Численное решение уравнение шредингера уравнения

Дипломная работа: Численное решение уравнения Шредингера средствами Java

Численное решение уравнения Шредингера средствами Java

1. Уравнение Шредингера и физический смысл его решений

1.1 Волновое уравнение Шредингера

1.2 Волновые функции в импульсном представлении

2. Методы численного решения нестационарного уравнения Шредингера

2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера

2.2 Преобразование Фурье

2.3 Метод аппроксимации оператора эволюции (split-operatormethod)

3. Методы численного решения стационарного уравнения Шредингера

3.1 Метод Нумерова

4. Программная реализация численных методов средствами Java

4.1 Обзор языка программирования Java

4.2 Элементы программирования Java 2 используемые в работе

Список использованных источников

Известно, что курс квантовой механики является одним из сложных для восприятия. Это связано не столько с новым и «необычным» математическим аппаратом, сколько прежде всего с трудностью осознания революционных, с позиции классической физики, идей, лежащих в основе квантовой механики и сложностью интерпретации результатов.

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

1. Уравнение Шредингера и физический смысл его решений

1.1 Волновое уравнение Шредингера

Одним из основных уравнений квантовой механики является уравнение Шредингера, определяющее изменение состояний квантовых систем с течением времени. Оно записывается в виде

(1.1)

где Н — оператор Гамильтона системы, совпадающий с оператором энергии, если он не зависит от времени. Вид оператора определяется свойствами системы. Для нерелятивистского движения частицы массы в потенциальном поле U(r) оператор действителен и представляется суммой операторов кинетической и потенциальной энергии частицы

(1.2)

Если частица движется в электромагнитном поле, то оператор Гамильтона будет комплексным.

Хотя уравнение (1.1) является уравнением первого порядка по времени, вследствие наличия мнимой единицы оно имеет и периодические решения. Поэтому уравнение Шредингера (1.1) часто называют волновым уравнением Шредингера, а его решение называют волновой функцией, зависящей от времени. Уравнение (1.1) при известном виде оператора Н позволяет определить значение волновой функции в любой последующий момент времени, если известно это значение в начальный момент времени. Таким образом, волновое уравнение Шредингера выражает принцип причинности в квантовой механике.

Волновое уравнение Шредингера может быть получено на основании следующих формальных соображений. В классической механике известно, что если энергия задана как функция координат и импульсов

H,(1.3)

то переход к классическому уравнению Гамильтона—Якоби для функции действия S

H

можно получить из (1.3) формальным преобразованием

,

Таким же образом уравнение (1.1) получается из (1.3) при переходе от (1.3) к операторному уравнению путем формального преобразования

, (1.4)

если (1.3) не содержит произведений координат и импульсов, либо содержит такие их произведения, которые после перехода к операторам (1.4) коммутируют между собой. Приравнивая после этого преобразования результаты действия на функцию операторов правой и левой частей полученного операторного равенства, приходим к волновому уравнению (1.1). Не следует, однако, принимать эти формальные преобразования как вывод уравнения Шредингера. Уравнение Шредингера является обобщением опытных данных. Оно не выводится в квантовой механике, так же как не выводятся уравнения Максвелла в электродинамике, принцип наименьшего действия (или уравнения Ньютона) в классической механике.

Легко убедиться, что уравнение (1.1) удовлетворяется при волновой функцией

,

описывающей свободное движение частицы с определенным значением импульса. В общем случае справедливость уравнения (1.1) доказывается согласием с опытом всех выводов, полученных с помощью этого уравнения.

Покажем, что из уравнения (1.1) следует важное равенство

,(1.5)

указывающее на сохранение нормировки волновой функции с течением времени. Умножим слева (1.1) на функцию *, a уравнение, комплексно сопряженное к (1.1), на функцию и вычтем из первого полученного уравнения второе; тогда находим

,(1.6)

Интегрируя это соотношение по всем значениям переменных и учитывая самосопряженность оператора , получаем (1.5).

Если в соотношение (1.6) подставить явное выражение оператора Гамильтона (1.2) для движения частицы в потенциальном поле, то приходим к дифференциальному уравнению (уравнение непрерывности)

, (1.7)

где является плотностью вероятности, а вектор

(1.8)

можно назвать вектором плотности тока вероятности.

Комплексную волновую функцию всегда можно представить в виде

где и — действительные функции времени и координат. Таким образом, плотность вероятности

,

а плотность тока вероятности

.(1.9)

Из (1.9) следует, что j = 0 для всех функций , у которых функция Ф не зависит от координат. В частности, j= 0 для всех действительных функций .

Решения уравнения Шредингера (1.1) в общем случае изображаются комплексными функциями. Использование комплексных функций весьма удобно, хотя и не необходимо. Вместо одной комплексной функции состояние системы можно описать двумя вещественными функциями и , удовлетворяющими двум связанным уравнениям. Например, если оператор Н — вещественный, то, подставив в (1.1) функцию и отделив вещественную и мнимую части, получим систему двух уравнений

, ,

при этом плотность вероятности и плотность тока вероятности примут вид

, . [1]

1.2 Волновые функции в импульсном представлении.

Фурье-образ волновой функции характеризует распределение импульсов в квантовом состоянии . Требуется вывести интегральное уравнение для с Фурье-образом потенциала в качестве ядра.

Решение. Между функциями и имеются два взаимно обратных соотношения.

(2.1)

(2.2)

Если соотношение (2.1) использовать в качестве определения и применить к нему операцию , то с учетом определения 3-мерной -функции,

,

в результате, как нетрудно убедиться, получится обратное соотношение (2.2). Аналогичные соображения использованы ниже при выводе соотношения (2.8).

,(2.3)

тогда для Фурье-образа потенциала будем иметь

(2.4)

Предполагая, что волновая функция удовлетворяет уравнению Шредингера

(2.5)

Подставляя сюда вместо и соответственно выражения (2.1) и (2.3), получаем

В двойном интеграле перейдем от интегрирования по переменной к интегрированию по переменной , а затем эту новую переменную вновь обозначим посредством . Интеграл по обращается в нуль при любом значении лишь в том случае, когда само подынтегральное выражение равно нулю, но тогда

.(2.6)

Это и есть искомое интегральное уравнение с Фурье-образом потенциала в качестве ядра. Конечно, интегральное уравнение (2.6) можно получить только при условии, что Фурье-образ потенциала (2.4) существует; для этого, например, потенциал должен убывать на больших расстояниях по меньшей мере как , где .

