Частное уравнение с неопределенными коэффициентами

Метод неопределенных коэффициентов и его универсальность

Разделы: Математика

Применение метода неопределённых коэффициентов основано на следующих двух теоремах.

Теорема №1 (о многочлене, тождественно равном нулю).

Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.

Теорема №2 (следствие теоремы № 1).

Деление многочлена на многочлен.

Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.

Многочлены Q(x) и R(x) имеют вид:

Раскроем скобки в правой части равенства:

Для отыскания неизвестных коэффициентов получаем систему уравнений:

Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.

Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).

Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.

Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.

Подставим Q(x) и R(x):

Раскроем скобки в правой части равенства:

Получаем систему уравнений:

Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.

Расположение многочлена по степеням.

Возьмем функцию Поставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).

Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.

Пример 3. Расположим многочлен по степеням.


Приравниваем коэффициенты при одинаковых степенях и получаем систему:

Решая систему, находим:

Ответ: .

Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).

Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90

Ответ: f(x) =

Представление произведения в виде многочлена стандартного вида.

Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).

Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:

(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.

Для вычисления их положим х = 1 и х = — 3, тогда получим:

откуда а =7, в = 7.

Ответ: х 3 +7х 2 + 7х — 15.

Разложение многочлена на множители

Пример 6. Дан многочлен

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)

Пример 7. Дан многочлен .

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Приравниваем коэффициенты при одинаковых степенях.

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел

Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)

Пример 8. Разность является целым числом. Найдем это число.

Решение: Так как,

Тогда

Положим где a и b – неизвестные коэффициенты.

Тогда

Решая данную систему уравнений, получим а = 5, b = -4.

Значит так как

Аналогично устанавливаем, что

Следовательно

Пример 9. Является ли разность целым числом.

Решение: Т.к.

тогда —

Положим где a и b – неизвестные коэффициенты.

Тогда откуда

из второго уравнения тогда первое уравнение принимает вид

b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Значит, а = 5.

Аналогично,

Окончательно получаем: — иррациональное число.

Уничтожение иррациональности в знаменателе

Пример 10. Избавимся от иррациональности в знаменателе:

Решение:

отсюда

Раскроем скобки, сгруппируем:

Ответ:

Пример 11. Избавимся от иррациональности в знаменателе:

Решение: ,

отсюда

Раскроем скобки, сгруппируем

Отсюда

Итак

Следовательно

Ответ:

Применение метода неопределенных коэффициентов при решении уравнений

Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.

Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел

Если х = 1, то
если х = -1, то
если х = 3, то
если х = -3, то

Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.

Попробуем разложить многочлен на множители в следующем виде:

, где a, b, c и d – целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как bd = -3, то будем искать решения среди вариантов:

Проверим вариант № 2, когда b = —1; d = 3:

Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.

Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: , где a, b, c и d -целые. Раскроем скобки:

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Так как , bd = 5, то будем искать решения среди вариантов:

Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.

Итак,


D =13
D = 29

Ответ:

О решении одного класса кубических уравнений.

Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = , в = , с =
Положим в уравнении (1) х = у + m. Тогда получим уравнение:
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.

Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:

Решения этой системы: m = —; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = уможно привести к двучленному уравнению третьей степени.

Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.

Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — = -1. Выполним подстановку х = у -1.

Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = , а х = — 1.

Ответ: — 1.

Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.

Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — = -2.

Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.

у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = , а х = — 2.

Ответ: – 2.

Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.

