Чему равна степень n в уравнении

Степень уравнения

Кроме разделения уравнений по количеству неизвестных, уравнения также разделяются по степеням неизвестных: уравнения первой степени, уравнения второй степени и так далее.

Чтобы определить степень уравнения, в нём нужно предварительно сделать следующие преобразования:

  • раскрыть скобки,
  • освободить уравнение от дробных членов,
  • перенести все неизвестные члены в одну из частей уравнения,
  • сделать приведение подобных членов.

После выполнения всех этих преобразований, степень уравнения определяется по следующим правилам:

Степенью уравнения с одним неизвестным называется показатель при неизвестном в том члене уравнения, в котором этот показатель наибольший.

10 — x = 2 — уравнение первой степени с одним неизвестным;

x 2 + 7x = 16 — уравнение второй степени с одним неизвестным;

x 3 = 8 — уравнение третьей степени с одним неизвестным.

Степенью уравнения с несколькими неизвестными называется сумма показателей при неизвестных в том члене уравнения, в котором эта сумма наибольшая.

Для примера возьмём уравнение

Для наглядности расставим показатели первой степени (которые обычно не ставят):

3x 2 y 1 + x 1 y 1 + 25 1 = 0.

Теперь посчитаем суммы показателей для тех членов уравнения, в которых присутствуют неизвестные:

3x 2 y 1 — сумма показателей равна 2 + 1 = 3;

x 1 y 1 — сумма показателей равна 1 + 1 = 2.

Сумма показателей у первого члена уравнения больше, чем у второго, значит, при определении степени уравнения будем ориентироваться на сумму показателей первого члена. Это значит, что про данное уравнение можно сказать, что это уравнение третьей степени с двумя неизвестными.

2xyx = 25 — уравнение второй степени с двумя неизвестным,

xy 2 — 2xy + 8y = 0 — уравнение третьей степени с двумя неизвестными.

Об уравнениях высших степеней

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:


В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

Кубические уравнения. Метод деления в столбик. Алгебраические уравнения степени n. . Примеры *

Определение

Рассмотрим произвольное уравнение вида

\[a_nx^n+a_x^+\dots+a_1x+a_0=0 \qquad \qquad (1)\]

где \(a_n, a_,\dots,a_0\) – некоторые числа, причем \(a_n\ne 0\) , называемое алгебраическим уравнением (с одной переменной) \(n\) -ой степени.

Обозначим \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) . Таким образом, сокращенно уравнение \((1)\) можно записать в виде \(P_n(x)=0\) .

Замечание

Заметим, что квадратное уравнение — это алгебраическое уравнение, степень которого равна \(2\) , а линейное — степень которого равна \(1\) .
Таким образом, все свойства алгебраических уравнений верны и для квадратных уравнений, и для линейных.

Теорема

Если уравнение \((1)\) имеет корень \(x=x_0\) , то оно равносильно уравнению

где \(P_(x)\) – некоторый многочлен степени \(n-1\) .

Для того, чтобы найти \(P_(x)\) , необходимо найти частное от деления многочлена \(P_n(x)\) на \((x-x_0)\)
(т.к. \(P_n(x)=(x-x_0)\cdot P_(x)\) ).

Следствие: количество корней уравнения

Любое алгебраическое уравнение степени \(n\) может иметь не более \(n\) корней.

Замечание

В частности, квадратное уравнение действительно имеет всегда не более двух корней: два, один (или два совпадающих) или ни одного корня.

Для того, чтобы найти частное от деления одного многочлена на другой, удобно пользоваться следующим способом, который мы рассмотрим на примере.

Пример

Известно, что \(x=2\) является корнем уравнения \(2x^3-9x^2+x^4-x+6=0\) . Найдите частное от деления \(2x^3-9x^2+x^4-x+6\) на \(x-2\) .

Решение.
Будем делить многочлен на многочлен в столбик. Запишем

Заметим, что записывать слагаемые в делимом необходимо по убыванию их степеней: в данном случае сначала \(x^4\) , затем \(2x^3\) и т.д.
Подбирать слагаемые в частном будем таким образом, чтобы при вычитании уничтожить сначала четвертую степень, затем третью и т.д.
Т.к. делитель \(x-2\) состоит из двух слагаемых, то при делении в столбик будем сносить по два слагаемых.

Посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(x^4+2x^3\) полученного многочлена уничтожилось слагаемое \(x^4\,\) .
На \(x^3\) . Тогда после вычитания \(x^4+2x^3-x^3(x-2)\) останется \(4x^3\) . Снесем слагаемое \(-9x^2\) :

Теперь посмотрим, на что необходимо домножить \(x-2\) , чтобы после вычитания из \(4x^3-9x^2\) полученного многочлена уничтожилось слагаемое \(4x^3\) .
На \(4x^2\) : \(\quad 4x^3-9x^2-4x^2(x-2)=-x^2\) .
Опять снесем следующее слагаемое \(-x\) :

Рассуждая аналогично, определяем, что третье слагаемое в частном должно быть \(-x\)

Четвертое слагаемое в частном должно быть \(-3\) :

Таким образом, можно сказать, что \(x^4+2x^3-9x^2-x+6=(x-2)(x^3+4x^2-x-3)\) .

Замечание

1) Если \(x=x_0\) действительно является корнем уравнения, то после такого деления в остатке должен быть \(0\) . В противном случае это означает, что деление в столбик выполнено неверно.

2) Если многочлен делится без остатка (то есть остаток равен \(0\) ) на \(x+a\) , то он также будет делиться без остатка на \(c(x+a)\) для любого числа \(c\ne 0\) . Например, в нашем случае, если бы мы поделили многочлен, к примеру, на \(2x-4\) , то получили бы в частном \(\frac12 x^3+2x^2-\frac12x-\frac32\) .
Заметим, что также происходит и с числами: если мы разделим \(10\) на \(2\) , то получим \(5\) ; а если разделим \(10\) на \(3\cdot 2\) , то получим \(\frac53\) .

3) Деление в столбик помогает найти другие корни уравнения: теперь для того, чтобы найти остальные корни уравнения \(x^4+2x^3-9x^2-x+6=0\) , необходимо найти корни уравнения \(x^3+4x^2-x-3=0\) .
Поэтому рассмотрим несколько фактов, часто помогающих подобрать корни алгебраического уравнения.

Теорема

Если число \(x=1\) является корнем уравнения \((1)\) , то сумма всех коэффициентов уравнения равна нулю:

Доказательство

Действительно, так как \(x=1\) является корнем уравнения \((1)\) , то после подстановки \(x=1\) в него мы получим верное равенство. Так как \(1\) в любой степени равен \(1\) , то слева мы действительно получим сумму коэффициентов \(a_i\) , которая будет равна нулю.

Пример

У уравнения \(x^2-6x+5=0\) сумма коэффициентов равна нулю: \(1-6+5=0\) . Следовательно, \(x=1\) является корнем этого уравнения. Это можно проверить просто подстановкой: \(1^2-6\cdot 1+5=0\quad\Leftrightarrow\quad 0=0\) .

Теорема

Если число \(x=-1\) является корнем уравнения \((1)\) , то сумма коэффициентов при четных степенях \(x\) равна сумме коэффициентов при нечетных степенях \(x\) .

Доказательство

1) Пусть \(n\) – четное. Подставим \(x=-1\) :

\(a_n\cdot (-1)^n+a_\cdot (-1)^+a_\cdot (-1)^+\dots+a_1\cdot (-1)+a_0=0 \quad\Rightarrow\) \(a_n-a_+a_-\dots-a_1+a_0=0 \quad \Rightarrow\) \(a_n+a_+\dots+a_0=a_+a_+\dots+a_1\)

2) Случай, когда \(n\) – нечетное, доказывается аналогично.

Пример

В уравнении \(x^3+2x^2-8x+5=0\) сумма коэффициентов равна нулю:

Значит, число \(x=1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3+2x^2-8x+5\) на \(x-1\) :

\[\begin x^3+2x^2-8x+5&&\negthickspace\underline<\qquad x-1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 + 3x -5\\[-3pt] 3x^2 — 8x\,\phantom<000>&&\\ \underline<3x^2 - 3x\,>\phantom<000>&&\\[-3pt] -5x + 5&&\\ \underline<-5x +5>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3+2x^2-8x+5=(x-1)(x^2 + 3x -5)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2+3x-5=0\) .

