Блок схема системы линейных уравнений

Основные блок-схемы решения линейных и квадратичных задач с параметрами

Разделы: Математика

Задачи с параметрами (ЗсП) традиционно являются наиболее сложными для учащихся, поскольку требуют от них умения логически рассуждать и проводить анализ решения. Подобные задачи являются первыми исследовательскими задачами, с которыми встречаются школьники. Для их решения не требуются знания, выходящие за пределы школьной программы, но недостаточно применения лишь стандартных приемов, а необходимо глубокое понимание всех разделов элементарной математики.

В данной статье предпринята попытка систематизации и формализации (в форме блок-схем) наиболее часто встречающихся и наиболее типичных ЗсП. При этом выделены классы задач, решаемых по единой методике.

Рассматриваются аналитические методы решения ЗсП, сводящиеся к исследованию линейных или квадратных уравнений (неравенств), а также квадратного трехчлена. Такой выбор обусловлен тем, что курс школьной математики ограничен «вглубь», по существу, «теорией квадратичного».

Линейные уравнения

Определение. Уравнение вида ax=b, где a, b принадлежат множеству всех действительных чисел, будем называть стандартным видом линейного уравнения. Всевозможные варианты, возникающие при решении линейных уравнений, отразим в блок–схеме I.

Количество корней линейного уравнения отразим в блок-схеме II:

Пример 1. Для всех действительных значений параметра m решите уравнение m 2 x–2=4x+m.

Решение. Приведем заданное линейное уравнение к стандартному виду:

m 2 x–2=4x+m, m 2 x–4x=m+2, (m 2 –4)x=m+2.(1)

Следуя схеме I, рассмотрим два случая для коэффициента при x:

1)если m 2 – 4 не равно 0, m не равно ±2, то x=(m+2)/(m 2 -4), x=1/(m–2);

а) при m = –2 уравнение (1) примет вид 0х=0, отсюда х – любое действительное число;

б) при m = 2 уравнение (1) примет вид 0х= 4, отсюда следует, что корней нет.

Ответ. Если m 2 то x=1/(m–2); если m= – 2, то x – любое действительное число; если m=2, то корней нет.

Пример 2. При каких значениях параметра k уравнение 2(k–2x)=kx+3 не имеет корней?

Решение. 2(k–2x)=kx+3, (k+4)x=2k–3. В силу схемы II уравнение не имеет корней, если k+4=0 и 2k–3 не равно 0 => k= –4 и k не равно 1,5 => k = –4.

Ответ. k=–4.

Системы линейных уравнений

Определение 1. Система называется совместной, если она имеет хотя бы одно решение.

Определение 2. Система называется несовместной, если она не имеет ни одного решения.

Количество решений системы линейных уравнений отразим в блок-схеме III.

Замечание. Так как уравнение прямой y=kx+b в общем виде записывается следующим образом ax+by+c=0, то взаимное расположение двух прямых отразим в блок-схеме IV.

Пример. При каких значениях параметра c система из двух уравнений c 2 x+(2–c)y–4=c3 и (2c–1)y+cx+2=c 5 совместна?

Решение. Запишем систему в стандартном виде: c 2 x+(2–c)y=c 3 +4 и cx+(2c–1)y=c 5 –2. Сначала найдем значения c, при которых эта система не имеет решений. В силу схемы III имеем условие,

c 2 /с=(2-с)/(2с–1), с не равно (c 3 +4)/(c 5 –2),

которое равносильно системе из уравнения и неравенства

с=(2–с)/(2с–1) и с не равно (c 3 +4)/(c 5 –2).

Решением системы является с=1. Итак, система имеет решения при всех действительных значениях с, кроме с=1.

Ответ. с — любое действительное число, с не равно 1.

Линейные неравенства

Определение. Неравенство вида ax>b, ax b, ax b, отразим в блок-схеме V.

Пример. Для всех значений параметра m решите неравенство 5x–m>mx–3.

Решение. 5x–m>mx–3, (5–m)x>m–3.

Следуя схеме V, рассмотрим три случая для коэффициента при х:

2)если 5–m 5, то x 2. Откуда следует, что решений нет.

Ответ. Если m (m–3)/(5–m); если m=5, то решений нет; если m>5, то х 2 +bx+c=0, где a, b, c — любые действительные числа, a>0, называется квадратным уравнением относительно действительного переменного x.

Ситуации, возникающие при решении квадратных уравнений, отразим в блок–схеме VI.

Пример. При каких значениях параметра c уравнение (c–2)x 2 +2(с–2)x+2=0 не имеет корней?

Решение. Рассмотрим два случая:

1) если с–2 не равно 0, c не равно 2, то D 2 –2(c–2) 2 +(c+4)x+c+7=0 имеет только отрицательные корни?

Решение. В силу условия задачи необходимо рассмотреть два случая (линейный и квадратичный):

1) если c–1=0, c=1, то уравнение примет вид 5x+8=0, x= –5/8 – отрицательный корень;

2) если c–1 не равно 0, c не равно 1, то, следуя схеме VII, получим систему

Решением ее являются промежутки –22/3 2 +bx+c, где a не равно 0, называется квадратичной. График квадратичной функции называется параболой.

Абсциссы точек пересечения параболы y=ax 2 +bx+c с осью (Ox) являются корнями уравнения ax 2 +bx+c=0.

Учитывая это, отразим взаимное расположение параболы и оси (Ox) в следующей схеме:

Замечание. Если уравнение параболы имеет вид y=a(x–p) 2 +q, то (p; q) – координаты вершины параболы.

Пример 1. При каких значениях параметра a вершина параболы y=(x–7a) 2 +a 2 –10+3a лежит в III координатной четверти?

Решение. Пусть (x0, y0) – координаты вершины параболы. В силу замечания имеем x0=7a, y0=a 2 –10+3a. Так как вершина параболы лежит в третьей четверти, то

Ответ. –5

Пример 2. При каких значениях параметра b график функции y=(4–b 2 )x 2 +2(b+2)x–1 лежит ниже оси (Ox)?

Решение. Рассмотрим два случая.

1. Пусть 4–b 2 =0, b= + 2;

1) если b=2, то прямая y=8x–1 не лежит ниже оси (Ox);

2) если b= –2, то прямая y= –1 лежит ниже оси (Ox).

2. Пусть 4–b 2 не равно 0. Тогда в соответствии со схемой VIII получим

Объединяя ответы, получим b 2 +bx+c=0. Введем функцию y(x)= ax 2 +bx+c. Тогда расположение корней этого уравнения на числовой оси отразим в блок–схеме IX.

Следствие. С учетом схемы IX схема VII для знаков корней квадратного уравнения примет следующий вид:

Пример. При каких значениях параметра a корни уравнения x 2 –2(a+3)x+a 2 +6,25a+8=0 больше 2?

Решение. Введем функцию y(x)=x 2 –2(a+3)x+a 2 +6,25a+8; x0 – абсцисса вершины этой параболы. Так как корни уравнения находятся справа от числа 2, то в соответствии со схемой IX имеем:

Решение. Данная задача равносильна следующей: при каких значениях параметра b система

имеет одно решение?

Решим неравенство (2): 2x 2 –2x–1>0, x1,2=0,5(1±(3) 1/2 ), x 1/2 ) или x>0,5(1+(3) 1/2 ).

Найдем корни уравнения (1): D=(2b–7) 2 , x1=2, x2=2b–5. Поскольку корень x1=2 удовлетворяет неравенству (2), то система имеет одно решение в следующих случаях:

1) если x2=2b–5 не удовлетворяет неравенству (2), то 0,5(1–(3) 1/2 ) 1/2 ) или 0,25(11–O3) 1/2 );

Ответ. 0,25(11–(3) 1/2 ) 1/2 ), b=3,5.

Пример 2. При каких значениях параметра p уравнение 5–4sin 2 x–8cos 2 (x/2)=3p имеет корни?

Решение. Преобразуем заданное уравнение:

5– 4sin 2 x–8cos 2 (x/2)=3p => 5–4(1–cos2x)–4(1+cosx)=3p => 4cos 2 x–4cosx–3p–3=0.

Сделаем замену cosx=t. Тогда заданная задача равносильна следующей: при каких значениях p система

4t2–4t–3p–3=0, (1)
-1 2 –4t–3p–3; t0–вершина этой параболы. В силу схемы IX случаи 1, 2 и 3 описываются следующей совокупностью:

Прэктная работа по теме «Системна линейных уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

ЛУГАНСКОЙ НАРОДНОЙ РЕСПУБЛИКИ

МАЛАЯ АКАДЕМИЯ НАУК УЧАЩЕЙСЯ МОЛОДЕЖИ

Система линейных уравнений

Введение…………………………………………………………………………3
1.Система линейных уравнений с двумя переменными………………………7

Понятие о системах уравнений …………………………………………7

Способ алгебраического сложения………………………………………8

1.5.Геометрическая интерпретация решений системы
двух линейных уравнений с двумя неизвестными………………………11

4. Геометрическая интерпретация решения системы трех линейных
уравнений с тремя неизвестными……………………………………………………………………24

5.Решение систем линейных уравнений с параметрами………………………………..27

6.Решение систем уравнений на EXCEL…………………………………………………………….30

Список используемых источников……………………………………………….33

«Перед вами система линейных уравнений с двумя переменными Что скрывается за этими скупыми значками? Математик даст общий ответ: «Это система из двух линейных уравнений с двумя переменными. Но что она выражает, сказать не могу» Если обратиться за ответом к инженерам разных специальностей, то услышим разные ответы.

Инженер-электрик скажет, что передним уравнения напряжения или токов в электрической цепи с активными напряжениями.

Инженер-механик верен, что это уравнения равновесия сил для системы рычагов или пружин.

Инженер-строитель сообщит, что имеет дело с уравнениями, связывающими силы и деформации в какой-то строительной конструкции.

Инженер-плановик авторитетно заявит, что это уравнения для расчета загрузки станков. Так какой же из ответов правильный? Каждый из них верен. Да одна и та же система линейных уравнений может отображать равновесное состояние и электрической цепи, и рычагов, и строительной конструкции. Все зависит от того, что скрывается за постоянными коэффициентами и символами неизвестных — и.» (Пекелис1973,стр190-191)

Различные явления действительности имеют поразительное математическое сходство. Так о системе уравнений и применении её в различных сферах производства говорится в книге изданной почти полвека назад. За это время мир очень изменился.

Только о системах линейных уравнений не забыли. Наоборот с развитием экономики возросла необходимость прогнозировать экономические риски, востребован их анализ , которые делаются на основе решения систем линейных уравнений со многими переменными. Внимание к методам решения систем линейных уравнений только возрастает.

В нашем примере фигурируют только уравнения с двумя переменными, а ведь количество переменных и уравнений в системе может быть неограниченным. При решении теоретических и практических задач в науке, технике, производстве приходится иметь дело с системами уравнений с несколькими неизвестными.

Системы линейных уравнений приходят на помощь, когда приходится иметь дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, что сводит эти уравнения линейным.

Развитие экономики, повлекшее за собой необходимость решать задачи математической экономики, как правило, сводящихся к системе линейных уравнений с большим числом переменных обусловило поиск различных способов решений систем уравнений.

Для решения систем линейных уравнений с переменными с давних времен использовали исключения.

В XVII— XVIII вв. над решением систем линейных уравнений работали такие ученые, как Ферма, Ньютон, Лейбниц, Эйлер, Лагранж и другие.

Решение системы уравнений выраженное формулами , впервые использовал в 1675г. немецкий математик Г.Лейбниц, что способствовало развитию теории определителей.

Интересно, что определители были открыты дважды .Сначала — без теоретического обоснования, но с правилами практического применения —в древнем Китае, еще в начале нашей эры, а может и раньше. А уже в XVIII В. Метод определителей открыл Лейбниц в процессе разработки универсального метода решения систем линейных уравнений, что и привело к введению понятия определителей.

