Численное решение дифференциальных уравнений курсовая

Численные методы решения дифференциальных уравнений

Автор работы: Пользователь скрыл имя, 24 Июня 2013 в 09:49, курсовая работа

Краткое описание

Целью курсовой работы является разработка программ:
Численных методов интегрирования функции;
Численных методов дифференцирования функции;
Численных методов решения дифференциального уравнения;
Для достижения данной цели есть необходимость выделить следующие основные задачи:
Практически закрепить и повторить знания основ языка C++Builder 6, для успешного программирования;
Повторить теоретический материал по численным методам;
Написать программы численных методов соответственно заданию;
Сравнить методы и сделать выводы по проделанной работе.

Содержание

Введение 3
Теоретическая часть 4
1. Численные методы интегрирования функций 4
1.2 Формула Ньютона – Котеса: метод трапеций. 5
1.3 Формула Ньютона – Котеса: метод Симпсона. 6
1.4 Метод Лежандра – Гаусса. 7
1.5 Метод Монте-Карло. 8
2. Численные методы дифференцирования функций 9
2.1 Интерполяционная формула Ньютона 10
3. Численные методы решения дифференциальных уравнений 11
3.1 Метод Эйлера 11
3.2 Методы Рунге-Кутты 12
Практическая часть 14
Заключение 21
Список использованных источников 22

Вложенные файлы: 1 файл

теория.docx

Федеральное агентство связи

Государственного образовательного бюджетного учреждения

высшего профессионального образования

«СИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТЕЛЕКОММУНИКАЦИЙ И ИНФОРМАТИКИ»

Кафедра информатики и вычислительной техники

Допустить к защите

Зав. кафедрой ___________

Численное интегрирование и

Решение дифференциальных уравнений

БФ ФГОБУ СибГУТИ 230100.000 ПЗ

Руководитель /Белоусова М.В./

Студент /Плотников Г.П./

Факультет информационных технологий и экономики

Теоретическая часть 4

1. Численные методы интегрирования функций 4

1.2 Формула Ньютона – Котеса: метод трапеций. 5

1.3 Формула Ньютона – Котеса: метод Симпсона. 6

1.4 Метод Лежандра – Гаусса. 7

1.5 Метод Монте-Карло. 8

2. Численные методы дифференцирования функций 9

2.1 Интерполяционная формула Ньютона 10

3. Численные методы решения дифференциальных уравнений 11

3.1 Метод Эйлера 11

3.2 Методы Рунге-Кутты 12

Практическая часть 14

Список использованных источников 22

Приложение А 23

Приложение Б 27

Введение

Появление и непрерывное совершенствование быстродействующих электронных вычислительных машин привело к подлинно революционному преобразованию науки вообще и математики в особенности. Изменилась технология научных исследований, колоссально увеличились возможности теоретического изучения, прогноза сложных процессов, проектирования инженерных конструкций. Решение крупных научно-технических проблем, примерами которых могут служить проблемы овладения ядерной энергией и освоения космоса, стало возможным лишь благодаря применению математического моделирования и новых численных методов, предназначенных для ЭВМ.

В настоящее время можно говорить, что появился новый способ теоретического исследования сложных процессов, допускающих математическое описание, — вычислительный эксперимент, т.е. исследование естественнонаучных проблем средствами вычислительной математики. Разработка и исследование вычислительных алгоритмов, и их применение к решению конкретных задач составляет содержание огромного раздела современной математики — вычислительной математики.

Численные методы дают приближенное решение задачи. Это значит, что вместо точного решения некоторой задачи мы находим решение у другой задачи, близкое к искомому. Основная идея всех методов — дискретизация или аппроксимация исходной задачи другой задачей, более удобной для решения на ЭВМ, причем решение аппроксимирующей задачи зависит от некоторых параметров, управляя которыми, можно определить решение с требуемой точностью.

Целью курсовой работы является разработка программ:

    1. Численных методов интегрирования функции;
    2. Численных методов дифференцирования функции;
    3. Численных методов решения дифференциального уравнения;

Для достижения данной цели есть необходимость выделить следующие основные задачи:

    1. Практически закрепить и повторить знания основ языка C++Builder 6, для успешного программирования;
    2. Повторить теоретический материал по численным методам;
    3. Написать программы численных методов соответственно заданию;
    4. Сравнить методы и сделать выводы по проделанной работе.

Теоретическая часть

Погрешность – это разность между истинной величиной и величиной, найденной при вычислении. Изм.

При численном решении математических и прикладных задач почти неизбежно появление на том или ином этапе погрешностей. Погрешностью называют отклонение приближенного решения от истинного решения. Различают следующие типы погрешностей.

1. Неустранимая погрешность. Она связана с приближенным характером исходной содержательной модели (в частности, с невозможностью учесть все факторы в процессе изучения моделируемого явления), а также ее математического описания, параметрами которого служат обычно приближенные величины (например, из-за принципиальной невозможности выполнения абсолютно точных измерений). Для вычислителя погрешность математической модели следует считать неустранимой (безусловной), хотя постановщик задачи иногда может ее изменить.