Таким образом мы нашли все корни исходного уравнения.

Пример

В уравнении \(x^3-x^2+x+3=0\) сумма коэффициентов при четных степенях \(-1+3=2\) , а при нечетных: \(1+1=2\) . Таким образом, число \(x=-1\) является корнем данного уравнения.

Можно разделить в столбик \(x^3-x^2+x+3\) на \(x+1\) :

\[\begin x^3-\,x^2+ \ x+3\phantom<0>&&\negthickspace\underline<\qquad x+1 \qquad>\\ \underline \phantom<00000000>&&\negthickspace \quad x^2 -2x +3\\[-3pt] -2x^2 + x\phantom<0000>&&\\ \underline<-2x^2 -\! 2x>\,\phantom<000>&&\\[-3pt] 3x + 3&&\\ \underline<3x +3>&&\\[-3pt] 0&&\\ \end\]

Таким образом, \(x^3-x^2+x+3=(x+1)(x^2 — 2x +3)\) . Значит, остальные корни исходного уравнения — это корни уравнения \(x^2-2x+3=0\) .
Но это уравнение не имеет корней ( \(D ), значит, исходное уравнение имеет всего один корень \(x=-1\) .

Замечание

Подбор корней таким образом, деление в столбик и разложение многочлена на множители помогают найти корни уравнения.

Существует еще одна очень важная теорема, позволяющая подобрать рациональный корень алгебраического уравнения, если таковой имеется.

Теорема

Если алгебраическое уравнение

\[a_nx^n+a_x^+\dots+a_1x+a_0=0,\] где \(a_n, \dots, a_0\) — целые числа,
имеет рациональный корень \(x=\dfrac pq\) , то число \(p\) является делителем свободного члена \(a_0\) , а число \(q\) — делителем старшего коэффициента \(a_n\) .

Пример

Рассмотрим уравнение \(2x^4-5x^3-x^2-5x-3=0\) .

В данном случае \(a_0=-3, a_n=2\) . Делители числа \(-3\) — это \(\pm 1, \pm 3\) . Делители числа \(2\) – это \(\pm 1, \pm 2\) . Комбинируя из полученных делителей дроби, получаем все возможные варианты рациональных корней:

\[\pm 1, \ \pm \dfrac12, \ \pm 3, \ \pm\dfrac32\]

По предыдущим теоремам можно быстро понять, что \(\pm1\) не являются корнями. Подставив \(x=-\dfrac12\) в уравнение, получим:

\[2\cdot \dfrac1<16>+5\cdot \dfrac18-\dfrac 14+5\cdot \dfrac12-3=0 \quad \Leftrightarrow \quad 0=0\]

Значит, число \(x=-\frac12\) является корнем уравнения.

Можно перебрать остальные варианты: таким образом мы найдем еще один рациональный корень уравнения \(x=3\) . Значит, уравнение можно представить в виде

\[\left(x+\frac12\right)(x-3)\cdot Q_2(x)=0 \quad \text<или>\quad (2x+1)(x-3)\cdot P_2(x)=0\] (тогда \(P_2(x)=\frac12 Q_2(x)\) ). Заметим, что второй вид записи уравнения более удобный, т.к. нам не придется при делении в столбик работать с дробями.

После деления в столбик \(2x^4-5x^3-x^2-5x-3\) на \((2x+1)(x-3)=2x^2-5x-3\) :

получим, что \(P_2(x)=x^2+1\) . Данный многочлен не имеет корней, значит, уравнение имеет только два корня: \(x=-\frac12\) и \(x=3\) .

Замечание

Заметим, что если, пользуясь предыдущей схемой, не удалось подобрать рациональный корень уравнения, это вовсе не значит, что уравнение не имеет корней.
Например, уравнение \(x^3-2=0\) имеет корень — это \(x=\sqrt[3]2\) , и он не рациональный.
Для подбора иррациональных корней не существует универсального алгоритма.

Пример

Найдите корни уравнения \(4x^3-3x^2-\frac<23>6x-1=0\) .

Заметим, что в данном уравнении не все коэффициенты – целые числа (коэффициент при \(x\) равен \(-\frac<23>6\) ). Но мы можем преобразовать данное уравнение к нужному нам виду: необходимо умножить правую и левую части уравнения на \(6\) :

\[24x^3-18x^2-23x-6=0\]
Делители свободного члена: \(\pm 1, \pm 2, \pm 3, \pm 6\) .
Делители старшего коэффициента: \(\pm 1, \pm 2, \pm 3, \pm4, \pm 6, \pm 8, \pm 12, \pm 24\) .
Получилось достаточно много \(:)\)
Выпишем некоторые возможные рациональные корни уравнения:

\[\pm 1, \ \pm \dfrac12, \ \pm \dfrac13, \ \pm \dfrac 16, \ \pm\dfrac18, \ \pm2, \ \pm\dfrac23, \ \pm \dfrac14, \ \pm3\quad \text<\small<и т.д.>>\]

Перебирая варианты, убеждаемся, что \(\frac32\) подходит. Значит, многочлен \(24x^3-18x^2-23x-6\) должен без остатка поделиться на \(x-\frac32\) . Для удобства разделим на \(2(x-\frac32)=2x-3\) (чтобы не работать с дробями):

Таким образом, \(24x^3-18x^2-23x-6=(2x-3)(12x^2 +9x +2)\) . Уравнение \(12x^2 +9x +2=0\) в свою очередь корней не имеет. Значит, \(x=\frac32\) – единственный корень исходного уравнения.

Теорема

Любой многочлен \(P_n(x)=a_nx^n+a_x^+\dots+a_1x+a_0\) можно разложить на произведение множителей: линейных ( \(ax+b, a\ne 0\) ) и квадратичных ( \(cx^2+px+q, c\ne 0\) ) с отрицательным дискриминантом.

Следствие

Кубическое уравнение \(Ax^3+Bx^2+Cx+D=0\) всегда имеет как минимум один вещественный корень, т.к. его левую часть всегда можно представить как

Замечание

На самом деле, такой вывод можно сделать о любом алгебраическом уравнении нечетной степени. Но, как правило, в школьном курсе математики крайне редко встречаются уравнения степени выше \(4\) .

Задачи с алгебраическими уравнениями в ЕГЭ по математике встречаются из года в год, а потому освежить в памяти базовую теорию по данной теме непременно стоит всем учащимся. При этом практика показывает, что подобные задания вызывают определенные сложности у большинства выпускников. Поэтому, если одним из ваших слабых мест являются задачи ЕГЭ с системами линейных алгебраических уравнений и вы рассчитываете получить конкурентные баллы по итогам прохождения аттестационного испытания, повторите общую теорию. Однако найти источник, в котором весь необходимый базовый материал изложен доступно и понятно для учащихся с любым уровнем подготовки не так просто, как может показаться на первый взгляд. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы бывает довольно проблематично даже на просторах Интернета.

Для того чтобы ликвидировать пробелы в знаниях, рекомендуем обратиться к образовательному проекту «Школково». Вся базовая теория по теме «Алгебраические уравнения» систематизирована и изложена нашими специалистами на основе многолетнего опыта в максимально доступной форме. Ознакомившись с представленной информацией, выпускники смогут грамотно объяснять решение задач.

Для того чтобы учащиеся из Москвы или другого российского населенного пункта, посетившие образовательный портал «Школково», смогли легко и качественно подготовиться к ЕГЭ, мы не только в понятной форме изложили теорию алгебраических уравнений, но и подобрали соответствующие упражнения. Для каждого из них наши специалисты прописали подробный алгоритм решения и указали правильный ответ. Последовательно выполняя простые и более сложные упражнения по данной теме, учащиеся смогут отработать навык решения подобных задач. Перечень заданий в разделе «Каталог» постоянно дополняется и обновляется.

Изучить теоретический материал по теме «Алгебраические уравнения» и попрактиковаться в выполнении упражнений можно в режиме онлайн. При необходимости любое задание можно сохранить в «Избранное». Это позволит в дальнейшем вернуться к задаче или обсудить алгоритм ее решения с преподавателем.


источники:

http://habr.com/ru/post/484902/

http://shkolkovo.net/theory/108