Пример частного решения линейного дифференциального уравнения

Рассмотрим тоже самое уравнение, но решим методом вариации произвольной постоянной.
Для нахождения производных C’i составляем систему уравнений:
C’1·e -3x ·cos(2x)+C’2·e -3x ·sin(2x)=0
C’1(-2·e -3x ·sin(2x)-3·cos(2x)·e -3x ) + C’2(-3·e -3x ·sin(2x)+2·cos(2x)·e -3x ) = 8*exp(-x)
Выразим C’1 из первого уравнения:
C’1 = -c2·sin(2x)/(cos(2x))
и подставим во второе. В итоге получаем:
C’1 = -4·e 2x ·sin(2x)
C’2 = 4·cos(2x)·e 2x
Интегрируем полученные функции C’i:
C1 = -e 2x ·sin(2x)+cos(2x)·e 2x + C * 1
C2 = e 2x ·sin(2x)+cos(2x)·e 2x + C * 2
Записываем полученные выражения в виде:
C1 = (-e 2x ·sin(2x)+cos(2x)·e 2x )·cos(2x)·e -3x + C * 1e -3x ·cos(2x)
C2 = (e 2x ·sin(2x)+cos(2x)·e 2x )·e -3x ·sin(2x) + C * 2e -3x ·sin(2x)
или
C1 = -cos(2x)·e -x ·sin(2x)+cos 2 (2x)·e -x + C * 1e -3x ·cos(2x)
C2 = cos(2x)·e -x ·sin(2x)+sin 2 (2x)·e -x + C * 2e -3x ·sin(2x)
y = C1 + C2
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример . y″ + 5y’ + 6 = 12cos(2x)
Cоставляем характеристическое уравнение дифференциального уравнения: r 2 +5 r + 6 = 0
Находим дискриминант: D = 5 2 — 4·1·6 = 1


Корни характеристического уравнения: r1 = -2, r2 = -3. Следовательно, фундаментальную систему решений составляют функции: y1 = e -2x , y2 = e -3x
Общее решение однородного уравнения имеет вид: y =C1·e -2x +C2·e -3x
Найдем частное решение при условии:y(0) = 1, y'(0) = 3
Поскольку y(0) = c1+c2, то получаем первое уравнение:
c1+c2 = 1
Находим первую производную: y’ = -3·c2·e -3·x -2·c1·e -2·x
Поскольку y'(0) = -3·c2-2·c2, то получаем второе уравнение:
-3·c2-2·c2 = 3
В итоге получаем систему из двух уравнений:
c1+c2 = 1
-3·c2-2·c2 = 3
которую решаем или методом обратной матрицы или методом исключения переменных.
c1 = 6, c2 = -5
Тогда частное решение при заданных начальных условиях можно записать в виде: y =6·e -2x -5·e -3x
Рассмотрим правую часть: f(x) = 12·cos(2·x)
Уравнение имеет частное решение вида: y * = Acos(2x) + Bsin(2x)
Вычисляем производные: y’ = -2·A·sin(2x)+2·B·cos(2x); y″ = -4·A·cos(2x)-4·B·sin(2x)
которые подставляем в исходное дифференциальное уравнение: y″ + 5y’ + 6y = (-4·A·cos(2x)-4·B·sin(2x)) + 5(-2·A·sin(2x)+2·B·cos(2x)) + 6(Acos(2x) + Bsin(2x)) = 12·cos(2·x) или -10·A·sin(2x)+2·A·cos(2x)+2·B·sin(2x)+10·B·cos(2x) = 12·cos(2·x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему линейных уравнений:
-10A + 2B = 0
2A + 10B = 12
СЛАУ решаем методом Крамера:
A = 3 /13;B = 15 /13;
Частное решение имеет вид:
y * = 3 /13cos(2x) + 15 /13sin(2x)
Таким образом, общее решение дифференциального уравнения имеет вид:

Пример 2 . y’’ + y = cos(x)
Данное дифференциальное уравнение относится к линейным дифференциальным уравнениям с постоянными коэффициентами. Решение уравнения будем искать в виде y = e rx . Для этого составляем характеристическое уравнение линейного однородного дифференциального уравнения с постоянными коэффициентами:

r 2 + 1 = 0
D = 0 2 — 4·1·1 = -4

Корни характеристического уравнения:
(комплексные корни):
r1 = i, r2 = -i
Следовательно, фундаментальную систему решений составляют функции:
y1 = e 0 x cos(x) = cos(x)
y2 = e 0 x sin(x) = sin(x)

Общее решение однородного уравнения имеет вид: y =C1·cos(x)+C2·sin(x)

Рассмотрим правую часть: f(x) = cos(x)

Найдем частное решение. Линейное дифференциальное уравнение с постоянными коэффициентами и правой частью вида:
R(x) = e αx (P(x)cos(βx) + Q(x)sin(βx)), где P(x), Q(x) — некоторые полиномы
имеет частное решение
y(x) = x k e αx (R(x)cos(βx) + S(x)sin(βx))
где k — кратность корня α+βi характеристического полинома соответствующего однородного уравнения, R(x), S(x) — полиномы, подлежащие определению, степень которых равна максимальной степени полиномов P(x), Q(x).
Здесь P(x) = 0, Q(x) = 0, α = 0, β = 1.
Следовательно, число α + βi = 0 + 1i является корнем характеристического уравнения кратности k = 1(r1).