Из изучения определителей, решения систем линейных уравнений с многими переменными начинается очень важный раздел современной математики — линейная алгебра.

Сталкиваясь на уроках математики с системами линейных уравнений, мы их решали способом подстановки, сложения и иллюстрировали их решение с помощью графиков. Появилось желание узнать, а есть ли другие способы решения систем линейных уравнений и так ли сложно их освоить.

При выполнении этой работы была поставлена цель, изучить различные способы решения систем линейных уравнений с последующим оптимальным применением того или иного способа при дальнейшем решении систем.

Актуальность работы вызвана тем, что с помощью линейных уравнений математически модулируют все большее число процессов в технике, экономике, производстве, науке.

В работе ставились следующие задачи:

1.Изучить литературу по методам решения систем линейных алгебраических

2.Рассмотреть способы решения систем линейных алгебраических уравнений

1.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ

Понятие о системах уравнений

Совокупность нескольких уравнений с несколькими переменными называют системой уравнений (неизвестное обозначенное одной и той же буквой в каждом из уравнений , должно обозначать одну и ту же неизвестную величину)

Система (1.1) где и — неизвестные, а —коэффициенты системы, а — свободные члены, называется системой двух линейных уравнений с двумя неизвестными.

Если , то система называется однородной, в остальных случаях — неоднородной.

Система называется совместной , если она имеет хотя бы одно решение, и называется несовместной , если у нее нет ни одного решения.
Совместная система вида называется определенной , если она имеет единственное решение; если у нее есть хотя бы два различных решения, то она называется неопределенной.

Решением системы уравнений с несколькими неизвестными называется совокупность значений этих неизвестных, обращающая каждое уравнение системы в тождество.

Решить систему уравнений, значит найти множество все её решений или показать, что она решений не имеет.

Не существует общего аналитического способа решения систем, все методы основаны на численных решениях. Основная задача при решении — это правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. В школьном курсе математики подробно описаны такие методы как алгебраическое сложение, подстановка, а так же графический способ.

Чтобы решить систему (1.1), из первого уравнения системы найдем при . Подставив найденное значение во второе уравнение системы (1.1), получим , откуда . Если , то . Тогда . Итак, решением системы при (1.1) является пара чисел

Блок-схема решения системы (1.1) способом подстановки представлена на схеме 1.1.

Пример 1. Решим систему уравнений:

Уравнения могут быть сложными, и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Способ алгебраического сложения

Чтобы решить систему (1.1) способом алгебраического сложения, умножим обе части первого уравнения на второго на . Получаем Полагая что система имеет решение, складываем левые и правые части уравнений системы; получаем откуда находим при . Аналогично поступаем, чтобы найти умножим обе части первого уравнения системы (1.1) на а второго на Получаем складываем левые и

правые части уравнений: откуда при . Таким образом, если .

Поскольку система уравнений решена в предположении, что она имеет решения, то необходимо подстановкой убедиться, что найденная пара чисел — решения этой системы.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять, когда в уравнениях присутствуют дроби и десятичные числа.

Блок-схема решения системы (1.1) способом сложения представлена на схеме 1.2.

Пример 2. Решим систему уравнений:

Умножим обе части первого уравнения системы на 3, а второго на -2. имеем: Почленно сложим левые и правые части полученных уравнений: Подставим найденное значение в одно из уравнений системы и решим его:

Чтобы решить систему (1.1) способом сравнения, найдем или из каждого уравнения системы: и . Приравнивая полученные для выражения , найдем , . Таким образом, система если , имеет решение

Блок-схема решения системы (1.1) способом сравнения представлена на схеме 1.3.

Пример 3. Решим систему уравнений:

Выразим переменную из каждого уравнения системы: и . Приравняв полученные выражения имеем Подставим найденное значение в первое уравнение получим

Геометрическая интерпретация решений системы двух линейных уравнений с двумя неизвестными

Если предположить, что в каждом уравнений системы, по крайней мере один из коэффициентов при переменных отличен от нуля, то каждое из уравнений является уравнением прямой линии.

Если определитель системы , то это означает, что если

1)все коэффициенты отличны от нуля, то и так как то обе прямые пересекаются в единственной точке, координаты которой и образуют решение системы. ( рис.1.1)

2) Если хотя бы один из коэффициентов при переменных равен нулю, например , то, по нашему условию, и, следовательно, (иначе ). Поэтому данная система равносильна системе уравнений перпендикулярных прямых (одна из которых параллельна оси ординат, другая — оси абсцисс), пересекающихся в одной точке. (рис.1.2).

Если же определитель системы равен нулю, то коэффициенты при переменных пропорциональны и, следовательно, либо система эквивалентна одному уравнению и обе прямые совпадают и система имеет бесконечное множество решений
(рис.1.3), либо система не имеет решений и обе прямые параллельны и не совпадают (рис.1.4)

Блок-схема геометрической интерпретации решений представлена на схеме 1.4

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом подстановки

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом сложения

Блок-схема решения системы
двух линейных уравнений с двумя
переменными способом сравнения

Выразить из каждого уравнения одну туже переменную

Сравнить полученные выражения, найти одну из переменных

Подставить найденное значение в любое уравнение , найти значение второй переменной

Рассмотрим решение систем линейных уравнений методом Гаусса. Пусть задана система трёх линейных уравнений с тремя неизвестными и: (3.1) .

Разделим обе части первого уравнения системы (3.1) на . Получим (3.2)

Умножим обе части уравнения (3.2) на и отнимим от второго уравнения системы (3.1). Получим:

Умножим обе части уравнения (3.2) на и отнимим от третьего уравнения системы (3.2). Получим: Имеем систему: Пусть Тогда (3.3)

Разделим обе части первого уравнения системы (3.3) на имеем Умножим обе части этого уравнения на отнимим его отвторого уравнения системы (3.3). Получим: Обозначим После проведенных преобразований получим систему треугольного

вида:

Теперь, начиная с последнего уравнения, легко определить значения всех переменных. Если то средикоэффициентов системы (3.1) при существует хотя бы один, отличный от нуля. Это уравнение и считается первым.

Пример 1. Решите систему уравнений

Умножим обе части первого уравнения системы на 2 и отнимим его от второго уравнения, потом обе части первого уравнения умножим на 4 и отнимим его от третьего. Имеем систему Эта система имеет бесконечно много решений. Выразим через Подставив в первое уравнение исходной системы, имеем: Таким образом система имеет бесконечно много решений.

Ответ: ,

Пример2. Решите систему уравнений

Умножим обе части первого уравнения системы на 2 и отнимим его почленно от второго уравнения, потом отнимем первое уравнение от третьего. Получим систему уравнений Теперь прибавим второе и третье уравнения полученной системы. Имеем Поскольку третье уравнение системы не имеет решений , то система несовместна.

Ответ : система несовместна.

Одним из наиболее распространенных методов решения линейных систем является метод Крамера.

Рассмотрим систему двух линейных уравнений с двумя неизвестными и : Числа называют коэффициентами системы, а — свободными членами. При решении системы линейных уравнений методом сложения были найдены следующие решения ; .

Проанализировав полученные результаты, можно установить правило, по которому составлены выражения для нахождения и. Коэффициенты системы образуют таблицу , которую называют квадратной матрицей второго порядка.

Число называют определителем этой матрицы. Его обозначают так: . Это определитель второго порядка, его называют определителем системы

Определитель второго порядка можно вычислить по схеме: =.

Обратим внимание на числители в формулах, полученных для нахождения и . Их тоже можно рассм атривать как определители второго порядка. Обозначаются они ; .

Теперь можно записать: ; .

Полученные формулы называют формулами Крамера. Анализируя их, видим, что при решении системы возможны такие случаи.

1.. Система имеет единственное решение; ; .

2.; ; . Система не имеет решений.

3. ;; . Система имеет бесконечно много решений.

Пример 1. Решите систему уравнений

;

; .

