Числа n l в уравнении шредингера

Числа n l в уравнении шредингера

Аналог классического волнового уравнения был предложен Э. Шредингером в 1925 г. Как и классическое уравнение, уравнение Шредингера связывает производные волновой функции по времени и координате. Уравнение Шредингера описывает поведение любых нерелятивистских систем. На примерах частицы, находящейся в бесконечно глубокой яме, и гармонического осциллятора рассмотрены простейшие квантовые системы, получены дискретные спектры состояний. Возможности описания динамики данных систем ограничены набором квантовых чисел, отражающих универсальные и внутренние симметрии квантовых систем.

4.1. Уравнение Шредингера

В квантовой физике изменение состояния частицы описывается уравнением Шредингера

(4.1)

где – оператор Гамильтона – аналог классической функции Гамильтона

в которой и заменены операторами импульса x, y, z и координаты , , :

х → = х, y → = y, z → = z,

(4.2)

Уравнение Шредингера

Зависящее от времени уравнение Шредингера:

где – гамильтониан системы.

Разделение переменных. Запишем Ψ(,t) = ψ()θ(t), где ψ является функцией координат, а θ – функция времени. Если не зависит от времени, тогда уравнение ψ = iћψ принимает вид θψ = iћψθ или

Левая часть является функцией только координат, а правая не зависит от переменной x. Поэтому обе части последнего уравнения должны быть равны одной и той же постоянной, которую обозначим E

θ(t) = exp(−iEt/ћ), ψ() = Eψ() и Ψ(,t) = ψ()exp(−iEt/ћ).

Уравнение ψ() = Eψ() называют стационарным уравнением Шредингера. Для одномерной системы с массой m в поле с потенциалом U(x) оно принимает вид:

или

Для трехмерной системы с массой m в поле с потенциалом U():

−(ћ 2 /2m)Δψ() + U()ψ() = Eψ(),

где Δ – лапласиан.

Так как уравнение Шредингера является линейным уравнением первого порядка по времени, то с его помощью по заданному значению волновой функции Ψ(x, y, z, 0) в момент времени t = 0 можно найти её значение в произвольный момент времени t − Ψ(x, y, z, t).

Уравнение Шредингера для стационарного состояния, когда потенциальная энергия частицы не зависит от времени, имеет вид

ψ() = Eψ().(4.3)

Это уравнение называют стационарным уравнением Шредингера.

Так как в стационарном состоянии

Ψ(,t) = ψ()exp(−iEt/ћ)(4.4)

и вероятность найти частицу в момент t в точке x, y, z пропорциональна |Ψ(,t)|, то она

|ψ(x,y,z)| 2 , т.е. не зависит от времени. Аналогично, вероятность обнаружить значение физической величины, характеризующей систему, также не изменяется со временем, поскольку выражается через квадрат модуля волновой функции.

4.2. Частица в одномерной прямоугольной яме с бесконечными стенками

Потенциальная энергия U(x) в прямоугольной яме удовлетворяет следующим условиям:

(4.5)


Рис.4.1. Прямоугольная яма с бесконечными стенками

Частица находится в области 0 ≤ x ≤ L. Вне этой области ψ(x) = 0. Уравнение Шредингера для частицы, находящейся в области 0 ≤ x ≤ L

(4.6)

Волновая функция, являющаяся решением уравнения (4.9), имеет вид

ψ(x)= Аsin kx + Bcos kx,(4.7)

где k = (2mE/ћ 2 ) 1/2 . Из граничных условий ψ(0) = 0, ψ(L) = 0 и условий непрерывности волновой функции следует

Аsin kL = 0.(4.8)

kL = nπ, n = 1, 2, 3, … , то есть внутри потенциальной ямы с бесконечно высокими стенками устанавливаются стоячие волны, а энергия состояния частиц имеет дискретный спектр значений En

n = 1, 2, 3, …(4.9)

Частица может находиться в каком-то одном из множества дискретных состояний, доступных для неё.
Каждому значению энергии En соответствует волновая функция ψn(x), которая с учетом условия нормировки

(4.10)

В отличие от классической, квантовая частица в прямоугольной яме не может иметь энергию
E 2 π 2 /(2mL 2 ). Состояния частицы ψn в одномерном поле бесконечной потенциальной ямы полнос­тью описывается с помощью одного квантового числа n. Спектр энергий дискретный.

Рис. 4.2. Уровни энергии и волновые функции частицы Ψ в бесконечной прямоугольной яме. Квадрат модуля волновой функции |Ψ| 2 определяет вероятность нахождения частицы в различных точках потенциальной ямы.

4.3. Гармонический осциллятор

Положение уровней частицы в потенциальной яме зависит от вида потенциальной ямы. В одномерной потенциальной яме гармонического осциллятора потенциальная энергия имеет вид

(4.11)

В этом случае одномерное уравнение Шредингера имеет вид

(4.12)

Допустимые значения полной энергии определяются формулой

En = ћω0(n + 1/2), n = 0, 1, 2,(4.13)

В отличие от бесконечной прямоугольной ямы, спектр уровней гармонического осциллятора эквидистантный.
С увеличением массы частицы или размеров области ее локализации квантовое описание частицы переходит в классическое.

