Число не будет являться переменной цикла, т.к. и не изменяется по условию задачи. Результат блок-схемы (с предусловием) представлен на рис. 2.13.

Тело цикла состоит из нескольких действий: вычисление суммы, вычисление разности и вывод полученных данных на экран. Таким образом, у нас получится несколько значений сумм и разностей, т.к. изменяется. Количество сумм и количество разностей совпадет с количеством различных значений , т.е. пять.

Данная задача может быть сделана и с циклом с предусловием, и с постусловием. В этом случае тело цикла, условие и изменение переменной цикла будут такими же, как и в цикле с предусловием, но сначала необходимо выполнить тело цикла, а потом проверить условие для выполнения следующей итерации.

Приведем блок-схему, использующую цикл с постусловием, на рис. 2.14.

В данной задаче также могут быть соединены циклический и разветвляющийся алгоритмы, если по условию задачи требуется сравнить полученные значения суммы и разности, как в примере 6. В этом случае цикл можно реализовать как с предусловием, так и с постусловием, а сравнение суммы и разности добавится внутрь тела цикла, т.к. следует сравнить между собой все полученные суммы и разности. Организация самого цикла останется прежней. Приведем на рис. 2.15а блок-схему с предусловием, а на рис. 2.15б блок-схему с постусловием.

Занятие 5. Выполнение блок-схем

Блок-схема сама по себе не содержит ответа. Чтобы получить результат, нужно выполнить блок-схему.

Выполнение блок-схемы – это прохождение всех действий блок-схемы согласно алгоритму от блока Начало до блока Конец для получения результата.

Если блок-схема составлена корректно, то, выполнив ее, человек получит ответ к своей задаче. Если же при составлении блок-схемы были допущены ошибки, то исполнитель либо вообще не дойдет до блока Конец, либо получит неверный ответ.

Для выполнения нам понадобится поле для расчетов (аналог «оперативной памяти») и поле для вывода результата (аналог экрана для вывода данных). Экран будем показывать несколько раз в зависимости от вывода новых данных на экране.

Выполнение блок-схемы для примера 3. Даны числа . Вычислить сумму и разность чисел и .

Выполнение блок-схемы приведем в табл. 2.2.

Таблица 2.2. Выполнение блок-схемы для примера 3
Расчеты:
Вывод данных (экран)

Выполнение блок-схемы для примера 6. Даны числа . Вычислить сумму и разность чисел и . Сравнить полученные значения и и указать большее из них.

Выполнение блок-схемы приведем в табл. 2.3.

Таблица 2.3. Выполнение блок-схемы для примера 6
Вывод данных (экран)
Вывод данных (экран)

Выполнение блок-схемы для примера 9. Даны числа . Известно, что число меняется от -10 до 10 с шагом 5, и не изменяется. Вычислить сумму и разность чисел и для всех значений и .

Выполнение блок-схемы с предусловием приведем в табл. 2.4.

Блок-схема: примеры, элементы, построение. Блок-схемы алгоритмов

В этой статье будут рассмотрены примеры блок-схем, которые могут встретиться вам в учебниках по информатике и другой литературе. Блок-схема представляет собой алгоритм, по которому решается какая-либо задача, поставленная перед разработчиком. Сначала нужно ответить на вопрос, что такое алгоритм, как он представляется графически, а самое главное – как его решить, зная определенные параметры. Нужно сразу отметить, что алгоритмы бывают нескольких видов.

Что такое алгоритм?

Это слово ввел в обиход математик Мухаммед аль-Хорезми, который жил в период 763-850 года. Именно он является человеком, который создал правила выполнения арифметических действий (а их всего четыре). А вот ГОСТ от 1974 года, который гласит, что:

Алгоритм – это точное предписание, которое определяет вычислительный процесс. Причем имеется несколько переменных с заданными значениями, которые приводят расчеты к искомому результату.

Алгоритм позволяет четко указать исполнителю выполнять строгую последовательность действий, чтобы решить поставленную задачу и получить результат. Разработка алгоритма – это разбивание одной большой задачи на некую последовательность шагов. Причем разработчик алгоритма обязан знать все особенности и правила его составления.