Следовательно, ; .

Ответ:.

Пример 2. Решите систему уравнений

;

; .
Следовательно, данная система имеет бесконечно много решений. Любое из них можно получить, взяв произвольное значение , а потом выразивши из уравнения. Например, если , то То есть пара — одно из решений системы.

Ответ: система имеет множество решений.

Пример 3. . Решите систему уравнений

;

; .

Следовательно, данная система не имеет решений.

Ответ: система несовместна.

Формулы Крамера можно обобщить на случай системы трех линейных уравнений с тремя неизвестными.

Рассмотрим систему

— коэффициенты системы; — свободные члены системы

Запишем, как и в системе с двумя неизвестными, таблицу коэффициентов системы — квадратную матрицу третьего порядка: .

Число = называют определителем этой матрицы.

Вычисление определителя третьего порядка можно выполнить по такой схеме:

.

Следовательно, ; ;.

То есть если , то решением системы будет тройка чисел , таких, что ; ; .

Эти формулы так же называют формулами Крамера.

Пример 4. . Решите систему уравнений

;

; =- 4 ; .

Отсюда, ; ; .

Ответ: .

Пример 5. . Решите систему уравнений

Решение ; ; ; .

Ответ:

Пример 6. Решите систему уравнений

;

; ; .

Система не имеет решений.

Ответ: система несовместна.

Пример 7 Решите систему уравнений

Решение ; ;

;

Ответ: система имеет множество решений.

4.ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ РЕШЕНИЙ СИСТЕМЫ ТРЕХ ЛИНЕЙНЫХ УРАВНЕНИЙ С ТРЕМЯ НЕИЗВЕСТНЫМИ

Известно, что всякое линейное уравнение, (4.1) у которого хотя бы один из коэффициентов при переменных отличен от нуля, изображает в координатном пространстве плоскость. Более точно: в координатном пространстве существует такая плоскость , координаты каждой точки которой удовлетворяют уравнению (4.1), и, наоборот, всякая точка, координаты которой удовлетворяют уравнению (4.1), лежат в плоскости

Будем предполагать, что в каждом уравнении системы трех линейных уравнений (4.2) хотя бы один из коэффициентов при переменных отличен от нуля. Тогда каждое из этих уравнений является уравнение плоскости в координатном пространстве, и, следовательно, множество решений этой системы является множеством всех точек координатного пространства, лежащих в каждой из этих плоскостей, и, значит, совпадает, с их пересечением. Пусть первое уравнение системы является уравнением плоскости , второе — плоскости , третье —плоскости.

Решая систему (4.2) методом последовательного исключения переменных, мы получим треугольную систему, либо равносильную систему, в которой число уравнений меньше числа переменных и среди уравнений системы нет противоречивых уравнений, либо систему, в которой одно из уравнений противоречиво.

Рассмотрим геометрический смысл каждого из случаев.

1)Если данная система равносильна треугольной, то она имеет единственное решение. Геометрически это означает, что все три плоскости пересекаются в одной точке (рис.1).

2) а)Если данная система равносильна системе, состоящей из одного уравнения, то она имеет бесконечное множество решений, лежащих в одной плоскости. Геометрически это означает, что все три плоскости совпадают.

Пример1.

Линейный алгоритм. Понятие и особенности. Блок-схема

Каждый человек на протяжении своей жизни решает множество задач разной сложности. Но даже самые простые из задач выполняются последовательно, то есть за несколько шагов. Эту последовательность можно назвать алгоритмом. Последовательности бывают разные, но начинать их изучение лучше всего с линейных.

Прежде чем приступить к рассмотрению основной темы статьи, следует сделать краткое отступление и сказать несколько слов про алгоритмический язык.

Алгоритмический язык

Представьте, что человеку, работающему за компьютером, поставлена некая вычислительная задача. В языке программирования решение этой задачи выполняется с помощью алгоритмизации. Решение предполагает: — разбиение на этапы; — разработку алгоритма; — составление программы решения на алгоритмическом языке; — ввод данных; — отладку программы (возможны ошибки — их надо исправить); — выполнение на ПК; — анализ результатов.