2. Погрешность метода. Это погрешность, связанная со способом решения поставленной математической задачи и появляющаяся в результате подмены исходной математической модели другой или конечной последовательностью других, например линейных, моделей. При создании численных методов закладывается возможность отслеживания таких погрешностей и доведения их до сколь угодно малого уровня.

3. Вычислительная погрешность (погрешность действий). Этот тип погрешности обусловлен необходимостью выполнять арифметические операции над числами, усеченными до количества разрядов, зависящего от применяемой вычислительной техники (если, разумеется, не используются специальные программные средства, реализующие, например, арифметику рациональных чисел), т.е. вычислительная погрешность обусловлена округлениями.

Численные методы интегрирования функций

Интервал интегрирования (a, b) разбивается на n равных отрезков длиной

В качестве приближенного значения площади каждой полоски принимается площадь прямоугольника, ширина которого равна h, а высота — значению функции y(x) на левом краю интервала. Локальная формула метода левых прямоугольников:

Общая формула метода левых прямоугольников:

Курсовая работа: Решение дифференциальных уравнений. Обзор

Нижегородский государственный технический университет

Кафедра «Общеобразовательные и общепрофессиональные дисциплины»

«Решение дифференциальных уравнений. Обзор»

Выполнила: Аверина Л.А

Группа. ТМв 151001-09

Проверила: Ловыгина М.Б

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

1.3 Метод Эйлера

1.4 Модифицированный метод Эйлера

1.5 Практическая часть

2 Решение дифференциальных уравнений с помощью Mathcad

2.1 Метод Эйлера

2.2 Метод Эйлера с шагом h/2

2.3 Метод Рунге – Кутты

Введение

Уравнение называется обыкновенным дифференциальным n-го порядка, если F определена и непрерывна в некоторой области и, во всяком случае, зависит от . Его решением является любая функция u(x), которая этому уравнению удовлетворяет при всех x в определённом конечном или бесконечном интервале. Дифференциальное уравнение, разрешенное относительно старшей производной имеет вид

Решением этого уравнения на интервале I=[a,b] называется функция u(x).

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0 , х1 …, хn и числа у0 , не определяя функцию у=F(x), найти такие значения у1 , у2 ,…, уn , что уi =F(xi )(i=1,2,…, n) и F(x0 )=y0 .

Таким образом, численные методы позволяют вместо нахождения функции y=F(x) (3) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk -xk -1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Метод Эйлера для обыкновенных дифференциальных уравнений используется для решений многих задач естествознания в качестве математической модели. Например задачи электродинамики системы взаимодействующих тел (в модели материальных точек), задачи химической кинетики, электрических цепей. Ряд важных уравнений в частных производных в случаях, допускающих разделение переменных, приводит к задачам для обыкновенных дифференциальных уравнений – это, как правило, краевые задачи (задачи о собственных колебаниях упругих балок и пластин, определение спектра собственных значений энергии частицы в сферически симметричных полях и многое другое)

1 Обзор методов решения в Excel

1.1 Метод Рунге-Кутта четвертого порядка для решения уравнения первого порядка

Идея Рунге-Кута состоит в том, чтобы использовать метод неопределённых коэффициентов. Наиболее употребительным методом Рунге-Кутта решения уравнения первого порядка y’ = F(x,y) (1) является метод четвертого порядка, в котором вычисления производятся по формуле:

yk+1 = yk +(k1 +2k2 +2k3 +k4 )/6, (2)

k1 = Fk h = F(xk , yk )h

Рассмотрим задачу Коши для уравнений первого порядка на отрезке [a,b]:

, (4)

Разобьём промежуток [a,b] на N частей . Обозначим , где u(x) –точное решение задачи Коши, и через значения приближенного решения в точках . Существует 2 типа численных схем :

1. явные: ) (5)

2. неявные: (6)

Здесь F некоторая функция, связывающая приближения. В явных схемах приближенное значение в точке определяется через некоторое число k уже определённых приближенных значений. В неявных схемах определяется не рекурентным способом, как в явных схемах, а для его определения возникает уравнение, поскольку равенство (6) представляет из себя именно уравнение на . Явные схемы проще, однако зачастую неявные схемы предпочтительнее

1.3 Метод Эйлера

Решить дифференциальное уравнение у / =f(x,y) численным методом — это значит для заданной последовательности аргументов х0 , х1 …, хn и числа у0 , не определяя функцию у=F(x), найти такие значения у1 , у2 ,…, уn , что

Таким образом, численные методы позволяют вместо нахождения функции У=F(x) получить таблицу значений этой функции для заданной последовательности аргументов. Величина h=xk -xk -1 называется шагом интегрирования.

Метод Эйлера относиться к численным методам, дающим решение в виде таблицы приближенных значений искомой функции у(х). Он является сравнительно грубым и применяется в основном для ориентировочных расчетов. Однако идеи, положенные в основу метода Эйлера, являются исходными для ряда других методов.