Особенности алгоритма

Всего можно выделить восемь особенностей алгоритма (независимо от его вида):

  1. Присутствует функция ввода изначальных данных.
  2. Есть вывод некоего результата после завершения алгоритма. Нужно помнить, что алгоритм нужен для того, чтобы достичь определенной цели, а именно – получить результат, который имеет прямое отношение к исходным данным.
  3. У алгоритма должна быть структура дискретного типа. Он должен представляться последовательными шагами. Причем каждый следующий шаг может начаться только после завершения предыдущего.
  4. Алгоритм должен быть однозначным. Каждый шаг четко определяется и не допускает произвольной трактовки.
  5. Алгоритм должен быть конечным – необходимо, чтобы он выполнялся за строго определенное количество шагов.
  6. Алгоритм должен быть корректным – задавать исключительно верное решение поставленной задачи.
  7. Общность (или массовость) – он должен работать с различными исходными данными.
  8. Время, которое дается на решение алгоритма, должно быть минимальным. Это определяет эффективность решения поставленной задачи.

А теперь, зная, какие существуют блок-схемы алгоритмов, можно приступить к рассмотрению способов их записи. А их не очень много.

Словесная запись

Такая форма, как правило, применяется при описании порядка действий для человека: «Пойди туда, не знаю куда. Принеси то, не знаю что».

Конечно, это шуточная форма, но суть понятна. В качестве примера можно привести еще, например, привычную запись на стеклах автобусов: «При аварии выдернуть шнур, выдавить стекло».

Здесь четко ставится условие, при котором нужно выполнить два действия в строгой последовательности. Но это самые простые алгоритмы, существуют и более сложные. Иногда используются формулы, спецобозначения, но при обязательном условии – исполнитель должен все понимать.

Допускается изменять порядок действий, если необходимо вернуться, например, к предыдущей операции либо обойти какую-то команду при определенном условии. При этом команды желательно нумеровать и обязательно указывается команда, к которой происходит переход: «Закончив все манипуляции, повторяете пункты с 3 по 5».

Запись в графической форме

В этой записи участвуют элементы блок-схем. Все элементы стандартизированы, у каждой команды имеется определенная графическая запись. А конкретная команда должна записываться внутри каждого из блоков обычным языком или математическими формулами. Все блоки должны соединяться линиями – они показывают, какой именно порядок у выполняемых команд. Собственно, этот тип алгоритма более подходит для использования в программном коде, нежели словесный.

Запись на языках программирования

В том случае, если алгоритм необходим для того, чтобы задачу решала программа, установленная на ПК, то нужно его записывать специальным кодом. Для этого существует множество языков программирования. И алгоритм в этом случае называется программой.

Блок-схемы

Блок-схема – это представление алгоритма в графической форме. Все команды и действия представлены геометрическими фигурами (блоками). Внутри каждой фигуры вписывается вся информация о тех действиях, которые нужно выполнить. Связи изображены в виде обычных линий со стрелками (при необходимости).

Для оформления блок-схем алгоритмов имеется ГОСТ 19.701-90. Он описывает порядок и правила создания их в графической форме, а также основные методы решения. В этой статье приведены основные элементы блок-схем, которые используются при решении задач, например, по информатике. А теперь давайте рассмотрим правила построения.

Основные правила составления блок-схемы

Можно выделить такие особенности, которые должны быть у любой блок-схемы:

  1. Обязательно должно присутствовать два блока – «Начало» и «Конец». Причем в единичном экземпляре.
  2. От начального блока до конечного должны быть проведены линии связи.
  3. Из всех блоков, кроме конечного, должны выходить линии потока.
  4. Обязательно должна присутствовать нумерация всех блоков: сверху вниз, слева направо. Порядковый номер нужно проставлять в левом верхнем углу, делая разрыв начертания.
  5. Все блоки должны быть связаны друг с другом линиями. Именно они должны определять последовательность, с которой выполняются действия. Если поток движется снизу вверх или справа налево (другими словами, в обратном порядке), то обязательно рисуются стрелки.
  6. Линии делятся на выходящие и входящие. При этом нужно отметить, что одна линия является для одного блока выходящей, а для другого входящей.
  7. От начального блока в схеме линия потока только выходит, так как он является самым первым.
  8. А вот у конечного блока имеется только вход. Это наглядно показано на примерах блок-схем, которые имеются в статье.
  9. Чтобы проще было читать блок-схемы, входящие линии изображаются сверху, а исходящие снизу.
  10. Допускается наличие разрывов в линиях потока. Обязательно они помечаются специальными соединителями.
  11. Для облегчения блок-схемы разрешается всю информацию прописывать в комментариях.

Графические элементы блок-схем для решения алгоритмов представлены в таблице:

Линейный тип алгоритмов

Это самый простой вид, который состоит из определенной последовательности действий, они не зависят от того, какие данные вписаны изначально. Есть несколько команд, которые выполняются однократно и только после того, как будет сделана предшествующая. Линейная блок-схема выглядит таким образом:

Причем связи могут идти как сверху вниз, так и слева направо. Используется такая блок-схема для записи алгоритмов вычислений по простым формулам, у которых не имеется ограничений на значения переменных, входящих в формулы для расчета. Линейный алгоритм – это составная часть сложных процессов вычисления.

Разветвляющиеся алгоритмы

Блок-схемы, построенные по таким алгоритмам, являются более сложными, нежели линейные. Но суть не меняется. Разветвляющийся алгоритм – это процесс, в котором дальнейшее действие зависит от того, как выполняется условие и какое получается решение. Каждое направление действия – это ветвь.

На схемах изображаются блоки, которые называются «Решение». У него имеется два выхода, а внутри прописывается логическое условие. Именно от того, как оно будет выполнено, зависит дальнейшее движение по схеме алгоритма. Можно разделить разветвляющиеся алгоритмы на три группы:

  1. «Обход» – при этом одна из веток не имеет операторов. Другими словами, происходит обход нескольких действий другой ветки.
  2. «Разветвление» – каждая ветка имеет определенный набор выполняемых действий.
  3. «Множественный выбор» – это разветвление, в котором есть несколько веток и каждая содержит в себе определенный набор выполняемых действий. Причем есть одна особенность – выбор направления напрямую зависит от того, какие заданы значения выражений, входящих в алгоритм.

Это простые алгоритмы, которые решаются очень просто. Теперь давайте перейдем к более сложным.

Циклический алгоритм

Здесь все предельно понятно – циклическая блок-схема представляет алгоритм, в котором многократно повторяются однотипные вычисления. По определению, цикл – это определенная последовательность каких-либо действий, выполняемая многократно (более, чем один раз). И можно выделить несколько типов циклов:

  1. У которых известно число повторений действий (их еще называют циклами со счетчиком).
  2. У которых число повторений неизвестно – с постусловием и предусловием.

Независимо от того, какой тип цикла используется для решения алгоритма, у него обязательно должна присутствовать переменная, при помощи которой происходит выход. Именно она определяет количество повторений цикла. Рабочая часть (тело) цикла – это определенная последовательность действий, которая выполняется на каждом шаге. А теперь более детально рассмотрим все типы циклов, которые могут встретиться при составлении алгоритмов и решении задач по информатике.

Циклы со счетчиками

На рисунке изображена простая блок-схема, в которой имеется цикл со счетчиком. Такой тип алгоритмов показывает, что заранее известно количество повторений данного цикла. И это число фиксировано. При этом переменная, считающая число шагов (повторений), так и называется – счетчик. Иногда в учебниках можно встретить иные определения – параметр цикла, управляющая переменная.

Блок-схема очень наглядно иллюстрирует, как работает цикл со счетчиком. Прежде чем приступить к выполнению первого шага, нужно присвоить начальное значение счетчику – это может быть любое число, оно зависит от конкретного алгоритма. В том случае, когда конечное значение меньше величины счетчика, начнет выполняться определенная группа команд, которые составляют тело цикла.

После того, как тело будет выполнено, счетчик меняется на величину шага счетчика, обозначенную буквой h. В том случае, если значение, которое получится, будет меньше конечного, цикл будет продолжаться. И закончится он лишь в тогда, когда конечное значение будет меньше, чем счетчик цикла. Только в этом случае произойдет выполнение того действия, которое следует за циклом.

Обычно в обозначениях блок-схем используется блок, который называется «Подготовка». В нем прописывается счетчик, а затем указываются такие данные: начальное и конечное значения, шаг изменения. На блок-схеме это параметры I н, Ik и h, соответственно. В том случае, когда h=1, величину шага не записывают. В остальных случаях делать это обязательно. Необходимо придерживаться простого правила – линия потока должна входить сверху. А линия потока, которая выходит снизу (или справа, в зависимости от конкретного алгоритма), должна показывать переход к последующему оператору.

Теперь вы полностью изучили описание блок-схемы, изображенной на рисунке. Можно перейти к дальнейшему изучению. Когда используется цикл со счетчиком, требуется соблюдать определенные условия:

  1. В теле не разрешается изменять (принудительно) значение счетчика.
  2. Запрещено передавать управление извне оператору тела. Другими словами, войти в цикл можно только из его начала.

Циклы с предусловием

Этот тип циклов применяется в тех случаях, когда количество повторений заранее неизвестно. Цикл с предусловием – это тип алгоритма, в котором непосредственно перед началом выполнения тела осуществляется проверка условия, при котором допускается переход к следующему действию. Обратите внимание на то, как изображаются элементы блок-схемы.

В том случае, когда условие выполняется (утверждение истинно), происходит переход к началу тела цикла. Непосредственно в нем изменяется значение хотя бы одной переменной, влияющей на значение поставленного условия. Если не придерживаться этого правила, получим «зацикливание». В том случае, если после следующей проверки условия выполнения тела цикла оказывается, что оно ложное, то происходит выход.

В блок-схемах алгоритмов допускается осуществлять проверку не истинности, а ложности начального условия. При этом из цикла произойдет выход только в том случае, если значение условия окажется истинным. Оба варианта правильные, их использование зависит от того, какой конкретно удобнее использовать для решения той или иной задачи. Такой тип цикла имеет одну особенность – тело может не выполниться в случае, когда условие ложно или истинно (в зависимости от варианта, который применяется для решения алгоритма).

Ниже приведена блок-схема, которая описывает все эти действия:

Что такое цикл с постусловием?

Если внимательно присмотреться, то этот вид циклов чем-то похож на предыдущий. Самостоятельно построить блок-схему, описывающую этот цикл, мы сейчас и попробуем. Особенность заключается в том, что неизвестно заранее число повторений. А условие задается уже после того, как произошел выход из тела. Отсюда видно, что тело, независимо от решения, будет выполняться как минимум один раз. Для наглядности взгляните на блок-схему, описывающую выполнение условия и операторов:

Ничего сложного в построении алгоритмов с циклами нет, достаточно в них только один раз разобраться. А теперь перейдем к более сложным конструкциям.

Сложные циклы

Сложные – это такие конструкции, внутри которых есть один или больше простых циклов. Иногда их называют вложенными. При этом те конструкции, которые охватывают иные циклы, называют «внешними». А те, которые входят в конструкцию внешних – внутренними. При выполнении каждого шага внешнего цикла происходит полная прокрутка внутреннего, как представлено на рисунке:

Вот и все, вы рассмотрели основные особенности построения блок-схем для решения алгоритмов, знаете принципы и правила. Теперь можно рассмотреть конкретные примеры блок-схем из жизни. Например, в психологии такие конструкции используются для того, чтобы человек решил какой-то вопрос:

Или пример из биологии для решения поставленной задачи:

Решение задач с блок-схемами

А теперь рассмотрим примеры задач с блок-схемами, которые могут попасться в учебниках информатики. Например, задана блок-схема, по которой решается какой-то алгоритм:

При этом пользователь самостоятельно вводит значения переменных. Допустим, х=16, а у=2. Процесс выполнения такой:

  1. Производится ввод значений х и у.
  2. Выполняется операция преобразования: х=√16=4.
  3. Выполняется условие: у=у 2 =4.
  4. Производится вычисление: х=(х+1)=(4+1)=5.
  5. Дальше вычисляется следующая переменная: у=(у+х)=(5+4)=9.
  6. Выводится решение: у=9.

На этом примере блок-схемы по информатике хорошо видно, как происходит решение алгоритма. Нужно обратить внимание на то, что значения х и у задаются на начальном этапе и они могут быть любыми.


источники:

http://intuit.valrkl.ru/course-1345/index.html

http://www.syl.ru/article/373722/blok-shema-primeryi-elementyi-postroenie-blok-shemyi-algoritmov