Алгоритмический язык является средством описания алгоритмов, а уже алгоритм, в свою очередь, представляет собой чёткое описание определённой последовательности действий, направленных на решение необходимой задачи.

Свойства алгоритма

Их несколько: — конечность. Любой алгоритм должен быть завершённым, а окончание наступает после выполнения определённого числа шагов; — однозначность, понятность. Не допускается разных толкований, неопределённости и двусмысленности — всё должно быть чётко и ясно, а также понятно исполнителю — и правила выполнения действий линейного алгоритма, и сами действия; — результативность. Итог работы — результат, полученный за конечное число шагов; — универсальность, массовость. Качественный алгоритм способен решать не одну задачу, а целый класс задач, имеющих схожую постановку/структуру.

Линейная структура

Любой алгоритм составляется из ряда базовых структур. Простейшей базовой структурой является следование — структура с линейными характеристиками. Из этого можно сформулировать определение.

Линейный алгоритм — это алгоритм, образуемый командами, которые выполняются однократно и именно в той последовательности, в которой записаны. Линейная структура, по сути, проста. Записать её можно как в текстовой, так и в графической форме.

Представим, что у нас стоит задача пропылесосить ковёр в комнате. В текстовой форме алгоритм будет следующим: — принести пылесос к месту уборки; — включить; — пропылесосить; — выключить; — унести пылесос.

И каждый раз, когда нам надо будет пылесосить, мы будем выполнять один и тот же алгоритм.

Теперь поговорим про графическую форму представления.

Блок-схема

Для изображения алгоритма графически используют блок-схемы. Они представляют собой геометрические фигуры (блоки), соединённые стрелками. Стрелки показывают связь между этапами и последовательность их выполнения. Каждый блок сопровождается надписью.

Рассмотрим фигуры, которые используются при визуализации типичной линейной последовательности.

Блок ввода-вывода данных (отображает список вводимых и выводимых переменных):

Арифметический блок (отображает арифметическую операцию/группу операций):

Условный блок (позволяет описать условие). Алгоритмы с таким блоком используются при графической визуализации алгоритмов с ветвлением:

Условного блока нет в классическом линейном алгоритме, так как в нём, как уже было сказано ранее, все операции выполняются последовательно, то есть одна за другой. В линейном алгоритме размещение блоков выглядит следующим образом:

А вот, как решается задача по нахождению площади треугольника по формуле Герона. Здесь a, b, c – это длины сторон, S – площадь треугольника, P – периметр.

Следует обратить внимание, что запись «=» — это не математическое равенство, а операция присваивания. В результате этой операции переменная, стоящая слева от оператора, получает значение, которое указано справа. Значение не обязательно должно быть сразу определено (a = 3) — оно может вычисляться посредством выражения (a = b + z), где b = 1, a z = 2.

Примеры линейных алгоритмов

Если рассмотреть примеры решения на языке Pascal (именно этот язык до сих пор используется для изучения основ алгоритмизации и программирования), то можно увидеть следующую картину:

И, соответственно, блок-схема программы линейной структуры будет выглядеть следующим образом:

Как составить программу линейной структуры?

Порядок следующий: — определите, что именно относится к исходным данными, а также каков типы/класс этих данных, выберите имена переменных; — определите, каков тип данных будет у искомого результата, выберите название переменных (переменной); — определите, какие математические формулы связывают результат и исходные данные; — если требуется наличие промежуточных данных, определите класс/типы этих данных и выберите имена; — опишите все используемые переменные; — запишите окончательный алгоритм. Он должен включать в себя ввод данных, вычисления, вывод результатов.

На этом всё, в следующий раз рассмотрим на примерах программу разветвлённой структуры. Если же вас интересует тема алгоритмизации в контексте разработки программного обеспечения, ждём вас на профессиональном курсе OTUS!


источники:

http://infourok.ru/prektnaya-rabota-po-teme-sistemna-linejnyh-uravnenij-4142866.html

http://otus.ru/nest/post/1727/