Частица в одномерной потенциальной яме

Одномерная прямоугольная яма шириной L:

n = 1, 2, …

Одномерный гармонический осциллятор:

En = ћω0(n + 1/2), n = 0, 1, 2,

4.4. Частица в поле с центральной симметрией

В сферических координатах стационарное уравнение Шредингера для частицы в центральном потенциале U(r) имеет вид

(4.14)

Решение уравнения (4.14) записываются в виде произведения радиальной и угловой функций

ψ(r,θ,φ) = Rnl(r)Ylm(θ,φ),(4.15)

где радиальная функция Rnl(r) и угловая функция Ylm(θ,φ), называемая сферической, удовлетворяют уравнениям

2 Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)(4.16)
Ylm(θ,φ) = ћ 2 l(l +1)Ylm(θ,φ)
(4.17)

Уравнение (4.16) определяет возможные собственные значения l и собственные функции Ylm(θ,φ) оператора квадрата момента 2 . Уравнение (4.17) определяет собственные значения энергии Е и радиальные собственные функции Rnl(r), от которых зависит энергия системы (рис. 4.3).
Схема уровней (последовательность и абсолютные значения энергий) зависит от радиальной функции Rnl(r), которая в свою очередь определяется потенциалом U(r), в котором находится частица.

Рис. 4.3. Радиальное распределение вероятности нахождения электрона в кулоновском поле протона (атом водорода). Расстояния даны в боровских радиусах
r0 = ћ 2 /mee 2 ≈ 0.529·10 8 cм.

Решения уравнения

существуют лишь при определенных значениях квантовых чисел n (радиальное квантовое число), l (орбитальное квантовое число) и m (магнитное квантовое число).
Возможные энергетические состояния системы (уровни энергии) определяются числами n и l и в случае сферически симметричных состояний не зависят от квантового числа m. Число n может быть только целым:
n = 1, 2, …, ∞. Число l может принимать значения 0, 1, 2, …, ∞.

4.5. Орбитальный момент количества движения

Собственные значения L 2 и Lz являются решением уравнений

2 Ylm(θ,φ) = L 2 Ylm(θ,φ) и zYlm(θ,φ) = LzYlm(θ,φ).

Они имеют следующие дискретные значения

L 2 = ћ 2 l(l + 1), где l = 0, 1, 2, 3, …,
Lz = ћm, где m = 0, ± 1, ± 2, ± 3,…, ± l.

Для характеристики состояний с различными значениями орбитального момента l обычно используют следующие обозначения:

Спектроскопические названия орбитальных моментов l

l = 0s-состояние
l = 1p-состояние
l = 2d-состояние
l = 3f-состояние
l = 4g-состояние
l = 5h-состояние
и. т. д.

Состоянию с l = 0 отвечает сферически симметричная волновая функция. В тех случаях, когда l ≠ 0 волновая функция не имеет сферической симметрии. Симметрия волновой функции определяется симметрией сферических функций Ylm(θ,φ). Имеет место интересное квантовое явление, когда решение сферически симметричной задачи (потенциал описывает сферически симметричную систему) приводит к состояниям, не обладающим сферической симметрией. Таким образом, симметрия уравнений не обязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности этих решений.
Для частицы, находящейся в сферически симметричном потенциале, величина орбитального момента количества движения L:

(4.18)

Обычно, для упрощения, когда говорят о величине орбитального момента количества движения, называют этой величиной квантовое число l, имея в виду, что между l и L имеется однозначная связь (4.18).

Рис. 4.4 Возможные ориентации вектора при квантовом числе l = 2.

Так как величина l может принимать только целочисленные значения 0, 1, 2, 3,…, то и орбитальный момент количества движения L квантуется. Например, для частицы с l = 2 момент количества движения

=
= 6.58·10 -22 √6 МэВ·сек ≈ 2.6·10 — 34 Дж·сек.

Пространственное квантование. Орбитальный момент количества движения является векторной величиной. Так как величина орбитального момента количества движения квантуется, то и направление по отношению к выделенному направлению z, например, к внешнему магнитному полю, также квантуется и принимает дискретные значения Lz = ћm, где m изменяется от +l до –l, т. е. имеет 2l + 1 значений. Например, при l = 2 величина m принимает значения +2, +1, 0, -1, -2 (см. рис. 4.4). Вместе с тем энергия системы не зависит от m, т. е. от направления вектора , что является очевидным следствием сферической симметрии системы.
Состояние частицы, находящейся в сферически симметричном поле, полностью описывается тремя квантовыми числами: n, l и m.
Появление квантовых чисел связано со свойствами симметрии системы. Характер этой симметрии определяет возможные значения квантовых чисел. Очевидно, что система, описываемая функцией e im φ , примет прежнее значение только тогда, когда азимутальный угол φ в результате поворота вокруг оси z примет прежнее значение φ. Этому условию функция e im φ удовлетворяет только в случае, когда величина mφ кратна 2π. Т.е. величина m должна иметь целые значения. Так как необходимо учитывать вращение в двух противоположных направлениях и отсутствие вращения, единственно возможными значениями оказываются m = 0, ±1, ±2, … .

4.6. Спин

Спин − собственный момент количества движения частицы. Между значением вектора спина и квантовым числом спина s выполняется такое же соотношение, как между величиной значением вектора орбитального момента и орбитальным квантовым числом l:

2 = ћ 2 s(s + 1)(4.19)

В отличие от орбитального квантового числа l, которое может быть лишь целым числом или нулем, спиновое квантовое число s (в дальнейшем просто спин) может быть как целым (включая нуль), так и полуцелым, т. е. s = 0, 1/2, 1, 3/2, 2, 5/2, … , но при этом для каждой элементарной частицы спин может принимать единственное присущее этому типу частиц значение. Так, спины π-мезонов и К-мезонов равны 0. Спины электрона, протона, нейтрино, кварков и их античастиц равны 1/2. Спин фотона равен 1. Бозоны составляют класс частиц с целым значением спина, спин фермионов имеет полуцелое значение. Спин частицы невозможно изменить, также как её заряд или массу. Это её неизменная квантовая характеристика.
Как и в случае других квантовых векторов, проекция вектора спина на любое фиксированное направление в пространстве (например, на ось z) может принимать 2s + 1 значение:

szћ = ±sћ, ±(s − 1)ћ, ±(s − 2)ћ. ±1/2ћ или 0.

Число sz − это квантовое число проекции спина. Максимальная величина sz совпадает с s. Так как спин электрона равен 1/2, то проекция этого спина может принимать лишь два значения sz = ±1/2. Если проекция +1/2, то говорят, что спин направлен вверх, если проекция -1/2, то говорят, что спин направлен вниз.

4.7. Полный момент количества движения

Полный момент количества движения частицы или системы частиц является векторной суммой орбитального и спинового моментов количества движения.

= + .

Квадрат полного момента имеет значение:

2 = ћ 2 j(j + 1).

Квантовое число полного момента j, соответствующее сумме двух векторов и , может принимать ряд дискретных значений, отличающихся на 1:

j = l + s, l + s −1. |l − s|

Проекция на выделенную ось Jz также принимает дискретные значения:

Число значений проекции Jz равно 2j + 1. Если для и определены единственные значения проекций на ось z lz и sz, то jz также определена однозначно: jz = lz + sz.

4.8. Квантовые числа

Квантовые числа – это целые или дробные числа, которые определяют все возможные значения физической величины, характеризующей различные квантовые системы – атомы, атомные ядра, кварки и другие частицы.

Таблица квантовых чисел

nРадиальное квантовое число. Определяет число узлов волновой функции и энергию системы. n = 1, 2, …, ∞.
J, jПолный угловой момент J и его квантовое число j. Последнее никогда не бывает отрицательным и может быть целым или полуцелым в зависимости от свойств рассматриваемой системы. 2 = ћ 2 j(j + 1).
L, lОрбитальный угловой момент L и его квантовое число l. Интерпретация l такая же, как j, но l может принимать только целые значения, включая нуль: l = 0, 1, 2,…. L 2 = ћ 2 l(l + 1).
mМагнитное квантовое число. Проекция полного или орбитального углового момента на выделенную ось (обычно ось z) равна mћ. Для полного момента m = ±j, ±(j-1), …, ±1/2 или 0. Для орбитального m = ± l, ± (l-1), …, ±1, 0.
S, sСпиновый угловой момент S и его квантовое число s. Оно может быть либо положительным целым (включая нуль), либо полуцелым. s – неизменная характеристика частицы опреде­лен­ного типа. S 2 = ћ 2 s(s + 1).
szКвантовое число проекции спинового момента частицы на выделенную ось. Эта проекция может принимать значения szћ, где sz = ± s, ± (s -1), …, ±1/2 или 0.
P или πПространственная четность. Характеризует поведение системы при пространственной инверсии → — (зеркальном отражении). Полная четность частицы Р = π(-1) l , где π – её внутренняя четность, а (-1) l – её орбитальная четность. Внутренние четности кварков положительные, антикварков — отрицательные.
IИзоспин. Характеризует свойство зарядовой инвариантности сильных взаимодействий

Для обозначения спинового момента часто используют букву J.

Все состояния, в которых может находиться квантовая система, описываются с помощью полного набора квантовых чисел. Так в случае протона в ядре состояние протона описывается с помощью четырех квантовых чисел, соответствующих четырем степеням свободы – трем пространственным координатам и спину. Это

  • Радиальное квантовое число n ( 1, 2, …, ∞),
  • Орбитальное квантовое число l (0, 1, 2, …),
  • Проекция орбитального момента m (± l, ± (l-1), …, ±1, 0),
  • Спин протона s =1/2.

Для описания сферически-симметричных систем в квантовой физике используются различные сферически симметричные потенциалы с различной радиальной зависимостью:

  • Кулоновский потенциал U = Q/r,
  • Прямоугольная потенциальная яма
  • Потенциал типа гармонического осциллятора U = kr 2 ,
  • Потенциал Вудса-Саксона (с его помощью описываются внутриядерные взаимодействия):

где U0, а и R – положительные константы (R – радиус ядра). Во всех случаях сферически симметричные системы можно описать с помощью набора квантовых чисел n, l, j, jz, однако, в зависимости от радиального вида потенциала энергетический спектр состояний системы будет различным.
Существование сохраняющихся во времени физических величин тесно связано со свойствами симметрии гамильтониана системы. Например, в случае, если квантовая система обладает центральной симметрией U = U(r), то этой системе соответствует сохранение орбитального момента количества движения l и одной из его проекций m. При этом из-за сферической симметрии задачи энергия состояний не будет зависеть от величины m, т. е. состояния будут вырожденными по m.
Наряду с пространственными симметриями, связанными с непрерывными преобразованиями, в квантовой физике существуют и другие симметрии – дискретные. Одной из них является зеркальная симметрия волновой функции относительно инверсии координат (→ —). Оператору инверсии соответствует квантовое число четность, которое может принимать два значения +1 и -1 в зависимости от того, сохраняется ли знак волновой функции при инверсии или меняется на противоположный.
Система тождественных частиц характеризуется еще одной симметрией – симметрией относительно перестановок тождественных частиц. Эта симметрия определяется свойствами частиц, образующих систему. Системы частиц с целым спином (бозонов) описываются симметричными волновыми функциями, системы частиц с полуцелым спином (фермионов) − антисимметричными волновыми функциями.

Задачи

4.1. Вычислите допустимые уровни энергии электрона, находящегося в одномерной прямоугольной потенциальной яме шириной 10 -8 см, протона, находящегося в потенциальной яме 5 Фм, и шарика массой 1 г, находящегося в потенциальной яме 1 см.

4.2. Рассчитать энергию перехода между состояниями 1s и 2s в атоме водорода.

4.3. Найти значение полного момента j для протона в d-состоянии. Каким будет результат измерения полного момента протона в состоянии 1d5/2?

4.4. Найти полный момент (квантовое число j) системы двух нуклонов в s‑состоянии (l = 0).

4.5. Какие значения может иметь полный момент системы j, если
А. Нейтрон и протон находятся в состояниях с |l,s:j>n = |1, 1 /2: 3 /2>, |l,s:j>p = |1, 1 /2: 3 /2>?
Б. Два нейтрона находятся в состояниях с |l,s:j>1 = |1, 1 /2: 3 /2> и |l,s:j>2 = |1, 1 /2: 3 /2>?

4.6. А) Нейтрон находится в p-состоянии. Найти значения полного момента j и возможные значения проекции момента jz. Каким будет результат измерения орбитального момента частицы в этом состоянии? Б) Рассмотрите задачу А) для протона в d-состоянии.
Ответ: А) j = 3/2, 1/2; jz = ±3/2, ±1/2; L = ћ√ l(l +1) = √ 2 ћ;
Б) j = 5/2, 3/2; jz = ±5/2, ±3/2, ±1/2; L = ћ√ l(l +1) = √ 6 ћ

4.7. А) Частица с собственным моментом s = 3/2 находится в состоянии с орбитальным моментом
l = 2. Найти полный момент частицы j.
Б) Частица с собственным моментом s = 1/2 находится в состоянии с орбитальным моментом
l = 3. Определите полный момент частицы j
Ответ: А) j = 7/2 ÷ 1/2; Б) j = 7/2, 5/2

4.8. Протон и нейтрон находятся в состоянии с относительным орбитальным моментом L = 1. Найти полный момент системы J.
Ответ: J = 0, 1, 2

4.9. На оболочке с квантовым числом n = 1, l = 2 находятся протон и нейтрон. Определить их суммарный полный момент J и его проекцию Jz. Изменится ли результат, если на оболочке n = 1,
l = 2 будут находиться два нейтрона?

4.10. Почему возникают вырожденные состояния?

4.11. Написать оператор Гамильтона электронов в атоме He.

4.12. Напишите стационарное уравнение Шредингера в сферической системе координат.

4.13. Какие квантовые числа характеризуют частицу в центрально-симметричной потенциальной яме?

4.14. Покажите, что волновые функции ψ = Aexp(kx −ωt) и ψ = Asin(kx −ωt) не удовлетворяют зависящему от времени уравнению Шредингера.

4.15. Покажите, что волновые функции ψ = Ae i(kx −ωt) и ψ = A(cos(kx −ωt) − sin(kx −ωt))удовлетворяют зависящему от времени уравнению Шредингера.

4.16. Частица находится в низшем состоянии n = 1 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L.
А) Рассчитайте вероятность обнаружить частицу в интервале Δx = 0.001L при x = 1 /2L, x = 2 /3L, x = L.
Б) Рассмотрите случай, когда частица находится в состоянии n = 2 при тех же значениях x.
Ответ: А) P(L/2) = 0.002; P(2L/3) = 0.0015; P(L) = 0; Б) P(L/2) = 0; P(2L/3) = 0.0015; P(L) = 0

4.17. Частица находится в состоянии n = 2 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить частицу в интервале ( 1 /3L, 2 /3L).
Ответ: P(L/3, 2L/3) = 0.2

4.18. Электрон находится всостонии n = 5 в бесконечно глубокой одномерной прямоугольной потенциальной яме размера L. Рассчитайте вероятность обнаружить электрон в области x от 0.2L до 0.5L.
Ответ: P(0.2L, 0.5L) = 0.3

4.19. Электрон находится в бесконечно глубокой одномерной потенциальной яме. Рассчитайте ширину потенциальной ямы, если энергия состояния n = 1 равна 0.1 эВ.
Ответ: L = 1.9 нм

4.20. Рассчитайте средние значения и 2 > для состояний n = 1, 2, 3 в бесконечно глубокой прямоугольной потенциальной яме.

4.21. Что общего и в чем различие в описании атома водорода в теории Шредингера и в модели Бора?

4.22. Почему энергии атома водорода в теории Шредингера не зависят от орбитального квантового числа l?

4.23. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?
Ответ: Lz = -3ћ, -2ћ. 3ћ; L 2 = 12ћ 2

4.24. Угловой момент характеризуется квантовым числом l = 3. Какие значения могут принимать Lz и L 2 ?

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Числа n l в уравнении шредингера

В этой главе излагается решение уравнения Шредингера в рамках задачи Кеплера. Мы убедимся, что без учёта релятивистских эффектов положение энергетических уровней получается таким же, как и в теории Бора–Зоммерфельда, но определяемая волновой функцией форма орбиталей в квантовой теории отличается от классических траекторий. В случае кулоновского поля существуют аналитические выражения для волновых функций, что позволяет вычислить средние значения физических параметров и, например, получить представление о размерах атома в различных состояниях.

Анализ задачи с позиций квантовой механики позволяет выяснить природу основного состояния любого атома, понять причину сгущения уровней вблизи границы ионизации, а также дать ответ на вопрос о вырождении энергетических уровней. Квантовые числа углового момента, которые определяют структуру волновой функции, необходимы при классификации спектров сложных атомов, для которых аналитическое решение уравнения Шредингера невозможно.

Проблема атома водорода и, в особенности, водородоподобных ионов с большим зарядом ядра, требует учёта релятивистских эффектов. Один из них — зависимость массы электрона от скорости — в главе 13 рассмотрен в классическом приближении. Мы увидели, что при переходе к тяжёлым атомам этот эффект растёт быстро, пропорционально Z 4 , но, тем не менее, остаётся малым вплоть до элементов группы железа. Аналогичными свойствами обладает спин–орбитальное взаимодействие. Его роль заключается в снятии вырождения уровней, характерного для нерелятивистской модели атома. Задача о кулоновском поле имеет аналитическое решение и в релятивистском случае. Но для атомов вплоть до элементов группы железа оба упомянутых эффекта малы по сравнению с электростатическим взаимодействием и могут быть рассмотрены как малые поправки к полученным в этой главе формулам.

16.1 Приведённая масса

Рассмотрим взаимодействие двух заряженных частиц по закону Кулона. С потенциальной энергией (13.3.3) стационарное уравнение Шредингера для волновой функции системы ψSYS имеет вид

.

Здесь re и rZ —радиус–векторы, соответственно, электрона и ядра, Etot — полная энергия системы. Введём положение центра инерции частиц


и электрона относительно ядра

.

Две последние формулы соответствуют определениям (13.2.3) и (13.2.4) классической механики. Выполним замену переменных в операторах дифференцирования в левой части (1.1):

Подставив (1.4) в (1.1), приходим к уравнению

.

Оно допускает разделение переменных. Представим волновую функцию в виде произведения

,

где первый множитель не зависит от R, а второй — от r. Разделим (1.5) на ψSYS и второе слагаемое слева перенесём в правую часть:

.

Левая и правая части последнего уравнения зависят от разных переменных, поэтому каждая из них должна быть равна константе. Полная энергия Etot системы складывается из её внутренней энергии E и энергии Emc движения центра масс электрона и ядра:

,

описывает равномерное прямолинейное движение центра масс, а уравнение

есть искомое уравнение Шредингера для относительного движения. Как и в классической механике, задача сводится к движению вокруг ядра частицы, занимающей место электрона, но масса её равна приведённой массе системы (13.2.6).

16.2. Новые параметры

В связанном состоянии энергия частицы E, как известно, отрицательна. Вместо неё будем пользоваться «дебройлевским» волновым числом:

.

Введём масштаб длины
.

Напомним, что a0 — боровский радиус (1.2.7). В этих обозначениях уравнение (1.9) приобретает следующий вид:

.

Удобно перейти к сферическим координатам, в которых оператор Лапласа равен сумме

,

называются, соответственно, «радиальным» и «угловым» лапласианом. Напомним, что угловой лапласиан, согласно (12.5.1), с точностью до знака равен оператору квадрата момента количества движения l 2 . Перейдём к решению задачи.

16.3. Разделение сферических переменных

Покажем, что в сферических координатах задача допускает дальнейшее разделение переменных. Волновую функцию ищем в виде произведения

.

Подставим (3.1) в (2.3), разделим полученное уравнение на ψ(r) и перенесём в правую часть слагаемое с оператором, действующим на угловые переменные:

.

Слева и справа от знака равенства стоят функции от разных аргументов. Следовательно, обе они равны одной и той же константе:

Уравнение (3.3) совпадает с (12.5.3) и, таким образом, представляет собой задачу на собственные значения квадрата момента. Согласно (12.5.5) и (12.6.2), она имеет ограниченное и однозначное решение

Подставляя это значение λ в (3.2), получим обыкновенное дифференциальное уравнение для радиальной части волновой функции:

.

Прежде, чем приступить к его решению, проведём качественные исследования некоторых свойств радиального движения.

16.4. Свойства движения в кулоновском поле

Наличие основного состояния и сгущение уровней вблизи границы ионизации — оба этих свойства кулоновского поля являются следствием соотношения неопределённостей.

Рассмотрим волновую функцию электрона, локализованного внутри малой сферы радиуса r0. Неопределённость в значениях его координат приблизительно равна r0, неопределённость в значении импульса, соответственно, порядка ħ/r 0 , а среднее значение кинетической энергии T составляет ħ 2 /mr 0 2 . Полная энергия, равная сумме
,

не может неограниченно убывать по мере уменьшения r0. Следовательно, дискретный спектр начинается с некоторого отрицательного конечного значения. Иными словами, в кулоновском поле имеется основное состояние.

Этот результат отличается от движения в потенциальной яме бесконечной глубины, где отрицательная энергия дискретных уровней неограниченно растёт по абсолютной величине. Различие обусловлено степенью крутизны потенциальной функции. Если в (4.1) вместо кулоновского потенциала подставить, например

с достаточно большим показателем степени:

то энергия E при уменьшении r0 становится отрицательной, неограниченно увеличиваясь по абсолютной величине. Но если средняя энергия может принимать такие значения, то это означает, что существуют сколь угодно глубокие уровни. Потенциальная яма имеет стенки, более крутые, чем любаястепеннáя функция, следовательно, её уровни энергии действительно не должны иметь нижней границы.

Ещё раз обратим внимание на то, что существование основного состояния атома является чисто квантовым явлением. В классической механике при равном нулю моменте обязательно имеет место падение электрона на ядро.

Теперь исследуем характер энергетического спектра электрона, находящегося на больших расстояниях от ядра. Рассмотрим волновой пакет, «заполняющий» шаровой слой большого радиуса r0 и толщины Δr r0. Тогда порядок величины кинетической энергии будет ħ 2 / m( Δr ) 2 . Теперь увеличиваем r 0 и, пропорционально ему, Δr 0 . Для электрона в кулоновском потенциале при достаточно больших значениях r 0 сумма

(4.2)

станет отрицательной. Таким образом, существуют стационарные состояния с отрицательной энергией, в которых частица может находиться на больших расстояниях от ядра. Но это означает, что существуют сколь угодно малые по абсолютной величине уровни энергии. Иными словами, дискретный спектр содержит бесконечно много уровней, сгущающихся к границе ионизации. Снова мы видим кардинальное отличие от решения задачи о потенциальной яме. Причина та же: большая крутизна потенциальной функции. Из (4.2) легко убедиться, что в случае α>2 никакого сгущения уровней ожидать не приходится.

По сути дела, мы убедились, что у каждой атомной системы есть основное состояние с конечным значением энергии, и её уровни сгущаются по мере приближения к границе ионизации. Оба эти заключения следуют из того, что потенциальная функция любого иона и атома близка к закону Кулона как вблизи ядра, так и на очень больших расстояниях от него. Вблизи ядра можно пренебречь влиянием электронов, и потенциальную энергию (отрицательную) описывает формула Ze 2 / r. Вдали от него справедлива изложенная в разделе 13.8 модель атомного остатка. Потенциальная энергия оптического электрона в этой модели также описывается законом Кулона и пропорциональна отношению (ZN+1)e 2 / r, где N — число электронов в ионе или атоме.

16.5. Эффективный потенциал

Покажем, что решение радиальной части (3.4) волнового уравнения не имеет вырождения. На время вернёмся к обозначениям первого раздела. Вынесем за скобки множитель 2m / ħ 2 и с учётом (2.1) и (2.2) получим:

(5.1) приводится к виду

.

Последнее уравнение описывает одномерное движение в поле с потенциальной энергией

.

На первом месте здесь стоит потенциальная энергия электрона. Числитель второго слагаемого равен собственному значению квадрата момента. В связи с этим величину

в квантовой теории, как и в классической механике, принято называть «центробежным потенциалом», а сумму (5.4) — «эффективным потенциалом». Профиль эффективного потенциала схематически изображён на рис.16.5.1.

На больших расстояниях от ядра превалирует кулоновский потенциал, а на малых — центробежный. Поэтому эффективный потенциал имеет минимум. Его зависимость от r напоминает яму конечной глубины, но в отличие от ямы здесь пологие края.

Уравнение (5.3) показывает, что задача о радиальном движении в кулоновском поле сводится к задаче об одномерном движении в области, ограниченной с одной стороны. Как показано во втором разделе девятой главы, ограниченное одномерное движение является невырожденным. Отсюда следует заключение об отсутствии вырождения по радиальной координате и в случае кулоновского поля. Таким образом, вырождение волновой функции кулоновского поля обусловлено исключительно её угловой частью.

Перейдём к определению энергетических уровней, поставив условие ограниченности волновой функции.

16.6. Вычисление радиальной части волновой функции

Раскроем радиальную часть лапласиана Δr:

.

Подставив полученное выражение в (3.4), приходим к уравнению

.

Его, как и уравнение, описывающее линейный осциллятор, решаем методом разложения в ряд с предварительным выделением особых точек.

Особые точки

В рассматриваемой здесь задаче присутствуют две особые точки: бесконечно удалённая точка r→∞ и начало координат r=0 . Введём обозначения R для волновой функции на больших расстояниях от ядра и R0 — вблизи него. Для выяснения зависимости R(r) опустим в (6.1) все слагаемые, содержащие в знаменателе r. Получающееся в результате уравнение

.

Из условия ограниченности волновой функции вытекает требование

и окончательно приходим к результату

.

Поведение волновой функции вблизи ядра определяется как раз теми слагаемыми, которые мы опустили при поиске R. Предположим, что орбитальный момент отличен от нуля: l>0 . Тогда в квадратных скобках (6.1) можно пренебречь первым и вторым членами по сравнению с центробежным потенциалом:

.

Решение последнего уравнения ищем в виде степеннóй функции

,

для которой надо найти значение показателя степени μ. После подстановки (6.4) в (6.3) приходим к квадратному уравнению для μ:

,

два корня которого равны:

.

Таким образом, решением уравнения (6.3) является линейная комбинация

.

Из требования ограниченности волновой функции следует

.

.

В случае l=0 уравнение (6.3) имеет решение

что формально не противоречит (6.5).

Итак, формулы (6.2) и (6.5) описывают поведение волновой функции, соответственно, в бесконечно удалённой точке и вблизи начала координат.

Разложение в ряд

Решение для произвольного диапазона радиальной координаты будем искать в виде

,

причём константы C 01 и C∞ 1 из (6.5) и (6.2) включены в искомую функцию f(r). Её мы представляем в виде ряда

.

Запишем выражение для радиальной функции:

.

Исключим из исходного уравнения (6.1) слагаемое с первой производной. Для этого выполним замену переменной:

.

Функция P(r) может быть разложена в ряд аналогично (6.8):

Оператор Лапласа, применённый к функции P(r), содержит только вторую производную:

.

Теперь перепишем уравнение (6.1) в виде:

.

Подставим в него P(r) из (6.10a) и получим уравнение для функции F(r):

.

Дважды дифференцируя ряд (6.10b): (6.10),

и подставляя его в (6.13), получим бесконечную систему уравнений для коэффициентов разложения:

Увеличим на единицу индекс суммирования в первом и последнем членах суммы, после чего вынесем за скобки общий множитель r ν+l :

.

Поскольку последнее равенство выполняется при произвольных значениях переменной r, коэффициенты при всех степенях r ν+l должны быть равны нулю. Отсюда следует рекуррентное соотношение:

.

Задав значение A 0 , мы можем вычислить коэффициент разложения с любым номером.

Только конечная сумма даёт ограниченное решение

Покажем, что, как и в случае линейного осциллятора (глава 11), условию ограниченности волновой функции R(r)удовлетворяет только конечная сумма, но не бесконечный ряд. Для этого достаточно убедиться, что такой ряд растёт быстрее, чем e kr . В самом деле, при неограниченном возрастании номера ν отношение коэффициентов ряда (6.16) стремится к пределу

.

А в разложении экспоненты:

отношение коэффициентов равно

.

Сравнение (6.17) и (6.18) показывает, что в случае бесконечного ряда волновая функция R(r) не стремится к нулю при неограниченном удалении от ядра. Физический смысл имеет только решение уравнения (6.13) в виде конечной суммы.

Условие квантования энергии

В конечной сумме существует номер ν=nr такой, что

Параметр nr называется радиальным квантовым числом. Он аналогичен введённой в предыдущей главе величине nr и, как мы увидим ниже, принимает тот же ряд значений (15.1.23). Согласно (6.16) и (6.19), решение существует только в том случае, если k удовлетворяет условию

Таким образом, волновое число электрона квантуется: оно определяется линейной комбинацией

называемой главным квантовым числом. Снова прослеживается аналогия с классической моделью атома: (6.20) получается из (15.1.11) заменой nφ на l+1. Эта замена обусловлена принципиально разной интерпретацией состояний с равным нулю моментом в квантовой теории и классической механике. Выпишем в явной форме правило квантования волнового числа:

.

Из соотношений (2.1) и (6.21) получим условие квантования энергии:

или, вспоминая определение ридберга (13.5.3):

Эта формула даёт собственные значения нашей задачи. Собственные функции (волновые функции) зависят от трёх координат (r, θ, φ) и трёх параметров (n, l, m):

где Ylm — угловая часть волновой функции, Rnl — радиальный множитель, равный

.

Коэффициенты суммы связаны друг с другом рекурренным соотношением

.

Сумма в (6.24) является знакопеременной. В этом легко убедиться, заметив, что числитель дроби (6.25) имеет отрицательный знак.

К радиальной волновой функции применима осцилляционная теорема, о которой шла речь в разделе 9.3. Число узлов функции Rnl равно квантовому числу nr.

Уточним диапазон изменения квантовых чисел n, nr и l. Согласно (12.1), параметр l должен быть неотрицательным. Нумерация слагаемых под знаком суммы в (6.24) начинается с нуля, поэтому nr принимает целые значения:

Энергетический уровень однозначно определяется главным квантовым числом n. Из (6.20) следует, что при заданном значении n орбитальное квантовое число может быть равно одному из чисел ряда:

Если в (6.20) равны нулю оба параметра: и l , — то n равно единице. Остальным парам чисел соответствуют б óльшие значения n . Итак:

Обратим внимание на то, что орбитальное квантовое число выпало из окончательного результата (6.22), хотя в уравнении Шредингера (6.1) оно присутствует. Этот факт является следствием особо высокой степени симметрии кулоновского поля — более высокой, чем просто поле с центральной симметрией. В общем случае центрально-симметричного поля, потенциал которого падает по закону, отличному от 1/r, энергия зависит от квантового числаl.

Нормированная волновая функция

Разложение (6.23) волновой функции на множители, каждый из которых зависит либо от радиальной, либо от угловых координат, позволяет разбить общее условие нормировки

на два: по радиальной координате

.

Для справочных целей выпишем полные выражения для нормированных волновых функций. Сумма в (6.24) с рекуррентным соотношением (6.25) для коэффициентов может быть выражена через так называемую гипергеометрическую функцию. Радиальная часть волновой функции с учётом условия нормировки равна

Здесь F — вырожденная (конфлюэнтная) гипергеометрическая функция (функция Куммера):

которая сходится при всех конечных z ; параметр α произволен, а β предполагается не равным нулю или целому отрицательному числу. Если α есть целое отрицательное число (или нуль), то F( α , β , z ) сводится к полиному степени | α |. Радиальные волновые функции выражаются также через обобщённые полиномы Лагерра :

Угловая часть волновой функции описана в разделе (12.6).

В литературе можно увидеть различные формулы для волновой функции в кулоновском поле. Они отличаются друг от друга комплексной константой, квадрат модуля которой равен единице. Это различие не является существенным, так как в любом физическом эксперименте измеряется вероятность обнаружения частицы, равная именно квадрату модуля волновой функции.

Заметим, что размерность волновой функции равна см –d/2 , где d — размерность задачи. В нашем случае размерным множителем в (6.30) является комбинация ( 2kn ) 3/2 . Остальные множители являются безразмерными, включая сферическую функцию Yl,m.

16.7 Статистический вес энергетического уровня

Соберём воедино основные результаты, полученные в этой главе. Уровни электрона с отрицательной энергией в кулоновском поле квантуются:

,

причём энергия зависит только от главного квантового числа n . Квадрат модуля момента определяется орбитальным квантовым числом l , которое при заданном уровне энергии может принимать n разных значений:

Напомним (раздел 13.5), что для краткости l часто называют абсолютной величиной момента. Существует специальная система обозначений для состояний с определённым значением l :


источники:

http://elementy.ru/trefil/21/Uravnenie_Shryodingera

http://heritage.sai.msu.ru/ucheb/Zemcov/Part_3_Hydrogen/Chapter_16/Chapter_16.htm