Рассмотрим дифференциальное уравнение первого порядка (7) с начальным условием

Требуется найти решение уравнения (7) на отрезке [а,b].

Разобьем отрезок [a, b] на n равных частей и получим последовательность х0 , х1 , х2 ,…, хn , где xi =x0 +ih (i=0,1,…, n), а h=(b-a)/n-шаг интегрирования.

В методе Эйлера приближенные значения у(хi )»yi вычисляются последовательно по формулам уi +hf(xi , yi ) (i=0,1,2…).

При этом искомая интегральная кривая у=у(х), проходящая через точку М00 , у0 ), заменяется ломаной М0 М1 М2 … с вершинами Мi (xi , yi ) (i=0,1,2,…); каждое звено Мi Mi +1 этой ломаной, называемой ломаной Эйлера, имеет направление, совпадающее с направлением той интегральной кривой уравнения (7), которая проходит через точку Мi . Если правая часть уравнения (7) в некотором прямоугольнике R<|x-x0 |£a, |y-y0 |£b>удовлетворяет условиям:

|df/dx|=|df/dx+f(df/dy)| £ M (M=const),

то имеет место следующая оценка погрешности:

где у(хn )-значение точного решения уравнения (7) при х=хn , а уn — приближенное значение, полученное на n-ом шаге.

Формула (13) имеет в основном теоретическое применение. На практике иногда оказывается более удобным двойной просчет: сначала расчет ведется с шагом h, затем шаг дробят и повторный расчет ведется с шагом h/2. Погрешность более точного значения уn * оценивается формулой

Метод Эйлера легко распространяется на системы дифференциальных уравнений и на дифференциальные уравнения высших порядков. Последние должны быть предварительно приведены к системе дифференциальных уравнений первого порядка.

1.4 Модифицированный метод Эйлера

Рассмотрим дифференциальное уравнение (7) y / =f(x,y) с начальным условием y(x0 )=y0 . Разобьем наш участок интегрирования на n равных частей. На малом участ интегральную кривую заменим прямой линией.

Рисунок 1 Метод Эйлера в графическом виде

Получаем точку Мккк ). Через Мк проводим касательную:

Делим отрезок (хкк1 ) пополам

Получаем точку Nk / . В этой точке строим следующую касательную:

Из точки Мк проводим прямую с угловым коэффициентом αк и определяем точку пересечения этой прямой с прямой Хк1 . Получаем точку Мк / . В качестве ук+1 принимаем ординату точки Мк / . Тогда:

(14)-рекурентные формулы метода Эйлера.

Сначала вычисляют вспомогательные значения искомой функции ук+1/2 в точках хк+1/2 , затем находят значение правой части уравнения (11) в средней точке y / k +1/2 =f(xk +1/2 , yk +1/2 ) и определяют ук+1 .

Для оценки погрешности в точке хк проводят вычисления ук с шагом h, затем с шагом 2h и берут 1/3 разницы этих значений:

где у(х)-точное решение дифференциального уравнения.

Таким образом, методом Эйлера можно решать уравнения любых порядков. Например, чтобы решить уравнение второго порядка y // =f(y / ,y,x) c начальными условиями y / (x0 )=y / 0 , y(x0 )=y0 , выполняется замена

Тем самым преобразуются начальные условия

Здесь решается уравнение dy/dx = 2x-y+x 2 на интервале [0,2], начальное значение y(0)=0, для оценки точности задано также точное решение в виде функции u(x)=x 2 . Оценка погрешности делается в нормеL1 , как и принято в данном случае

2 Решение дифференциальных уравнений с помощью Mathcad

Mathcad имеет ряд встроенных функций, предназначенных для решения обыкновенных дифференциальных уравнений (ОДУ). При решении ОДУ искомой величиной является функция. При использовании любых методов численного интегрирования необходимо, чтобы были заданы по крайней мере следующие величины:

набор точек в которых нужно найти решение;

само дифференциальное уравнение, записанное в некотором специальном виде, который будет описан ниже.

Один из наиболее эффективных алгоритмов интегрирования ОДУ основан на численном методе Рунге-Кутты четвертого порядка. Функция, реализующая этот метод, имеет вид rkfixed (y,x1 ,x2 , npoints,D)

y-вектор начальных условий размерности n, где n- порядок дифференциального уравнения или число уравнений в системе (если решается система уравнений);

x1 , x2 – граничные точки интервала, на котором ищется решение дифференциального уравнения. Начальные условия ,заданные в векторе y,- это значение решения в точке x1 ;

npoints- число точек (не считая начальной точки), в которых ищется приближенное решение. При помощи этого аргумента определяется число строк (1+npoints) в матрице, возвращаемой функцией rkfixed;

D(x,y) – функция,возвращающая значение в виде вектора n элементов, содержащих первые производные неизвестных функций.

Если задачу об отыскании всех решений дифференциального уравнения удается свести к конечному числу алгебраических операций, операций интегрирования и дифференцирования известных функций, то говорят, что уравнениеинтегрируется в квадратурах. В приложениях крайне редко встречаются уравнения, интегрируемые в квадратурах. Поэтому для исследования дифференциальных уравнений широко используются приближенные, численные методы их решения.