Необходимо отметить, что из условия нормировки

(2.7)

.(2.8)

Это можно показать, подставив в (2.7) выражение (2.1) для функции :

.

Если здесь сначала выполнить интегрирование по , то мы без труда получим соотношение (2.8).[2]

2. Методы численного решения нестационарного уравнения Шредингера

2.1 Метод конечных разностей для одномерного нестационарного уравнения Шредингера

В большинстве учебных пособий по квантовой механике изложение материала основано, как правило, на анализе решений стационарного уравнений Шредингера. Однако стационарный подход не позволяет непосредственно сопоставить результаты решения квантовомеханической задачи с аналогичными классическими результатами. К тому же многие процессы, изучаемые в курсе квантовой механики (как, например, прохождение частицы через потенциальный барьер, распад квазистационарного состояния и др.) носят в принципе нестационарный характер и, следовательно, могут быть поняты в полном объеме лишь на основе решений нестационарного уравнения Шредингера. Поскольку число аналитически решаемых задач невелико, использование компьютера в процессе изучения квантовой механики является особенно актуальным.

Нестационарное уравнение Шредингера, определяющее эволюцию волновой функции во времени, представляет собой дифференциальное уравнение первого порядка по времени и имеет следующий вид

(3.1)

где оператор полной энергии системы. Для одномерного случая

Общее решение уравнения (1) формально можно записать в виде

(3.2)

где — волновая функция системы в момент времени

— оператор эволюции (пропагатор).

Особенностью выражения (3.2) является то, что в показателе экспоненты стоит оператор. Определить действие оператора эволюции на волновую функцию можно, например, разложив ее по собственным функциям оператора . Так, в случае дискретного спектра выражение для волновой функции в произвольный момент времени имеет вид

(3.3)

Аналогичное выражение может быть получено и для непрерывного спектра.

Разложение (3.3) удобно использовать в тех случаях, когда решения стационарного уравнения Шредингера для конкретной задачи являются известными. Но к сожалению круг таких задач очень ограничен. Большинство современных численных методов решения уравнения (3.1) основаны на использовании различных аппроксимаций оператора эволюции . Так, например, разложение оператора эволюции в ряд Тейлора с сохранением первых двух членов дает следующую схему

,(3.4)

здесь номер шага по времени. Существенным недостатком этого алгоритма является необходимость знать волновую функцию в моменты и . Кроме того, для оценки действия оператора на функцию нужно вычислять вторую производную по координате. Простейшая конечно-разностная аппроксимация второй производной

(3.5)

дает неудовлетворительный результат. (См. программный блок 1)[3]

2.2 Преобразование Фурье

Начнем с комплексного ряда Фурье

Рассмотрим случай L.Тогда сумму можно преобразовать в интеграл следующим образом: определим и =g(y).Так как возрастает каждый раз на единицу ,то

где .

Таким образом, полученные выше формулы приобретают вид

(4.1)

Величина называется преобразованием Фурье от и наоборот. Положение множителя довольно произвольно; часто величины и определяют более симметрично:

(4.2)

Выражения (4.1) или (4.2) можно скомбинировать следующим образом:

(4.3)

Равенство (4.3) удовлетворяется для любой функции это позволяет сделать интересный вывод об интеграле как функции . Он равен нулю всюду, кроме точки , а интеграл от него по любому промежутку ,включающему , равен единице, т.е. эта функция имеет бесконечно высокий и бесконечно узкий пик в точке .

Обычно определяют (Дирака) следующим образом:

(4.4)

Из этих уравнений следует, что

(4.5)

для любой функции , в случае если интервал интегрирования включает точку .

Проделанные выше операции над интегралами Фурье показали, что

(4.6)

Это интегральное представление функции.

Дельта – функцию можно использовать, чтобы выразить важный интеграл через преобразование Фурье (4.1) от :

(4.7)

Это равенство называется теоремой Парсеваля. Она полезна для понимания физической интерпретации преобразования Фурье для , если известен физический смысл .

Предположим, что четная функция. Тогда

Заметим теперь, что — также четная функция. Поэтому

(4.9)

Функция и ,определенные теперь только для положительных и , называются косинус — преобразованиями Фурье по отношению друг к другу.

Рассматривая преобразования Фурье нечетной функции, получаем аналогичные соотношения Фурье между синус — преобразованиями Фурье:

(4.10)

Если нужно, можно симметризовать выражения, поставив множитель перед каждым интегралом (4.7)-(4.10). [4]

2.3 Метод аппроксимации оператора эволюции (split-operator method)

Рассмотрим более подробно другой метод аппроксимации оператора эволюции, в котором отсутствуют недостатки, свойственные рассмотренной выше схеме. Здесь оператор эволюции аппроксимируется симметричным расщеплением оператора кинетической энергии (split-operator method)

(5.1)

Основная погрешность данной аппроксимации связана с некоммутативностью операторов кинетической и потенциальной энергии. Вычисление действия такого оператора на волновую функцию включает следующие шаги. Преобразованная в импульсное представление волновая функция умножается на и преобразуется обратно в координатное представление, где умножается на . Полученный результат снова преобразуется в импульсное представление, умножается на преобразуется обратно в координатное представление. На этом один шаг по времени завершается. Переход от одного представления к

другому осуществляется посредством преобразования Фурье.

В данной курсовой работе используется Гауссов волновой пакет вида , а также ступенчатый потенциал. Сначала преобразуем нашу волновую функцию из координатного представления в импульсное

,(5.2)

затем умножим полученный результат на . На этом завершается половина временного шага. Полученный результат снова преобразуется в координатное представление

(5.3)

и умножается на . После чего вновь преобразуется в импульсное представление

(5.4)

и умножается на . Завершается шаг по времени еще одним преобразованием полученной волновой функции в координатное представление

.(5.5)

Один шаг по времени завершен.