Уравнение имеет частное решение вида:
y * = x (Acos(x) + Bsin(x))
Вычисляем производные:
y’ = sin(x)(B-A·x)+cos(x)(A+B·x)
y″ = cos(x)(2·B-A·x)-sin(x)(2·A+B·x)
которые подставляем в исходное дифференциальное уравнение:
y″ + y = (cos(x)(2·B-A·x)-sin(x)(2·A+B·x)) + (x (Acos(x) + Bsin(x))) = cos(x)
или
2·B·cos(x)-2·A·sin(x) = cos(x)
Приравнивая коэффициенты при одинаковых степенях х, получаем систему уравнений:
2B = 1
-2A = 0
Следовательно:
A = 0; B = 1 /2;
Частное решение имеет вид: y * = x (0cos(x) + ½ sin(x)) = ½ x sin(x)

Таким образом, общее решение дифференциального уравнения имеет вид:

Метод неопределённых коэффициентов

Пусть правая часть уравнения (3)

представляет собой произведение показательной функции (экспоненты) на многочлен, т.е.

где a — действительное число, — многочлен степени n. Тогда возможны следующие случаи:

1) Число a не является корнем характеристического уравнения

(2).

В этом случае частное решение нужно искать в виде

где — многочлен той же степени n, что и но с неопределёнными коэффициентами.

2) Число a есть простой (однократный) корень характеристического уравнения.

В этом случае частное решение нужно искать в виде

.

3) Число a есть двукратный корень характеристического уравнения.

В этом случае частное решение нужно искать в виде

Неизвестные коэффициенты многочлена найдём из условия, что функция является решением уравнения (3), т.е. удовлетворяет этому уравнению.

Рассмотрим примеры, на которых покажем не только принцип применения метода, но и порядок оформления решения.

№ 16. Найти общее решение уравнения

1) Составим характеристическое уравнение и найдём его корни:

2) Запишем общее решение однородного уравнение:

3) Запишем, в каком виде следует искать частное решение данного уравнения. Для этого выпишем правую часть его и сравним с

Многочлен второй степени (n=2) c коэффициентами 25, 0, -2 Показательная функция в нашем случае, т.е. a=0. Т.к. a=0 не совпадает ни с одним из корней характеристического уравнения то частное решение нужно искать в виде:

Многочлен в нашем случае второй степени (n=2), неизвестные коэффициенты А, В, С этого многочлена нужно найти, подставив в данное уравнение:

4) Запишем столбиком:

Читайте также:
  1. Amp; Методичні вказівки
  2. Amp; Методичні вказівки
  3. Amp; Методичні вказівки
  4. Amp; Методичні вказівки
  5. Amp; Методичні вказівки
  6. Amp; Методичні вказівки
  7. Amp; Методичні вказівки
  8. B. Искусственная вентиляция легких. Методики проведения искусственной вентиляции легких
  9. Cтруктуры внешней памяти, методы организации индексов
  10. FDDI. Архитектура сети, метод доступа, стек протоколов.

Слева укажем коэффициенты 5; 6; 1, на которые следует умножить чтобы получить левую часть уравнения Понятно, что в левой части мы получим многочлен второй степени, который должен быть равен многочлену второй степени в правой части. Многочлены будут равны тогда и только тогда, когда равны коэффициенты при одинаковых степенях х. Запишем столбиком полученные уравнения:

х 2 х 1 х 0 >

Мы получили систему трёх уравнений с тремя неизвестными коэффициентами А, В, С. Решив её, найдём: А=5, В=-12, С=12.

Частное решение

5) Общее решение данного уравнения

или

№ 17.

1)

2)

3) Сравним правую часть данного уравнения с

Отмечаем, что a=1 совпадает с одним корнем характеристического уравнения и многочлен х–2 степени n = 1. Поэтому частное решение следует искать в виде

4) Так как требуется найти то удобнее записать в виде

.

Запишем столбиком:

-7

Каждое слагаемое левой части уравнения и правая часть содержат общий множитель . Предполагая, что на можно разделить уравнение, приравняем коэффициенты при одинаковых степенях х слева и справа. Заметим прежде, что в левой части уравнения взаимно уничтожаются слагаемые с (они подчёркнуты).

В оставшихся трёх слагаемых наивысшая степень х — первая.

Получим систему из двух уравнений:

х х 0 –14А+4А=1 –7В+2А+2В= –2> ;

5) Общее решение

6.6. Пусть правая часть неоднородного Д.У.-II представляет собой сумму функций вида т.е.

Частное решение этого уравнения следует искать в виде суммы частных решений двух уравнений

№ 18. Найдём общее решение уравнения

Здесь

1)

2)

3) при

х х 0А+А=4 В+2А+В=0

4) при

x 2 x 1 x 0C=-5 D=0 E+2C=0

5) Общее решение данного уравнения или

Прежде чем Вы приступите к решению контрольного задания, попытайтесь ответить на предлагаемые вопросы для самоконтроля. Если Вы будете испытывать затруднения при ответе на конкретный вопрос, попытайтесь найти на него ответ, вернувшись к теоретической части курса.

Вопросы для самоконтроля

1) Какое уравнение называется дифференциальным ?

2) Что называется решением Д.У.? Сколько решений имеет Д.У.?

3) Как установить, является ли данная функция решением данного Д.У.?

4) Какое Д.У. называется дифференциальным уравнением первого порядка (Д.У.-I)?

5) В каком виде можно записать Д.У.-I?

6) Что называется общим решением Д.У.-I?

7) Как найти частное решение Д.У.-I, удовлетворяющее заданному начальному условию?

8) Какое Д.У.-I называется уравнением с разделёнными переменными?

9) Как установить, является ли данное Д.У.-I уравнением с разделяющимися переменными? Каково правило разделения переменных?

10) Какое Д.У.-I называется однородным?

11) Как проверить, является ли Д.У.-I однородным?

12) Каким способом решается однородное Д.У.-I?

13) Какое Д.У.-I называется линейным?

14) Каков способ решения линейного Д.У.-I?

15) Какой вид может иметь дифференциальное уравнение второго порядка (Д.У.-II)?

16) Что называется общим решением Д.У.-II?

17) Как найти частное решение Д.У.-II, удовлетворяющее заданным начальным условиям?

18) Какие Д.У.-II допускают понижение порядка? Как они решаются?

19) Какое Д.У.-II называют линейным?

20) Какой вид имеет однородное линейное Д.У.-II с постоянными коэффициентами?

21) Какое уравнение называется характеристическим? Что оно собой представляет?

22) Какие случаи рассматриваются при отыскании общего решения однородного линейного Д.У.-II с постоянными коэффициентами? Какой вид имеет его общее решение в каждом из этих случаев?

23) Какой вид имеет неоднородное линейное Д.У.-II?

24) Какова структура общего решения неоднородного линейного Д.У.-II с постоянными коэффициентами?

25) Для какого вида правой части можно применить метод неопределенных коэффициентов? Как составить вид частного решения и от чего зависит этот вид?

Ответы на предложенные вопросы Вы найдёте в настоящем курсе.

Номер вопросаГде найти ответ
1, 2, 3 4, 5, 6, 7 8,9 10, 11, 12 13,14 15, 16, 17 20, 21, 22 23, 24П. 5.1 П. 5.2 П. 5.3 П. 5.3 П. 5.3 П. 5.4 П. 5.5 П. 5.6 П. 5.6 П. 5.6 П. 5.6

Дата добавления: 2015-01-05 ; просмотров: 21 ; Нарушение авторских прав


источники:

http://math.semestr.ru/math/example-differential.php

http://lektsii.com/1-60110.html