Численное решение на отрезке [a, b] задачи Коши

состоит в построении таблицы приближенных значений

решенияy(x)в узлах сетки

a=x0 , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

Определим шаг формулы Эйлера — шаг интегрирования

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Построим график найденного решения y(x)

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат — обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Метод Эйлера допускает простуюгеометрическую интерпретацию. Пусть известна точка (xi ,yi ) интегральной кривой уравненияy’=f(x, y).

Касательная к интегральной кривой уравнения, проходящая через эту точку, определяется уравнением

Следовательно, вычисленная методом Эйлера точка (xi+ 1 ,yi+ 1 ),

Найдем методом Эйлера на [0, 1] с шагом h=0.2 и с шагом h=0.1 приближенное решение задачи Коши

y’ = sin x – cosy,y(0)=1.

Изобразим приближенные решения графически.

Расчетные формулы метода Эйлера для решения этой задачи имеют вид

x0=0, y0= 1, xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi — cosyi), i =0, 1, . 4

xi+1 = xi + 0.2, yi+1 = yi + 0.2(sinxi — cosyi), i =0, 1, . 9

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Определим диапазон изменения номера точки i=0,1, . 4 для вычислений с шагом h=0.2

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

При решении задачи с шагом h=0.2 назовем шаг h1, аргумент — x1, а решение — y1.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера — шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяющей рамки

Построим график найденного решения y1(x1)

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс обозначение компонент вектора, содержащего значения узлов сетки, а в позиции возле оси ординат — обозначение компонент вектора, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Определим диапазон изменения номера точки i=0,1, . 9 для вычислений с шагом h=0.1

Для того чтобы ввести символ диапазона изменения индекса , щелкните по соответствующей позиции в панели Matrix или введите с клавиатуры символ («точка с запятой»)

При решении задачи с шагом h=0.1 назовем шаг h2, аргумент — x2, а решение — y2.

Определим начальное условие

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим шаг формулы Эйлера — шаг интегрирования

Определим по формулам Эйлера значения приближенного решения в узлах сетки

Выведем в рабочий документ вычисленные значения решения. Для сравнения рядом выведены значения решения, вычисленные с большим шагом

Построим график решения y2(x2)

Построим на одном графике оба приближенные решения

Для того чтобы одновременно построить графики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.

Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д.разделяя имена функций запятой.

Когда функции определены, щелкните по рабочему документу вне поля графиков.

Методом Рунге-Кутты четвертого порядкаточности называют одношаговый метод, относящийся к широкому классу методов Рунге-Кутты. В этом методе величиныyi+ 1 вычисляются по следующим формулам:

Найдем на [0, 1]приближенноерешение задачи Кошиy’ = sinx– cosy,y(0)=1методом Рунге-Кутты 4-го порядка с шагом h=0.2 и методом Эйлера с тем же шагом.Изобразим оба приближенные решения графически

Для решения задачиметодом Рунге-Кутты воспользуемся функциейrkfixed

Определим начальное условие — решение в начальной точке

Для того чтобы ввести нижний индекс переменной, щелкните по соответствующей позиции в панели Matrix или в панели Calculator

Определим правую часть уравнения

Знак присваивания можно ввести щелчком по соответствующей позиции в панели Evaluation.

Вычислим приближенное решение на отрезке [0,1], выполнив n=1/h=5 одинаковых шагов, методом Рунге-Кутты 4-го порядка; обозначим приближенное решение Y

Выведем в рабочий документ вычисленное приближенное решение

Для того чтобы вывести значение переменной в рабочий документ, введите имя переменной, знак равенства и щелкните по рабочему документу вне выделяюшей рамки

В первом столбце приведены значения x, во втором столбце — соответствующие значения приближенного решения

Решим ту же задачу методом Эйлера

Выведем в рабочий документ вычисленное приближенное решение, и, для сравнения, решение, вычисленное методом Рунге-Кутты

Построим графики приближенных решений

Для того чтобы построить график приближенного решения, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции возле оси абсцисс имя первого столбца матрицы Y, содержащего значения x в узлах сетки, а в позиции возле оси ординат — имя второго столбца, содержащего значения приближенного решения в узлах сетки; затем щелкните по свободному месту в рабочем документе вне поля графиков.

Для того чтобы одновременно построитьграфики нескольких функций от разных аргументов, щелкните в панели Graph по пиктограмме декартова графика, введите в помеченной позиции у оси абсцисс имя первого аргумента, запятую, имя второго аргумента, и т.д., разделяя имена аргументов запятой.

Аналогично, в позиции возле оси ординат введите имя функции первого аргумента, запятую, имя функции второго аргумента и т.д. разделяя имена функций запятой.

Когда функции определены, щелкните по рабочему документу вне поля графиков.