В данной работе этот метод реализован в среде Java, ниже приведены программный блок и полученные графики поведения волновой функции в различные моменты времени.

Важная особенность этого метода заключается в том, что действие каждого из операторов оценивается в их соответствующем локальном представлении.

С методической точки зрения ценность нестационарного подхода состоит в существенно большей наглядности и информативности результатов, по сравнению с результатами решения стационарного уравнения Шредингера. Круг задач, которые могут быть рассмотрены на основе решения нестационарного уравнения Шредингера очень разнообразен.

Для иллюстрации вышесказанного рассмотрим задачу о движении частицы в поле потенциального барьера. Хотя стационарный подход позволяет определить коэффициенты прохождения и отражения частицы он, однако, не позволяет рассмотреть реальную пространственно-временную картину движения частицы через потенциальный барьер, которая является существенно нестационарной. Рассмотрение задачи на основе решения нестационарного уравнения Шредингера позволяет не только сопоставить классический и квантовый подход к проблеме, но и получить ответы на ряд вопросов, представляющих значительный практический интерес (например, длительность процесса туннелирования, скорости прошедших и отраженных частиц и т.д.). Ниже мы приводим результаты решения нестационарного уравнения Шредингера для данной задачи. Начальное состояние частицы задано в виде пакета гауссовой формы, движущегося в направлении области действия потенциала. На графиках представлена временная картина туннелирования такого пакета через потенциальный барьер прямоугольной формы в виде «мгновенных снимков» волнового пакета в разные моменты времени. Как видно, при попадании пакета в область действия потенциала его форма нарушается в результате формирования отраженного волнового пакета и его интерференции с падающим на препятствие пакетом. Через некоторое время формируются два пакета: отраженный и прошедший через препятствие. Движение падающего и отраженного пакета можно сопоставить с движение классической частицы, положение которой совпадает с максимумом в распределении вероятности. В случае протяженного потенциала отраженный пакет «отстает» от отраженной от барьера классической частицы. Физически это связано с тем, что пакет частично проникает в классически запрещенную область, в то время как в классике отражение происходит строго в точке скачка потенциала. Образование же прошедшего пакета представляет собой сугубо квантовый эффект не имеющий классических аналогий.[3]

3. Методы численного решения стационарного уравнения Шредингера

3.1 Метод Нумерова

Рассмотрим решения одномерного стационарного уравнения Шредингера (3.1) частицы, движущейся в одномерном потенциале U(x).

(3.1)

Будем при этом полагать, что его форма имеет потенциала, представленного на рис.1: в точках xmin , xmax потенциал становится бесконечно большим. Это означает, что в точках xmin , xmax расположены вертикальные стенки, а между ними находится яма конечной глубины.

Для удобства дальнейшего решения запишем уравнение Шредингера (3.1) в виде:

(3.2)

(3.3)

С математической точки зрения задача состоит в отыскании собственных функций оператора, отвечающим граничным условиям

(3.4)

и соответствующих собственных значений энергии E.

Так как при и при , , то можно ожидать, что собственному решению данной задачи соответствует собственная функция, осциллирующая в классически разрешенной области движения и экспоненциально затухающим в запрещенных областях, где ,, при , . Так как все состояния частицы в потенциальной яме оказываются связанными (т.е. локализованными в конечной области пространства), спектр энергий является дискретным. Частица, находящаяся в потенциальной яме конечных размеров при , при , имеет дискретный спектр при и непрерывный спектр при .

Традиционно для решении задачи о нахождении собственных значений уравнения Шредингера используется метод пристрелки. Идея метода пристрелки состоит в следующем. Допустим, в качестве искомого значения ищется одно из связанных состояний, поэтому в качестве пробного начального значения энергии выбираем отрицательное собственное значение. Проинтегрируем уравнение Шредингера каким-либо известным численным методом на интервале . По ходу интегрирования от в сторону больших значений сначала вычисляется решение , экспоненциально нарастающее в пределах классически запрещенной области. После перехода через точку поворота , ограничивающую слева область движения разрешенную классической механикой, решение уравнения становится осциллирующим. Если продолжить интегрирование далее за правую точку поворота , то решение становится численно неустойчивым. Это обусловлено тем, что даже при точном выборе собственного значения, для которого выполняется условие , решение в области всегда может содержать некоторую примесь экспоненциально растущего решения, не имеющего физического содержания. Отмеченное обстоятельство является общим правилом: интегрирование по направлению вовнутрь области, запрещенной классической механикой, будет неточным. Следовательно, для каждого значения энергии более разумно вычислить еще одно решение , интегрируя уравнение (3.1) от в сторону уменьшения. Критерием совпадения данного значения энергии является совпадение значений функций и в некоторой промежуточной точке . Обычно в качестве данной точки выбирают левую точку поворота . Так как функции , являются решениями однородного уравнения (3.1), их всегда можно нормировать так, чтобы в точке выполнялось условие . Помимо совпадения значений функций в точке для обеспечения гладкости сшивки решений потребуем совпадения значений их производных

(3.5)

Используя в (17) простейшие левую и правую конечно-разностные аппроксимации производных функций , в точке , находим эквивалентное условие гладкости сшивки решений:

(3.6)

Число является масштабирующим множителем, который выбирается из условия Если точки поворота отсутствуют, т.е. E>0, то в качестве можно выбрать любую точку отрезка . Для потенциалов, имеющих более двух точек поворота и, соответственно, три или более однородных решений, общее решение получается сшивкой отдельных кусков. В описанном ниже документе, для интегрирования дифференциального уравнения второго порядка мы используем метод Нумерова. Для получения вычислительной схемы аппроксимируем вторую производную трехточечной разностной формулой:

(3.7)

Из уравнения (3.1) имеем

(3.8)

Подставив (3.7) в (3.8) и перегруппировав члены, получаем

(3.9)

Разрешив (3.9) относительно или , найдем рекуррентные формулы для интегрирования уравнения (3.1) вперед или назад по c локальной погрешностью . Отметим, что погрешность данного метода оказывается на порядок выше, чем погрешность метода Рунге-Кутта четвертого порядка. Кроме того данный алгоритм более эффективен, потому что значение функции вычисляются только в узлах сетки. Для нахождения численного решения оказывается удобным провести обезразмеривание уравнения (3.1), используя в качестве единиц измерения расстояния — ширину потенциальной ямы, в качестве единиц измерения энергии — модуль минимального значения потенциала . В выбранных единицах измерения уравнение (3.1) имеет вид

(3.10)

(3.11)

Таким образом, вычислительный алгоритм для нахождения собственных функций и собственных значений уравнения Шредингера реализуется следующей последовательностью действий:

1. Задать выражение, описывающее безразмерный потенциал .

2. Задать значение .

3. Задать пространственную сетку, на которой проводится интегрирование уравнения (3.1).

4. Задать , .

5. Задать начальное значение энергии .

6. Задать конечное значение энергии .

7. Задать шаг изменения энергии .

8. Проинтегрировать уравнение (3.1) для значения энергии слева направо на отрезке .

9. Проинтегрировать уравнение (3.1) для значения энергии справа налево на отрезке .

10. Вычислить значения переменной для значения энергии .

11. Увеличить текущее значение энергии на : .

12. Проинтегрировать уравнение (3.1) для значения энергии слева направо на отрезке .

13. Проинтегрировать уравнение (3.1) для значения энергии справа налево на отрезке .

14. Вычислить значения переменной для значения энергии .

15. Сравнить знаки ,

16. Если и , увеличить текущее значение энергии на и повторить действия, описанные в пп. 8-17.

17. Если , уточнить методом линейной интерполяции.

18. Если , повторить действия, описанные в пп. 8-18.

19. Если , закончить вычисления.[5]

4. Программная реализация численных методов средствами Java

4.1 Обзор языка программирования Java

Java связан с C++, который является прямым потомком С. Многое в характере Java унаследовано от этих двух языков. От С Java получил его синтаксис. На многие из объектно-ориентированных свойств Java повлиял C++. Некоторые из определяющих характеристик Java происходят от его предшественников. Кроме того, создание Java глубоко внедрилось в процессы усовершенствования и адаптации, которые проявились в языках машинного программирования в течение последних трех десятилетий. Каждое новшество в проекте языка управлялось потребностью решить фундаментальную проблему, с которой не справились предшествующие языки. Java не является исключением.

Internet помог катапультировать Java на передний край программирования, aJava, в свою очередь, имел глубокое влияние на Internet. Этому есть простое объяснение: Java разворачивает вселенную объектов, которые могут свободно перемещаться в киберпространстве. В сети две очень широких категории объектов передаются между сервером и вашим персональным компьютером — пассивная информация и динамические, активные программы. Например, когда вы читаете вашу электронную почту, то рассматриваете пассивные данные. Даже, когда вы загружаете программу, ее код — это все еще только пассивные данные до тех пор, пока вы их не начнете выполнять. Однако на ваш компьютер может быть передан объект второго типа — динамическая, самовыполняющаяся программа. Такая программа — активный агент на компьютере клиента, все же инициализируется сервером. Например, сервер мог бы предоставить (клиенту) программу, чтобы должным образом отображать данные, посылаемые клиенту.

С толь же желательными, как и динамические, являются сетевые программы. Они также порождают серьезные проблемы в области защиты и мобильности. До. Java, киберпространство было эффективно закрыто для половины объектов, которые теперь живут там. Кроме того, Java имеет дело с захватывающе новой формой программ — апплетами.

Java можно использовать, чтобы создать два типа программ — приложения и апплеты. Приложение — это программа, которая выполняется на вашем компьютере с помощью его операционной системы. То есть, приложение, с озданное с помощью Java, более или менее подобно приложению, созданному с использованием С или C++. При создании приложения Java не намного отличается от любого другого машинного языка. Более важной является способность Java создавать апплеты. Апплет — это приложение, разработанное для передачи по Internet и выполняемое совместимым с JavaWeb-браузером. Апплет — это, фактически, крошечная программа Java, динамически загружаемая через сеть, подобная изображению, звуковому файлу, или видеоклипу. Важное отличие заключается в том, что апплет является интеллектуальной программой, а не просто мультипликацией (анимацией) или media-файлом. Другими словами, апплет — это программа, которая может реагировать на ввод пользователя и динамически изменять, а не просто выполнять ту же самую мультипликацию или звук много раз.

Многоплатформная среда Web предъявляет экстраординарные требования к программе, потому что та должна выполниться надежно в самых разнообразных системах. Поэтому способности создавать устойчивые программы был дан высокий приоритет в проекте Java. Чтобы обеспечить надежность, Java ограничивает вас в нескольких ключевых областях, вынуждая рано находить ошибки при разработке программы. В то же самое время, Java освобождает от необходимости волноваться относительно многих из наиболее общих причин ошибок программирования. Поскольку Java — язык со строгой типизацией, он проверяет ваш код во время компиляции. Однако он также проверяет ваш код и во время выполнения. В действительности, множество трудно прослеживаемых ошибок, которые часто обнаруживаются в трудно воспроизводимых ситуациях во временя выполнения, просто невозможно создать в Java. Знание того, что программа, которую вы написали, будет вести себя предсказуемым образом при разных условиях, является ключевым свойством Java.

Чтобы лучше понимать, насколько устойчив Java, рассмотрим две из главных причин отказа программы: ошибки управления памятью и неуправляемые исключительные состояния (т. е. ошибки во время выполнения). Управление памятью может быть трудной и утомительной задачей в традиционных средах программирования. Например, на C/C++ программист должен вручную распределять и освобождать всю динамическую память. Это иногда ведет к проблемам, потому что программисты или забывают освобождать память, которая была предварительно распределена, или, хуже, пытаются освободить некоторую память, которую другая часть их кода все еще использует. Java фактически устраняет эти проблемы, управляя распределением и освобождением памяти. (Фактически, освобождение полностью автоматическое, потому что Java обеспечивает сборку «мусора» для неиспользованных объектов.) Исключительные состояния в традиционных средах часто возникают в ситуациях типа деления на нуль или «файл, не найден», и они должны управляться неуклюжими и трудно читаемыми конструкциями. Java помогает и в этой области, обеспечивая объектно-ориентированную обработку особых ситуаций. В хорошо написанной Java-программе все ошибки времени выполнения могут — и должны — управляться вашей программой.

Java был спроектирован так, чтобы выполнить реальное требование — создавать интерактивные сетевые программы. Чтобы выполнить это, Java поддерживает многопоточное программирование, которое позволяет вам писать программы, выполняющие одновременно несколько операций. Исполняющая система Java подходит с изящным и все же искушенным решением к синхронизации мультипроцесса, что дает возможность создавать гладко работающие интерактивные системы. Удобный в работе подход Java к многопоточности позволяет вам поразмыслить над спецификой поведения вашей программы, а не заботиться о многозадачной подсистеме.

Программы Java несут в себе существенное количество информации времени выполнения, которая используется, чтобы проверять и разрешать доступ к объектам в период работы программы. Это дает возможность динамически связывать код в безопасной и целесообразной манере, и имеет решающее значение для устойчивости среды апплета, в которой маленькие фрагменты байт-кода могут динамически обновляться исполнительной системой.

Все компьютерные программы состоят из двух элементов: кода и данных. Любая программа может быть концептуально организована либо вокруг ее кода, либо вокруг ее данных. Иначе говоря, некоторые программы концентрируют свою запись вокруг того, «что делается с данными» 1 , а другие — вокруг того, «на что этот процесс влияет» 2 . Существуют две парадигмы (основополагающих подхода), которые управляют конструированием программ. Первый подход называет программу моделью, которая ориентирована на процесс (process-orientedmodel). При этом подходе программу определяют последовательности операторов ее кода. Модель, ориентированную на процесс, можно представлять как кодовое воздействие на данные (codeactingondata). Процедурные языки, такие как С, успешно эксплуатируют такую модель. Однако, при этом подходе возникают проблемы, когда возрастает размер и сложность программ. Второй подход, названный объектно-ориентированным программированием, был задуман для управления возрастающей сложностью программ. Объектно-ориентированное программирование организует программу вокруг своих данных (т. е. вокруг объектов) и набора хорошо определенных интерфейсов (взаимодействий) с этими данными. Объектно-ориентированную программу можно характеризовать как управляемый данными доступ к коду (datacontrollingaccesstocode). Как вы увидите далее, переключая управление на данные, можно получить некоторые организационные преимущества. Опыт показывает, что отсутствие стандартных базовых библиотек для языка С++ чрезвычайно затрудняет работу с ним. В силу того, что любое нетривиальное приложение требует наличия некоторого набора базовых классов, разработчикам приходится пользоваться различными несовместимыми между собой библиотеками или писать свой собственный вариант такого набора. Все это затрудняет как разработку, так и дальнейшую поддержку приложений, затрудняет стыковку приложений, написанных разными людьми. Полная система Java включает в себя готовый набор библиотек, который можно разбить на следующие пакеты:

· java.lang — базовый набор типов, отраженных в самом языке. Этот пакет обязательно входит в состав любого приложения. Содержит описания классов Object и Class, а также поддержку многопотоковости, исключительных ситуаций, оболочку для базовых типов, а также некоторые фундаментальные классы.

· java.io — потоки и файлы произвольного доступа. Аналог библиотеки стандартного ввода-вывода системы UNIX. Поддержка сетевого доступа (sockets, telnet, URL) содержится в пакете java.net.

· java.util — классы-контейнеры (Dictionary, HashTable, Stack) и некоторые другие утилиты. Кодирование и декодирование. Классы Date и Time.

· java.awt — Abstract Windowing Toolkit, архитектурно-независимый оконный интерфейс, позволяющий запускать интерактивные оконные Java-приложения на любой платформе. Содержит базовые компоненты интерфейса, такие как события, цвета, фонты, а также основные оконные элементы — кнопки, scrollbars и т.д.. [6]

4.2 Элементы программирования Java 2 используемые в работе

При реализации метода аппроксимации оператора эволюции средствами языка программирования Java 2, использовались основные элементы объектно-ориентированного программирования, позволяющие разбить программу на более мелкие структурные части, для дальнейшего совершенствования и настраивания ее под различные физические задачи. Использование технологии AWT позволило создать графический интерфейс, наиболее удобный и понятный различному кругу пользователей. В данной работе использовался модуль JSci.math предназначенный для проведения вычислений в специализированных физических и математических задачах. В качестве среды разработки данного программно приложения использовался Eclipse 3.2.

Анимированный апплет позволяет получить наглядное решение нестационарного уравнения Шредингера в различные моменты времени с различными потенциалами. Также выполненный апплет может быть размещен на Internet-сервере и являться частью jsp-странички, что позволит использовать результаты его вычислений различным пользователям сети Internet, используя Internet-браузер для просмотра данной странички.

Численное решение нелинейного уравнения Шредингера в радиально-симметричном случае Текст научной статьи по специальности « Физика»

Аннотация научной статьи по физике, автор научной работы — Дегтярев А. А., Деркач А. Е.

Для решения уравнения Шредингера, описывающего распространение электромагнитной волны в нелинейной среде, используется консервативная разностная схема с итерационным уточнением, которая имеет квадратичный порядок точности по направлению распространения волны и близкий к квадратичному по радиальной переменной. Результаты, полученные с помощью вычислительных экспериментов, полностью подтверждают теоретические исследования. Важной особенностью данного метода является возможность моделирования процесса распространения волны на расстояние порядка десятков метров в нелинейной среде.

Похожие темы научных работ по физике , автор научной работы — Дегтярев А. А., Деркач А. Е.

Текст научной работы на тему «Численное решение нелинейного уравнения Шредингера в радиально-симметричном случае»

ЧИСЛЕННОЕ РЕШЕНИЕ НЕЛИНЕЙНОГО УРАВНЕНИЯ ШРЕДИНГЕРА В РАДИАЛЬНО-СИММЕТРИЧНОМ СЛУЧАЕ

А.А. Дегтярев, А.Е Деркач.

Самарский государственный аэрокосмический университет

Для решения уравнения Шредингера, описывающего распространение электромагнитной волны в нелинейной среде, используется консервативная разностная схема с итерационным уточнением, которая имеет квадратичный порядок точности по направлению распространения волны и близкий к квадратичному по радиальной переменной. Результаты, полученные с помощью вычислительных экспериментов, полностью подтверждают теоретические исследования. Важной особенностью данного метода является возможность моделирования процесса распространения волны на расстояние порядка десятков метров в нелинейной среде.

Как известно [1], нелинейное уравнение Шредингера является частным случаем волнового уравнения в параболическом приближении и с учетом эффекта самовоздействия. Эффект самовоздействия проявляется при распространении оптического излучения в средах с кубичной нелинейностью (поляризация пропорциональна напряженности электрического поля в третьей степени).

С учетом этого эффекта уравнение Шредингера в радиально-симметричном случае запишется как [2]

dz Ikn, 0 Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2.1. Результаты экспериментальных исследований линейного уравнения

Пучок, описываемый формулой (6), является стационарным, так как и (г,= и (г,0)2, то есть распределение интенсивности в плоскости ОХУ не зависит от расстояния г. Это распределение изображено на рис. 1.

Рис. 1. Распределение интенсивности волны в линейной среде.

На рис. 2-3 приведены результаты численного решения линейного уравнения Шредингера на различных расстояниях от входа в среду.1

В расчетах были использованы следующие значения параметров: Я=50 мкм;

Х=0,63 мкм, причем Х=2л/к; П0=1.

Рис. 2. Распределение интенсивности волны на расстоянии Ь от входа в среду (Ь = 1м, пг = 1000, пг = 100).

Рис.3. Распределение интенсивности волны на расстоянии Ь от входа в среду (Ь = 10м, пг = 1000, пг = 100).

Как видно из приведенных графиков результат численного решения уравнения Шредингера полностью совпадает с результатом аналитического решения. Это подтверждает правильность выбора консервативной разностной схемы (5) для вычислительных экспериментов с уравнением Шредингера.

3.2. Численное решение нелинейного уравнения Шредингера

На рис.4-6 приведены результаты численного решения нелинейного уравнения Шредингера со

Х=0,63 мкм, причем Х=2л/к;

В дальнейшем использованы следующие обозначения: пг — количество интервалов разбиений по радиусу; пг — количество интервалов разбиений по оси 2. Белым цветом изображается график решения линейного уравнения (3), а серым цветом — график численного решения уравнения Шредингера (1)-(2).

пнл 2=0,001, причем пнл >0.

В работе [1] показано, что при пнл >0 происхо-пучка на расстоянии

от входа в нелинейную среду.

Самодефокусировка пучка На рис. 7-10 приведены результаты численного решения нелинейного уравнения Шредингера со следующими параметрами: R = 50 мкм;

X = 0,63 мкм, причем X=2n/k; п0=1;

пнл 2=0,001, причем пнл Не можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3.1. Результаты численного решения линейного уравнения Шредингера

Для вычислительных экспериментов выберем, например, моду Гаусса-Лагерра с номером s=10 Тогда из (18) и (14) получаем, что

Для того чтобы обеспечить выполнение граничного условия, выберем аргумент многочлена Лагерра, равный десятому нулю функции.

После подстановки (11) и (10) в (8) получаем

д2 X 4r dX 1 dX +

0 X = 0 Надоели баннеры? Вы всегда можете отключить рекламу.

Раздел волновой механики

ГЛАВА I. НЕМНОГО ИСТОРИИ.. 3

ГЛАВА II. ФИЗИЧЕСКИЙ СМЫСЛ.. 3

ГЛАВА III. СТАЦИОНАРНОЕ УРАВНЕНИЕ ШРЁДИНГЕРА И ЕГО ЧИСЛЕННОЕ РЕШЕНИЕ 3

ГЛАВА IV. ОБРАБОТКА РЕЗУЛЬТАТОВ.. 3

ГЛАВА V. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ.. 3

СПИСОК ЛИТЕРАТУРЫ. 3

ВВЕДЕНИЕ

Начало XX века – период появления и интенсивного развития квантовой механики, раздела волновой механики. Данный раздел физики устанавливает способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем (например, кристаллов) а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми в макроскопических опытах. В данном направлении трудились многие выдающиеся физики того времени: Макс Планк, Нильс Бор, Луи де Бройль, Вернер Гейзенберг, Макс Борн, Паскуаль Иордан и др.

Так же неоценимый вклад в развитие современной квантовой теории внес австрийский физик, Эрвин Шрёдингер (см. Рис 1). Основные его работы относятся к области статистической физики, квантовой теории, квантовой механики и биофизики, но главной его работой является разработка теории движения субатомных частиц (т. е. волновой механики) и вывод основного уравнения нерелятивистской квантовой механики.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства.

Целью своей курсовой я поставил изучение стационарного уравнения Шрёдингера и его численного решения в случае положения частицы внутри «потенциальной ямы». В качестве численного метода решения выбран алгоритм Эйлера — Кромера – алгоритм последовательного приближения.

ГЛАВА I. НЕМНОГО ИСТОРИИ

Начало развития квантовой теории датируются 1900 годом, когда Макс Планк предложил теоретический вывод о соотношении между температурой тела и испускаемым этим телом излучением. Как и его предшественники, Планк предположил, что излучение испускают атомные осцилляторы, но при этом считал, что энергия осцилляторов (и, следовательно, испускаемого ими излучения) существует в виде небольших дискретных порций, которые Эйнштейн назвал квантами. Энергия каждого кванта пропорциональна частоте излучения.

В 1905 г. Эйнштейн воспользовался квантовой теорией для объяснения некоторых аспектов фотоэлектрического эффекта – испускания электронов поверхностью металла, на которую падает ультрафиолетовое излучение.

Примерно через восемь лет Нильс Бор распространил квантовую теорию на атом и объяснил частоты волн, испускаемых атомами, возбужденными в пламени или в электрическом заряде. Он предположил, что электроны могут находиться только на определенных дискретных орбитах, соответствующих различным энергетическим уровням, и что переход электрона с одной орбиты на другую, с меньшей энергией, сопровождается испусканием фотона, энергия которого равна разности энергий двух орбит. Частота, по теории Планка, пропорциональна энергии фотона. Таким образом, модель атома Бора установила связь между различными линиями спектров, характерными для испускающего излучение вещества, и атомной структурой. Однако квантовая теория на той стадии еще не давала систематической процедуры решения многих квантовых задач.

Новая существенная особенность квантовой теории проявилась в 1924 г., когда Луи де Бройль выдвинул радикальную гипотезу о волновом характере материи: если электромагнитные волны, например свет, иногда ведут себя как частицы, то частицы, например электрон при определенных обстоятельствах, могут вести себя как волны. В формулировке де Бройля частота, соответствующая частице, связана с ее энергией, как в случае фотона, но предложенное де Бройлем математическое выражение было эквивалентным соотношением между длиной волны, массой частицы и ее скоростью. Существование электронных волн было экспериментально доказано в 1927 г. Клинтоном Дэвиссоном и Лестером Джермером в Соединенных Штатах и Джоном-Паджетом Томсоном в Англии.

Под впечатлением от комментариев Эйнштейна по поводу идей де Бройля Шрёдингер решил применить волновое описание электронов к построению последовательной квантовой теории, не связанной с неадекватной моделью атома Бора. Первая попытка, предпринятая им в 1925 г., закончилась неудачей. Скорости электронов в теории Шрёдингера были близки к скорости света, что требовало включения в нее специальной теории относительности Эйнштейна и учета значительного увеличения массы электрона при очень больших скоростях.

Следующую попытку Шрёдингер предпринял в 1926 г. Скорости электронов на этот раз были выбраны им настолько малыми, что необходимость в привлечении теории относительности отпадала сама собой. В результате было выведено основное уравнение нерелятивистской квантовой механики:

где m – масса частицы, – постоянная Планка, поделённая на , i –мнимая единица, – оператор Лапласа, – потенциальная функция частицы в силовом поле, в котором она движется. Уравнение (1.1) дает математическое описание материи в терминах волновой функции. Шрёдингер назвал свою теорию волновой механикой. Решения волнового уравнения находились в согласии с экспериментальными наблюдениями и оказали глубокое влияние на последующее развитие квантовой теории. В настоящее время волновая функция лежит в основе квантовомеханического описания микросистем, подобно уравнениям Гамильтона в классической механике.

Незадолго до того Вернер Гейзенберг, Макс Борн и Паскуаль Иордан опубликовали другой вариант квантовой теории, получивший название матричной механики, которая описывала квантовые явления с помощью таблиц наблюдаемых величин. Матричная механика также позволяла достичь согласия с наблюдаемыми экспериментальными данными, но в отличие от волновой механики не содержала никаких конкретных ссылок на пространственные координаты или время.

Шрёдингер показал, что волновая механика и матричная механика математически эквивалентны. Известные ныне под общим названием квантовой механики, эти две теории дали долгожданную общую основу описания квантовых явлений.

ГЛАВА II. ФИЗИЧЕСКИЙ СМЫСЛ

На начальном этапе развития квантовой теории возникли новые принципиальные проблемы, в частности проблема физической природы волн де Бройля. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицу в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля уже неверно хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательна, что не имеет смысла.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882-1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая . Эту величину называют также волновой функцией (или -функцией). Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами х и y и , и .

Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна

(квадрат модуля -функции) имеет смысл плотности вероятности, т. е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама -функция, а квадрат ее модуля ( — функция, комплексно сопряжённая с ), которым определяется интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V, согласно теореме сложения вероятностей, равна:

Так как определяется как вероятность, то необходимо волновую функцию нормировать так, чтобы вероятность W достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей:

где данный интеграл (2.5) вычисляется по всему бесконечному пространству, т. е. по координатам от до . Таким образом, условие (2.5) говорит об объективном существовании частицы в пространстве.

Чтобы волновая функция являлась объективной характеристикой состояния микрочастиц, она должна удовлетворять ряду ограничительных условий. Функция , характеризующая вероятность обнаружения действия микрочастицы в элементе объема, должна быть конечной (вероятность не может быть больше единицы), однозначной (вероятность не может быть неоднозначной величиной) и непрерывной (вероятность не может изменяться скачком).

Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями то она также может находиться в состоянии , описываемом линейной комбинацией этих функций:

где (n = 1, 2, . ) – произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция , являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект.

ГЛАВА III. СТАЦИОНАРНОЕ УРАВНЕНИЕ ШРЁДИНГЕРА И ЕГО ЧИСЛЕННОЕ РЕШЕНИЕ

Для простоты рассмотрим одномерные нерелятивистские квантовые системы, состоящие из одной частицы. Состояние системы полностью описывается волновой функцией . Поскольку частица может находиться в любой точке пространства, то вероятность того, что частица находится в элементе «объема» dx с центром в точке х в момент времени t, равна:

где С нормировочная постоянная. Вероятностная интерпретация означает, что удобно использовать нормированные волновые функции, удовлетворяющие условию:

Тогда постоянная С в выражении (3.1) равна 1.

Если частица движется в потенциале U, то временная эволюция функции описывается нестационарным уравнением Шредингера

Физические величины, такие, как импульс, можно представить операторами. Математическое ожидание, или среднее значение наблюдаемой величины А определяется выражением:

где оператор, соответствующий величине А. Например, оператор, соответствующий импульсу P, имеет вид .

Если потенциал не зависит от времени, то для уравнения (3.3) можно получить решения вида:

Частица, находящаяся в состоянии (3.5), имеет вполне конкретное значение энергии Е. Если подставить выражение (3.5) в (3.3), то получим стационарное уравнение Шредингера

Заметим, что собственная функция оператора Гамильтона (гамильтониана)

соответствующая собственному значению Е, т. е.

Общее решение можно выразить в виде суперпозиции собственных функций оператора, отвечающего той или иной физической наблюдаемой величине. Например, если Н не зависит от времени, то можно записать

где – собственные функции оператора Н, а знак ∑ обозначает сумму по всем дискретным состояниям и интеграл по непрерывному спектру. Коэффициенты в формуле (3.9) можно определить из значения в любой момент времени t. Например, если нам известна при , то можно воспользоваться свойством ортогональности собственных функций любого физического оператора и получить:

Коэффициент можно интерпретировать как амплитуду вероятности измерения полной энергии, при котором получается значение .

