Caco3 cao co2 кинетическое уравнение

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6debf2260c3f16e3 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Особенности кинетики гетерогенных реакций

Особенности кинетики гетерогенных реакций.

Химические реакции, протекающие на границе раздела фаз, называют гетерогенными. Гетерогенные процессы широко распространены в природе и часто используются на практике. Примерами могут служить процессы растворения, кристаллизации, испарения, горение твердого топлива, окисления металлов, реакции, идущие на поверхности твердых катализаторов.

Примерами некоторых типов гетерогенных реакций служат:

1) реакции окисления металлов (Т1 + Г = Т2)

2) реакция разложения карбоната кальция (T1= T2 + Г)

3) реакции с участием трех твердых фаз ( Т1 + Т2 = Т3)

В гетерогенных реакциях можно выделить по меньшей мере три стадии: 1 – перенос реагирующих веществ к поверхности раздела фаз, т.е. в реакционную зону;

2 – собственно химическое взаимодействие;

3 – перенос продуктов реакции из реакционной зоны.

М.б. и другие стадии, например, адсорбция и десорбция; комплексооборазование и т.д.

Скорость процесса определяется лимитирующей (наиболее медленной) стадией. Если скорость собственно химического взаимодействия значительно больше скорости подвода реагентов к реакционной зоне и отвода продуктов от нее, то общая скорость процесса будет соответствовать скорости переноса реагентов и продуктов, она будет определяться процессами диффузии веществ.

Диффузия – это направленное перемещение вещества из области с большей концентрацией в область с меньшей концентрацией.

Предположим, что при низкой температуре лимитирующей стадией гетерогенного процесса является химическая реакция (кинетическая область). При повышении температуры константа скорости химической реакции быстро увеличивается, и начиная с некоторой температуры, когда скорость реакции станет больше скорости диффузии, лимитирующей стадией становится процесс диффузии (диффузионная область). Происходит переход из кинетической области гетерогенного процесса в диффузионную.

Зависимость логарифма скорости от температуры:

В промежуточной области ВС гетерогенная реакция контролируется как диффузией, так и химической реакцией на границе раздела фаз.

Скорость гетерогенной химической реакции измеряется изменением поверхностной концентрации одного из веществ (газа или жидкости), участвующих в реакции, за единицу времени

Концентрации веществ в твердом состоянии постоянны, поэтому в кинетическое уравнение реакций они не входят. Например, в реакции

CaCO3(т) = CaO(т) + CO2(г)

соударения меду молекулами СО2 могут происходить только на поверхности раздела фаз. В этом случае в выражение скорости реакции, согласно основному закону химической кинетики, в выражение скорости реакции будет входить только поверхностная концентрация СО2:

По этой ссылке вы найдёте полный курс лекций по математике:

ВОПРОС 7. Гетерогенные равновесия. Правило фаз.

При изучении различных систем важную роль играет понятие фазы. Как мы уже с вами говорили, фаза – это совокупность всех однородных частей системы, обладающих одинаковыми химическими свойствами и отделенная от остальных частей системы поверхностью.

На границе между двумя фазами всегда существует некоторая поверхность раздела, при переходе через которую многие свойства системы испытывают резкие скачкообразные изменения

Гетерогенные равновесия в процессах перехода вещества из одной фазы в другую, не сопровождающиеся изменением химического состава этого вещества, называются фазовыми равновесиями.

К таким равновесиям можно отнести состояния системы:

испарение конденсация; плавление кристаллизация;

сублимация кристаллизация и др.

Общим законом гетерогенных равновесий является правило фаз: в равновесной системе число фаз Ф, число степеней свободы С и число концентраций независимых компонентов К связаны простым соотношением С + Ф = К + n или С = К + n – Ф,

где n – число условий (температура среды, внешнее давление, магнитное поле, гравитационное поле и т.д.), которые могут влиять на равновесие в гетерогенной системе.

При исследовании гетерогенных равновесий в основном используют влияние на системы температуры среды и внешнего давления, тогда соотношение преобразуется в уравнение:

Для конденсированных систем, в которых практически отсутствует газовая фаза (например, в системе металл расплав, давление паров металла очень мало, им можно пренебречь и внешнее давление будет величиной постоянной), соотношение примет вид:

Компонентом называется химически однородная составная часть, которая после выделения из системы, может существовать в изолированном состоянии продолжительное время.

В трехфазной системе лед пар всего один компонент – Н2О.

В насыщенном водном растворе хлорида натрия (трехфазная система – кристаллический NaCl, насыщенный раствор NaCl, водяной пар) – два компонента: Н2О и NaCl. Ионы Na+ и Cl- компонентами не являются, т.к. не могут существовать в изолированном состоянии после их выделения из системы.

Возможно вам будут полезны данные страницы:

Компоненты подразделяются на независимые и зависимые. Концентрацию независимых компонентов можно задавать произвольно, концентрации зависимых компонентов определяются уравнениями реакций, протекающих в системе.

В системах, составные части которых реагируют друг с другом (химические системы), число независимых компонентов равно числу составных частей минус число обратимых реакций, протекающих в данной системе.

Система CaCO3 CaO + CO2 состоит из трех фаз (две твердые и одна газообразная), содержит три составные части и одну обратимую реакцию, число независимых компонентов будет:

3 (составные части) – 1 (обратимая реакция) = 2.

Следовательно, числа молей двух веществ можно изменять произвольно, концентрация третьего вещества — величина зависимая и определяется из уравнения реакции.

В физических системах, составные части которых не реагируют друг с другом, число независимых компонентов К равно числу составных частей системы. Например, в воздухе (смеси N2, O2, H2 и других газов) число независимых компонентов равно числу составляющих его газов.

Системы с одним независимым компонентом (К=1) называются однокомпонентными, с двумя независимыми компонентами (К=2) – двухкомпонентными и т.д.

Количество концентраций независимых

компонентов и условий, влияющих на равновесие в системе, которые можно произвольно увеличивать или уменьшать без изменения числа и вида фаз (без нарушения гетерогенного равновесия), составляет число степеней свободы С данной системы и рассчитывается по уравнению фаз.

Число степеней свободы определяет вариантность системы.

Системы без степеней свободы (С=0) называются безвариантными (инвариантными), системы с одной степенью свободы (С=1) – одновариантными (моновариантными), системы с двумя степенями свободы (с=2) – двухвариантными или бивариантными и т.д.

Например, охарактеризовать систему: FeO(k) + C(кокс) = Fe(k)+CO(г)

и определить ее вариантность.

1. Система химическая, равновесная.

2. Система гетерогенная

3. Число составных частей (компонентов) равно 4: FeO, C, Fe, CO. Каждое вещество можно выделить из системы и в изолированном виде оно может существовать сколько угодно долго.

4. Систему составляют 4 фазы: три твердых и одна газовая (Ф=4).

5. Число независимых компонентов равно 3 (4 составные части – 1 химическая реакция).

6. По уравнению определяем число степеней свободы:

С = К + 2 – ф = 3 + 2 – 4 = 1, т.е. система одновариантна. Следовательно, из всех условий, которые влияют на равновесие в системе, произвольно изменять можно только одно (температуру или давление).

Схематическая Р-t диаграмма воды, показывающая условия существования различных фаз.

При изучении фазовых равновесий широко применяется графический метод, при этом на основании опытных данных строят диаграммы состояния. Диаграмма состояния м.б. построена для любого вещества. Она позволяет определить условия, при которых будут устойчивы данная фаза или равновесие фаз. Рассмотрим диаграмму состояния воды, отвечающую трехфазной системе лед пар, в которой один компонент – вода (к=1). ханизм действия.

Электрохимическая защита эффективна в коррозионных средах с хорошей электрической проводимостью и основана на снижении скорости коррозии торможением анодных или катодных реакций путем поляризации (изменения потенциала) защищаемой конструкции (катода или анода) постоянным током.

В зависимости от вида поляризации различают катодную и анодную защиты.

Катодную поляризацию, а следовательно, и катодную защиту осуществляют двумя способами:

1) подключением защищаемой конструкции к отрицательному полюсу внешнего источника постоянного тока. Соответствующую разновидность катодной защиты называют защитой внешним (наложенным) потенциалом (рис.1).

2) Присоединением к защищаемой конструкции электрода («жертвенного» анода, или протектора), изготовленного из металла, имеющего меньший электродный потенциал, чем потенциал защищаемой конструкции. Разновидность катодной защиты в этом случае называют протекторной (гальванической) защитой, или защитой «жертвенным» анодом (рис.2).

Анодную защиту осуществляют присоединением защищаемой конструкции к положительному полюсу внешнего источника постоянного тока, а вспомогательного электрода — к отрицательному, при этом конструкция — анод, а электрод — катод. Анодная защита в отличие от катодной применима только к легкопассивируемым металлам.

Каждой фазе (трехфазной системы) отвечает определенное поле диаграммы, отделенное от полей других фаз линией.

На поле каждой фазы выберем по точке (1,2,3), которые характеризуют состояние фаз в данных условиях, и рассчитаем для этих состояний числа степеней свободы: С = К + 2 – Ф = 1 + 2 – 1 = 2. Это значит, что в каждом из этих состояний системы дивариантны. Он имеют две степени свободы: можно произвольно и независимо друг от друга изменять до определенного предела без нарушения фазового равновесия (без изменения числа и вида фаз) два условия. Например, для воды в состоянии 2 можно произвольно увеличивать или уменьшать Р и t до граничных линий, по достижении которых состояние фаз (фазового равновесия) нарушается (появляются новые фазы – лед и пар).

Граничные линии между полями на диаграмме характеризуют равновесие между двумя соседними фазами. Кривая ОА отвечает равновесию в системе вода пар, кривая ОВ – равновесию в системе лед вода, то есть каждая кривая соответствует двухфазной системе. Для каждого равновесия выберем по состоянию на диаграмме, обозначим эти состояния точками (I, II, III) и рассчитаем для каждого из них число степеней свободы: С = 1 + 2 – 2 = 1. Это значит, что все три системы в выбранных состояниях моновариантны (имеют по одной степени свободы), для них можно произвольно изменять только одно условие: температуру или давление. Например, для состояния II будем повышать температуру, оставив неизменным давление, то сразу же исчезнет жидкая фаза (фазовое равновесие нарушится). Чтобы это равновесие не нарушалось, вместе с ростом температуры должно повышаться давление и положение равновесия на диаграмме (точка II) сместится вверх по кривой ОС. В этом случае температура будет степенью свободы, а давление окажется зависимым от нее условием, т.е. не будет степенью свободы. Если произвольно менять давление, то температура станет зависимым условием.

В точке О пересекаются все три кривые. Эта точка отвечает равновесию между тремя фазами системы лед пар и называется тройной

точкой. Число степеней свободы системы в этом состоянии будет

С = 1 + 2 –3 = 0, т.е. система безвариантна, ни одно из ее условий менять нельзя. Стоит произвольно изменить хотя бы одно из условий — сразу же нарушится вазовое равновесие (исчезнут сразу две фазы). При одновременном изменении температуры и давления исчезнет одна фаза. Равновесие в этой системе возможно при определенных условиях:

Р= 610,5 Па, t = 0, 0099 0С.

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.


источники:

http://natalibrilenova.ru/osobennosti-kinetiki-geterogennyih-reaktsij/

http://chemege.ru/kinetika/