Для того чтобы ввести номер столбца, щелкните по соответствующему символу в панели Matrix

Для того чтобы изменить стиль изображения, щелкните дважды по полю графиков и установите в окне соответствующие параметры

Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе. Ни одна серьезная разработка в любой отрасли науки и производства не обходится без трудоемких математических расчетов. Система Mathcadпользуется огромной популярностью во всем мире, позволяя готовить вполне профессиональные документы, имеющие вид статей и книг по математике.

Программа MicrosoftExcel входит в офисный пакет MicrosoftOfficeи предназначена для подготовки и обработки электронных таблиц под управлением операционной системой Windows. MicrosoftExcel – это многофункциональный, мощный редактор электронных таблиц. Он представляет возможность производить различные расчеты, составлять списки, сметы и что немаловажно, строить наглядные графики и диаграммы.

MathCAD – это мощная и в то же время простая универсальная среда для решения задач в различных отраслях науки и техники, финансов и экономики, физики и астрономии, строительства и архитектуры, математики и статистики, организации производства и управления… Она располагает широким набором инструментальных, информационных и графических средств. Сегодня MathCAD – одна из самых популярных математических систем. Она пользуется большим спросом у студентов, инженеров, экономистов, менеджеров, научных работников и всех тех, чья деятельность связана с количественными методами расчета.

Microsoft Excel ‑ средство для работы с электронными таблицами, намного превышающее по своим возможностям существующие редакторы таблиц, первая версия данного продукта была разработана фирмой Microsoft в 1985 году. Microsoft Excel ‑ это простое и удобное средство, позволяющее проанализировать данные и, при необходимости, проинформировать о результате заинтересованную аудиторию, используя Internet. Microsoft ® Excel разработан фирмой Microsoft, и является на сегодняшний день самым популярным табличным редактором в мире. Кроме стандартных возможностей его отличает следующие возможности, он выводит на поверхность центральные функции электронных таблиц и делает их более доступными для всех пользователей. Для облегчения работы пользователя упрощены основные функции, создание формул, форматирование, печать и построение графиков.

Данная курсовая работа позволила мне более близко познакомится с пакетом прикладных программ MathCAD и MicrosoftExcel. Мной было рассмотрено несколько способов решения дифференциальных уравнений.

Всё это позволило в полном объеме усвоить лекционный материал и понять перспективы использования вычислительной техники при решении различных задач практического характера.

1. Индейкин В. В. Табличный редактор Microsoft Excel. Учебное пособие. – Казань, 1999. – 75с.

2. Кудрявцев Е. М. MathCAD 2000 Pro. – М.: ДМК Пресс, 2001. – 571с.

Курсовая работа На тему: «Численные методы решения уравнений»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Курсовая работа

На тему: «Численные методы решения уравнений»

Введение

эйлер уравнение дифференциальный интерполирование

Цель данной курсовой работы — изучение методов приближённого интегрирования. Для некоторых подынтегральных функций интеграл можно вычислить аналитически или найти в справочниках. Однако в общем случае первообразная может быть не определена: либо первообразные не выражаются через элементарные функции, либо сами подынтегральные функции не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов. Наиболее общеупотребительными приближенными методами вычисления одномерных определенных интегралов являются, так называемые, «классические» методы численного интегрирования: метод прямоугольников, метод трапеций, метод парабол (основанные на суммировании элементарных площадей, на которые разбивается вся площадь под функцией). Хотя эти методы обычно предпочтительней в случае малых размерностей, они практически не годятся для вычисления многомерных интегралов, для их вычисления используются другие методы. В связи с развитием новой вычислительной техники инженерная практика наших дней все чаще и чаще встречается с математическими задачами, точное решение которых получить весьма сложно или невозможно. В этих случаях обычно прибегают к тем или иным приближенным вычислениям. Вот почему приближенные и численные методы математического анализа получили за последние годы широкое развитие и приобрели исключительно важное значение.

1. Решение нелинейных уравнений. Метод касательных (Ньютона)

.1 Решение нелинейных уравнений

Обычно нелинейные уравнения делят на трансцендентные и алгебраические. Нелинейные уравнения, содержащие тригонометрические функции или другие специальные функции, например, lg ( x ) или e x , называются трансцендентными. Методы решения нелинейных уравнений такого типа делятся на аналитические и численные.

Первые позволяют найти решение непосредственно с помощью формул и всегда обеспечивают получение точного решения. Известным примером такого рода является формула корней квадратного уравнения. В численных методах задается процедура решения в виде многократного применения некоторого алгоритма. Задача отыскания корней нелинейного уравнения f ( x ) = 0 считается решенной, если мы сумеем определить корни с нужной степенью точности.

Для решения нелинейных уравнений известны следующие численные методы: метод половинного деления (метод дихотомии), метод хорд, метод касательных (Ньютона), метод секущих, метод простой итерации. Рассмотрим метод половинного деления.

Графическая интерпретация метода показана на рис.1.

Рисунок 1. Графическая интерпретация метода половинного деления

В этом методе отыскание корня уравнения f ( x ) = 0 проходит в два этапа. На первом этапе необходимо отделить корень, т.е.выделить интервал на оси абсцисс, на котором функция f ( x ) меняет свой знак. Для отделения корня следует провести вычисление функции f ( x ) в точках, расположенных через равные интервалы по оси x , до тех пор, пока не будут найдены два последовательных значения функции f ( x n ) и f ( x n +1 ), имеющие противоположные знаки.

.2 Метод касательных (Ньютона)

Метод касательных называется также методом Ньютона. Будем считать, что функция F ( x ) непрерывна на отрезке [а; b ] и имеет место на концах отрезка разные знаки, т.е. F ( a ) F ( b )

В качестве начального приближения x 0 в методе касательных выбирается тот конец отрезка [ a ; b ], в котором функция F ( x ) и ее вторая производная F 11 ( x ) имеет одинаковые значения, т.е.

F(a)F 11 (a)>0 или F(b)F 11 >0.

Геометрический смысл метода заключается в том, что приближения по нему равны абсциссам точек пересечения оси Ox и касательных к графику функции y = F ( x ).

Примем за начальное приближение х 0 конец отрезка b , т.е. x 0 = b и проведем касательную к графику функции в точке B 0 ( x 0 ; F ( x 0 )).

Уравнение касательной будет иметь вид:

Касательная пересечет ось Ox при y =0. Подставив y =0 в уравнение, получим абсциссу точки пересечения

1 = x 0

Записав уравнение касательной к графику в точке B 1 ( x 1 ; F ( x 1 )), при y =0, получим

2 = x 1

Каждый раз абсциссы точек пересечения касательных с осью Ох будут вычисляться по формуле

n +1 = x n , ( n =0,1,2,….), (1.1)

где ζ — точный корень уравнения F ( x )=0.

2. Интерполирование функции. Полиномы Ньютона

Многочлен Лагранжа неудобен из-за своей громоздкости для практического использования. Рассмотрим более простую схему построения интерполяционного многочлена.

Пусть l n ( x ) — интерполяционный многочлен Лагранжа с равноотстоящими узлами. Представим в виде:

Разности l k ( x ) — l k -1 ( x ) есть многочлены k -ой степени, обращающиеся в ноль в точках x 0 , x 1 ,…, x k -1 , поскольку l k ( x j ) — l k -1 ( x j ) при j = 0,1,…, k -1. Следовательно,

Подставляя эти выражения в первую формулу (для k =1,…, k -1) находим:

Коэффициенты a 0 , a 1 ,…, a n определяются из условий: l n ( x j ) = f ( x j ) при j = 0,1,…, k -1,

Так как мы предполагали, что у нас равноотстоящие узлы, то

x k = x 0 + kh, l k (x k ) = f(x k ). Отсюда .

Покажем, что f ( x k ) — l k -1 ( x k ) есть k — я разность в точке x 0 , т.е. она равна ∆ k f ( x 0 ).

Методом математической индукции можно доказать, что

Вычислим разность f ( x k ) — l k -1 ( x k ). Имеет место равенство

f ( x k ) — l k -1 ( x k ) =, где

(2.6)

(2.7)

Поэтому .

(2.9)

Интерполяционный многочлен, записанный в таком виде, называется интерполяционным многочленом Ньютона (с равноотстоящими узлами интерполяции).

Линейный интерполянт по Ньютону имеет вид

(2.10)

Вводя обозначение , получим

(2.11)

При вычислении разностей удобно пользоваться таблицей.

При проверке вычислений используется условие, что сумма всех чисел столбца должна быть равна разности первого и последнего чисел столбца.

Интерполяционная формула Ньютона имеет место и в случае, если узлы не равноотстоят друг от друга. В этом случае она принимает вид:

(2.12)

(2.13)

(2.14)

(2.15)

Алгоритм интерполяции функции многочленом Ньютона (произвольные узлы).

Ввод: Узлы интерполяции X [ i ], Y [ i ]’ i = 0,1,…, n .

Вывод: Вычислить c := f (х).

Цикл по j := 1… n выполнить

Цикл по i := 0… n — j выполнить Y [ i ]:= ( Y [ i +1]- Y [ i ])/ ( X [ i + j ]- X [ i ]); конец цикла по i ;

конец цикла по j ;

Алгоритм интерполяции функции многочленом Ньютона (равноотстоящие узлы).

Ввод: Узлы интерполяции X [ i ], Y [ i ]’ i = 0,1,…, n .

Вывод: Вычислить c := f (х).

h := X [1]- X [0]; с:= X [0]; p :=1;

Цикл по j := 1… n выполнить

Цикл по i:= 0 … n-j выполнить Y[i]:= (Y[i+1]- Y[i]); / (X[i]- X[i-1]); X[i]:= X[i]- X[i-1]); конец цикла по i;

конец цикла по j ;

Погрешность при интерполяции многочленом Ньютона та же, что и при интерполяции многочленом Лагранжа. Наибольшая точность при заданных узлах интерполяции достигается для, расположенных к середине отрезка.

3. Численное интегрирование

Численное интегрирование — вычисление значения определённого интеграла (как правило, приближённое). Под численным интегрированием понимают набор численных методов для нахождения значения определённого интеграла.

Численное интегрирование применяется, когда:

1. Сама подынтегральная функция не задана аналитически. Например, она представлена в виде таблицы (массива) значений в узлах некоторой расчётной сетки.

2. Аналитическое представление подынтегральной функции известно, но её первообразная не выражается через аналитические функции. Например, .

(3.1)

В этих двух случаях невозможно вычисление интеграла по формуле Ньютона — Лейбница. Также возможна ситуация, когда вид первообразной настолько сложен, что быстрее вычислить значение интеграла численным методом.

.1 Метод прямоугольников

Пусть требуется определить значение интеграла функции на [ a , b ] отрезке. Этот отрезок делится точками x 0 , x 1 , …., x n -1 , x n на n равных отрезков длиной . Обозначим через y 0 , y 1 , …., y n -1 , y n значение функции f ( x ) в точках x 0 , x 1 , …., x n -1 , x n

Далее составляем суммы . Каждая из сумм — интегральная сумма для f ( x ) на [ a , b ] и поэтому приближённо выражает интеграл.

Если заданная функция — положительная и возрастающая, то эта формула выражает площадь ступенчатой фигуры, составленной из «входящих» прямоугольников, также называемая формулой левых прямоугольников, а формула

(3.2)

выражает площадь ступенчатой фигуры, состоящей из «выходящих» прямоугольников, также называемая формулой правых прямоугольников. Чем меньше длина отрезков, на которые делится отрезок [ a , b ], тем точнее значение, вычисляемое по этой формуле, искомого интеграла.

Очевидно, стоит рассчитывать на большую точность, если брать в качестве опорной точки для нахождения высоты точку посередине промежутка. В результате получаем формулу средних прямоугольников:

(3.3)

где

Учитывая априорно большую точность последней формулы при том же объёме и характере вычислений её называют формулой прямоугольников.

3.2 Метод трапеций

Если функцию на каждом из частичных отрезков аппроксимировать прямой, проходящей через конечные значения, то получим метод трапеций.

Площадь трапеции на каждом отрезке:

(3.4)

Погрешность аппроксимации на каждом отрезке:

(3.5)

где и

Полная формула трапеций в случае деления всего промежутка интегрирования на отрезки одинаковой длины h :

(3.6)

где

Погрешность формулы трапеций:

(3.7)

где и

3.3 Метод парабол

Использовав три точки отрезка интегрирования, можно заменить подынтегральную функцию параболой. Обычно в качестве таких точек используют концы отрезка и его среднюю точку. В этом случае формула имеет очень простой вид

(3.8)

Если разбить интервал интегрирования на 2 N равных частей, то имеем

(3.9)

где .

Это более совершенный способ — график подынтегральной функции приближается не ломаной линией, а маленькими параболками. Сколько промежуточных отрезков — столько и маленьких парабол. Если взять те же три отрезка, то метод Симпсона даст ещё более точное приближение, чем метод прямоугольников или метод трапеций.

Задача на вычисление определенного интеграла по формуле Симпсона — самая популярное задание на практике.

Пусть функция y = f(x) непрерывна на отрезке [a; b] и нам требуется вычислить определенный интеграл.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид: (24)

где: — длина каждого из маленьких отрезков или шаг;

Детализируя это нагромождение, разберу формулу подробнее:

— сумма первого и последнего значения подынтегральной функции;

— сумма членов, с чётными индексами умножаемая на 2.

— сумма членов с нечётными индексами умножается на 4.

На основании полученных данных строим график (рисунок 2), который показывает погрешность:

Рисунок 2 — График подынтегральной функции приближенный к самой функции.

Метод левых прямоугольников

Метод правых прямоугольников

4. Приближенное решение обыкновенных дифференциальных уравнений первого порядка. Задача Коши

Многие задачи науки и техники сводятся к решению обыкновенных дифференциальных уравнений (ОДУ). ОДУ называются такие уравнения, которые содержат одну или несколько производных от искомой функции. В общем виде ОДУ можно записать следующим образом: , где x — независимая переменная, y i — i-ая производная от искомой функции. n — порядок уравнения. Общее решение ОДУ n-го порядка содержит n произвольных постоянных c 1 . c n ,т.е. общее решение имеет вид y = φ ( x , c 1 , …, c n ).

Для выделения единственного решения необходимо задать n дополнительных условий. В зависимости от способа задания дополнительных условий существуют два различных типа задач: задача Коши и краевая задача. Если дополнительные условия задаются в одной точке, то такая задача называется задачей Коши. Дополнительные условия в задаче Коши называются начальными условиями. Если же дополнительные условия задаются в более чем одной точке, т.е. при различных значениях независимой переменной, то такая задача называется краевой. Сами дополнительные условия называются краевыми или граничными.

Ясно, что при n=1 можно говорить только о задачи Коши.