Рассмотрим решения стационарного уравнения Шредингера (3.6), соответствующие связанным состояниям. Основной результат будет заключаться в том, что допустимые решения уравнения (3.6) существуют только тогда, когда собственные значения квантованы, т. е. ограничены дискретным набором энергий. Чтобы решение было допустимым, функции должны быть конечны для всех значений x и ограничены для больших значений |x| так, чтобы функцию можно было нормировать. Для конечной функции требуется, чтобы функции и были непрерывны, конечны и однозначны для всех х.

Поскольку стационарное уравнение Шредингера является дифференциальным уравнением второго порядка, то для получения единственного решения необходимозадать два краевых условия. Для упрощения анализа рассмотрим симметричные потенциалы, удовлетворяющие условию

Как следует из условия (3.11), можно считать, что функции обладают определенной четностью. Для четных решений ; нечетных решений . Определенная четность позволяет задать либо либо при х = 0.

Чтобы был понятен выбор подходящего алгоритма численного решения уравнения (3.6), напомним, что решение (3.6) с U можно представить в виде линейной комбинации косинусов и синусов. Колебательный характер этого решения позволяет надеяться, что алгоритм Эйлера – Кромера, рассмотренный ниже, будет давать удовлетворительные результаты и в случае U. Алгоритм Эйлера – Кромера реализуется следующим образом:

1. Разбиваем область изменения х на N отрезков длиной x. Введем следующие обозначения: и

2. Задаем четность функции . Для четного решения выбираем и ; для нечетного выбираем и . Ненулевые значения и произвольны.

3. Задаем начальное приближение для Е.

4. Вычисляем и используя алгоритм:

5. Проводим итерации по возрастанию х до тех пор, пока не начнет расходиться.

6. Изменяем величину Е и повторяем шаги (2) (4). Окаймляем значение Е, изменяя его до тех пор, пока при значении Е чуть меньше текущего не будет расходиться в одном направлении, а при значении Е чуть больше в противоположном направлении.

ГЛАВА IV. ОБРАБОТКА РЕЗУЛЬТАТОВ

Реализация алгоритма описанного в третьей главе представлена в программе “Shred. pas” (см. Приложение 1) для прямоугольной ямы, описываемой формулой:

Основными изменяемыми параметрами являются: – потенциал вне ямы, a – полуширина ямы, Е – предполагаемое значение энергии частицы и величина шага x.

Краткий обзор работы программы:

· строки 4-7 – определение основных параметров системы;

· процедура “graf” (строки 12-28) – вывод на экран системы координат;

· строки 48-57 – расчет значения волновой функции на следующем шаге последовательного приближения;

· строки 58-65 – расчет следующего значения собственной энергии частицы E;

· строки 71-86 – визуализация полученной волновой функции.

В результате работы с программой были получен вид волновой функции и вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х для первых пяти значений собственной энергии частицы (см. Рис. 2).

ГЛАВА V. АНАЛИТИЧЕСКОЕ РЕШЕНИЕ

Проведем качественный анализ решений уравнения Шредингера применительно к рассматриваемой задаче.

Уравнения (1.1) в случае одномерного пространства запишется в виде:

По условию задачи (бесконечно высокие «стенки»), частица не проникает за пределы «ямы», поэтому вероятность ее обнаружения (а следовательно, и волновая функция) за пределами «ямы» равна нулю. На границах «ямы» (при х = 0 и х = l) непрерывная волновая функция также должна обращаться в ноль. Следовательно, граничные условия в данном случае имеют вид:

В пределах «ямы» уравнение Шредингера (5.1) сведется к уравнению:

Общее решение дифференциального уравнения (5.4) имеет вид:

Так как по (5.2) , то B=0. Тогда:

Условие выполняется только при , где n – целые числа, т. е. необходимо, чтобы

Из выражений (5.5) и (5.8) следует, что

т. е. стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях , зависящих от целого числа n. Следовательно, энергия частицы принимает лишь определенные дискретные значения. Таким образом, микрочастица в «потенциальной яме» может находиться только на определенном энергетическом уровне , или, как говорят, находиться в квантовом состоянии n.

Подставив в (5.7) значение k из (5.8) найдем собственные функции:

Постоянную. интегрирования A определим из условия нормировки (5.4), которая в данном случае запишется в виде:

В результате интегрирования получим , а собственные волновые функции будут иметь вид:

Графики собственных функций (5.12), соответствующие уровням энергии (5.9) при n = 1, 2, 3, 4 и 5, имеют тот же вид (см. Рис. 3), что и полученные при численном решении поставленной задачи. На Рис. 4 и Рис. 5 изображена плотность вероятности обнаружения частицы на различных расстояниях от «стенок» ямы, равная для n = 1, 2 и 3 (см Рис. 4) и для n = 4 и 5 (см. Рис. 5).

ВЫВОДЫ

В результате проведенной работы получил волновое уравнение Шрёдингера и плотность вероятности (т. е. вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х) для частицы в потенциальной яме. Так же была написана программа на языке Pascal, определяющая вид волнового уравнения и приблизительную плотность вероятности и основанная на алгоритме Эйлера – Кромера. Значения, полученные численным методом, совпали с аналитическим, что говорит о действенности алгоритма Эйлера – Кромера применительно к этой задаче.

ПРИЛОЖЕНИЕ 1

В данном разделе представлена программа, алгоритм которой описан в третьей главе.


источники:

http://cyberleninka.ru/article/n/chislennoe-reshenie-nelineynogo-uravneniya-shredingera-v-radialno-simmetrichnom-sluchae

http://pandia.ru/text/80/382/5360.php

Название: Численное решение уравнения Шредингера средствами Java
Раздел: Рефераты по физике
Тип: дипломная работа Добавлен 07:28:23 13 января 2011 Похожие работы
Просмотров: 4081 Комментариев: 20 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать