Численное решение нелинейного уравнения f x 0 проводится

Поиск по сайту

В прошлой статье мы говорили о решении специальных типов уравнений с помощью точных методов. Сегодня же поговорим о приближенных (численных) методах решения уравнений вида f(x)=0.

В листингах программ есть записи вида:

которые соответствуют процедуре получения значения функции, записанной в виде математического выражения в точке x. Фактически, функция Function реализует парсер функций.

Метод половинного деления

Другие названия: метод бисекции (bisection method), метод дихотомии.

Метод половинного деления – простейший численный метод для решения нелинейных уравнений вида f(x)=0, где функция f(x) должна быть непрерывной на искомом отрезке [xL; xR], причем функция должна принимать значения разных знаков, т.е. должно выполняться условие:

С непрерывности функции f(x) следует, что на интервале [xL; xR] существует, по крайней мере, один корень уравнения (если их несколько, то метод находит один из них).

Выберем точку – середину интервала:

Если f(xM) = 0, то корень найден. Если f(x)≠0, то разобьем этот интервал на два: [xL; xM] и [xM; xR].

Теперь найдем новый интервал, на котором функция изменяет знак. Повторим описанную процедуру до тех пор, пока не получим требуемую точность или превысим максимально допустимое количество итераций.

Геометрическая интерпретация метода:

Реализация метода на C#:

Метод секущих

Другие названия: метод хорд (secant method);

Метод хорд – еще один численный метод для решения нелинейных уравнений вида f(x)=0, где функция f(x) должна быть непрерывной на искомом отрезке [x0; x1], причем функция должна принимать значения разных знаков, т.е. должно выполняться условие:

Последующие приближения находят по формуле:

Геометрическая интерпретация метода:

Реализация метода на C#:

Метод простых итераций

Уравнение f(x)=0 с помощью некоторых преобразований необходимо переписать в виде x=φ(x).

Уравнение f(x)=0 эквивалентно уравнению x=x+λ(x)f(x) для любой функции λ(x)≠0. Возьмем φ(x)=x-λ(x)f(x) и выберем функцию (или переменную) λ(x)≠0 так, чтобы функция φ(x) удовлетворяла необходимым условиям.

Для нахождения корня уравнения x=φ(x) выберем некоторое начальное значение x0, которое должно находиться как можно ближе к корню уравнения. Дальше с помощью итерационной формулы xn+1=φ(xn) будем находить каждое следующее приближение корня уравнения.

Пример: x 2 -5x+6=0

Преобразования в вид x=φ(x):

Реализация метода на C#:

Метод Вегштейна

Метод Вегштейна является модификацией метода секущих, однако его можно назвать и улучшенным методом простой итерации, преобразовав вычислительную формулу к виду:

Это двухшаговый метод, и для начала вычислений необходимо задать 2 приближения xa и xb.

Реализация метода на C#:

public static double Wegstein(string expression, double xa, double xb, double epsilon = 0.00001) < double x = 0.0;

Метод Ньютона

Если — начальное приближение корня уравнения f(x) = 0, то последовательные приближения находят по формуле:

Если f’ и непрерывны и сохраняют определенные знаки на отрезке , а f(a)f(b)

Решение нелинейных уравнений

Уравнения, в которых содержатся неизвестные функции, произведенные в степень больше единицы, называются нелинейными.
Например, y=ax+b – линейное уравнение, х^3 – 0,2x^2 + 0,5x + 1,5 = 0 – нелинейное (в общем виде записывается как F(x)=0).

Системой нелинейных уравнений считается одновременное решение нескольких нелинейных уравнений с одной или несколькими переменными.

Существует множество методов решения нелинейных уравнений и систем нелинейных уравнений, которые принято относить в 3 группы: численные, графические и аналитические. Аналитические методы позволяют определить точные значения решения уравнений. Графические методы наименее точны, но позволяют в сложных уравнениях определить наиболее приближенные значения, с которых в дальнейшем можно начинать находить более точные решения уравнений. Численное решение нелинейных уравнений предполагает прохождения двух этапов: отделение корня и его уточнение до определенно заданной точности.
Отделение корней осуществляется различными способами: графически, при помощи различных специализированных компьютерных программ и др.

Рассмотрим несколько методов уточнения корней с определенно заданной точностью.

Методы численного решения нелинейных уравнений

Метод половинного деления.

Суть метода половинного деления заключается в делении интервала [a,b] пополам (с=(a+b)/2) и отбрасывании той части интервала, в которой отсутствует корень, т.е. условие F(a)xF(b)

Рис.1. Использование метода половинного деления при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0, то начала отрезка a переносится в x (a=x), иначе, конец отрезка b переносится в точку x (b=x). Полученный отрезок делим опять пополам и т.д. Весь произведенный расчет отражен ниже в таблице.

Рис.2. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

При использовании метода хорд, задается отрезок [a,b], в котором есть только один корень с установленной точностью e. Через точки в отрезке a и b, которые имеют координаты (x(F(a);y(F(b)), проводится линия (хорда). Далее определяются точки пересечения этой линии с осью абсцисс (точка z).
Если F(a)xF(z)

Рис.3. Использование метода хорд при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0;

Определим вторую производную F’’(x) = 6x-0,4.

F’’(-1)=-6,4 0 соблюдается, поэтому для определения корня уравнения воспользуемся формулой:


, где x0=b, F(a)=F(-1)=-0,2

Весь произведенный расчет отражен ниже в таблице.

Рис.4. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Метод касательных (Ньютона)

Данный метод основывается на построении касательных к графику, которые проводятся на одном из концов интервала [a,b]. В точке пересечения с осью X (z1) строится новая касательная. Данная процедура продолжается до тех пор, пока полученное значение не будет сравним с нужным параметром точности e (F(zi)

Рис.5. Использование метода касательных (Ньютона) при решении нелинейных уравнений.

Рассмотрим пример. Необходимо решить уравнение х^3 – 0,2x^2 + 0,5x + 1,5 = 0 с точностью до e 0 выполняется, поэтому расчеты производим по формуле:

Весь произведенный расчет отражен ниже в таблице.

Рис.6. Таблица результатов вычислений

В результате вычислений получаем значение с учетом требуемой точности, равной x=-0,946

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Численные методы решения нелинейных уравнений

Если законы функционирования модели нелинейны, а моделируемые процесс или система обладают одной степенью свободы (т.е. имеют одну независимую переменную), то такая модель, как правило, описывается одним нелинейным уравнением.

Необходимость отыскания корней нелинейных уравнений встречается в расчетах систем автоматического управления и регулирования, собственных колебаний машин и конструкций, в задачах кинематического анализа и синтеза, плоских и пространственных механизмов и других задачах.

Дано нелинейное уравнение:

( 4.1)

Необходимо решить это уравнение, т. е. найти его корень .

Если функция имеет вид многочлена степени m,

где ai — коэффициенты многочлена, , то уравнение f(x)=0 имеет m корней (рис. 4.2).

Если функция f(x) включает в себя тригонометрические или экспоненциальные функции от некоторого аргумента x , то уравнение (4.1) называется трансцендентным уравнением .

Такие уравнения обычно имеют бесконечное множество решений.

Как известно, не всякое уравнение может быть решено точно. В первую очередь это относится к большинству трансцендентных уравнений .

Доказано также, что нельзя построить формулу, по которой можно было бы решать произвольные алгебраические уравнения степени, выше четвертой.

Однако точное решение уравнения не всегда является необходимым. Задачу отыскания корней уравнения можно считать практически решенной, если мы сумеем найти корни уравнения с заданной степенью точности . Для этого используются приближенные (численные) методы решения.

Большинство употребляющихся приближенных методов решения уравнений являются, по существу, способами уточнения корней. Для их применения необходимо знание интервала изоляции [a,b] , в котором лежит уточняемый корень уравнения (рис. 4.3).

Процесс определения интервала изоляции [a,b] , содержащего только один из корней уравнения, называется отделением этого корня.

Процесс отделения корней проводят исходя из физического смысла прикладной задачи, графически, с помощью таблиц значений функции f(x) или при помощи специальной программы отделения корней. Процедура отделения корней основана на известном свойстве непрерывных функций: если функция непрерывна на замкнутом интервале [a,b] и на его концах имеет различные знаки, т.е. f(a)f(b) , то между точками a и b имеется хотя бы один корень уравнения (1). Если при этом знак функции f'(x) на отрезке [a,b] не меняется, то корень является единственным на этом отрезке.

Процесс определения корней алгебраических и трансцендентных уравнений состоит из 2 этапов:

  1. отделение корней, — т.е. определение интервалов изоляции [a,b] , внутри которого лежит каждый корень уравнения;
  2. уточнение корней, — т.е. сужение интервала [a,b] до величины равной заданной степени точности .

Для алгебраических и трансцендентных уравнений пригодны одни и те же методы уточнения приближенных значений действительных корней:


источники:

http://reshit.ru/Reshenie-nelineynyh-uravneniy

http://intuit.ru/studies/courses/2260/156/lecture/27239