Примеры постановки задачи Коши:

(4.1)

(4.2)

Примеры краевых задач:

(4.3)

(4.4)

Решить такие задачи аналитически удается лишь для некоторых специальных типов уравнений.

4.1 Численные методы решения задачи Коши для ОДУ первого порядка

Постановка задачи. Найти решение ОДУ первого порядка на отрезке [ x 0 , x n ] при условии y ( x 0 )= y 0 .

При нахождении приближенного решения будем считать, что вычисления проводятся с расчетным шагом , расчетными узлами служат точки xi = x 0+ ih , ( i =0,1,…, n ) промежутка [x 0 , x n ].

Целью является построение таблицы.

Т.е. ищутся приближенные значения y в узлах сетки.

Интегрируя уравнение на отрезке [ x i , x i +1 ]получим

(4.5)

Вполне естественным (но не единственным) путем получения численного решения является замена в нем интеграла какой-либо квадратурной формулой численного интегрирования. Если воспользоваться простейшей формулой левых прямоугольников первого порядка

(4.6)

то получим явную формулу Эйлера:

(4.7)

Зная , находим , затем т.д..

4.2 Геометрическая интерпретация метода Эйлера

Пользуясь тем, что в точке x 0 известно решение y(x 0 ) = y 0 и значение его производной , можно записать уравнение касательной к графику искомой функции y = y ( x ) в точке ( x 0 , y 0 ):

При достаточно малом шаге h ордината , этой касательной, полученная подстановкой в правую часть значения , должна мало отличаться от ординаты y(x 1 ) решения y(x) задачи Коши. Следовательно, точка ( x 1, y 1) пересечения касательной с прямой x = x 1 может быть приближенно принята за новую начальную точку. Через эту точку снова проведем прямую , которая приближенно отражает поведение касательной к y = y ( x ) в точке ( x 1, y ( x 1)). Подставляя сюда x 2= x 1+ h (т.е. пересечение с прямой x = x 2 ), получим приближенное значение y(x) в точке x 2 : , и т.д. В итоге для i-й точки получим формулу Эйлера.

Рисунок 7. Метод Эйлера

Явный метод Эйлера имеет первый порядок точности или аппроксимации. Если использовать формулу правых прямоугольников:

то придем к методу

(4.8)

Этот метод называют неявным методом Эйлера, поскольку для вычисления неизвестного значения по известному значению требуется решать уравнение, в общем случае нелинейное.

Неявный метод Эйлера имеет первый порядок точности или аппроксимации.

Модифицированный метод Эйлера : в данном методе вычисление y i +1 состоит из двух этапов:

(4.9)

(4.10)

Данная схема называется еще методом предиктор — корректор (предсказывающее — исправляющее). На первом этапе приближенное значение предсказывается с невысокой точностью (h), а на втором этапе это предсказание исправляется, так что результирующее значение имеет второй порядок точности.

Заключение

В ходе выполнения курсовой работы были изучены следующие методы решения профессиональных задач: решение нелинейных уравнений, метод касательных (Ньютона), интерполирование функции, полиномы Ньютона, численное интегрирование и приближенное решение обыкновенных дифференциальных уравнений первого порядка, задача Коши. На примерах было показано, что с помощью данных методов можно достаточно быстро решить многие профессиональные задачи с указанной степенью точности. При этом использование программы MathCad, также существенно облегчает проводимые вычисления.

Список использованных источников

1) Бахвалов Н.С. Численные методы — М.: Наука, 2006. — 632 с.

) Березин Н.С., Жидков Н.П. Методы вычислений. — Т.1. — М.: Наука, 2008. — 464 с.

) Васильев Ф.П. Численные методы решения экстремальных задач: Учебное пособие для вузов — 2-е изд., перераб. и доп. -М.: Наука, Гл. ред. физ.-мат. лит, 2005. -550 с.

2) Демидович Б.Н., Марон И.А. Основы вычислительной математики. -М.: Наука, 2012.- 664 с.

3) Самарский А.А. Введение в численные методы. — 3-е изд., перераб. — М.: Наука, 2011. — 239 с.

Краткое описание документа:

В ходе выполнения курсовой работы были изучены следующие методы решения профессиональных задач: решение нелинейных уравнений, метод касательных (Ньютона), интерполирование функции, полиномы Ньютона, численное интегрирование и приближенное решение обыкновенных дифференциальных уравнений первого порядка, задача Коши. На примерах было показано, что с помощью данных методов можно достаточно быстро решить многие профессиональные задачи с указанной степенью точности. При этом использование программы MathCad, также существенно облегчает проводимые вычисления.


источники:

http://www.bestreferat.ru/referat-197208.html

http://infourok.ru/kursovaya-rabota-na-temu-chislennye-metody-resheniya-uravnenij-4137364.html

Название: Решение дифференциальных уравнений. Обзор
Раздел: Рефераты по информатике, программированию
Тип: курсовая работа Добавлен 01:47:37 18 января 2011 Похожие работы
Просмотров: 4852 Комментариев: 21 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать