Что называется теплоотдачей и основное уравнение теплоотдачи

Основные уравнение теплообмена

Основы теории передачи тепла. Классификация теплообменных аппаратов. Конструкции.

Основные понятия

Перенос энергии в форме тепла, происходящий между телами, имеющими различную температуру, называется теплообменом. Движущая сила любого процесса теплообмена — разность температур более и менее нагретого тел. При наличии такой разности тепло самопроизвольно, в соответствии со вторым законом термодинамики, переходит от более нагретого к менее нагретому телу. Теплообмен представляет собой обмен энергией между молекулами, атомами и свободными электронами.

Тела, участвующие в тпелообмене, называются теплоносителями.

Теплопередача — наука о процессах распространения тепла. Различают три элементарных способа передачи тепла.

1) Теплопроводность — перенос тепла вследствие теплового движения микрочастиц, непосредственно соприкасающихся друг с другом. В твердых телах теплопроводность — основной способ распространения тепла.

2) Конвекция — перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости. Различают свободную (естественную) конвекцию, обусловленную разностью плотностей в различных точках объема жидкости или газа за счет разности температур, и вынужденную конвекцию, происходящую при принудительном движении всего объема.

3) Тепловое излучение — распространение электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать и поглощать энергию, таким образом осуществляется лучистый теплообмен.

В реальных условиях тепло передается комбинированным путем.

Перенос тепла от стенки к газообразной или жидкой среде или в обратном направлении называется теплоотдачей. Процесс передачи тепла от более нагретой к менее нагретой жидкости или газу через разделяющую их поверхность или твердую стенку называется теплопередачей.

Расчет теплообменной аппаратуры включает:

1) Определение теплового потока — количества тепла Q, которое должно быть передано за определенное время от одного теплоносителя к другому. Тепловой поток вычисляется путем составления и решения тепловых балансов.

2) Определение поверхности теплообмена F аппарата, обеспечивающей передачу требуемого количества тепла в заданное время. Величина поверхности теплообмена определяется скоростью теплопередачи, зависящей от механизмов передачи тепла и их сочетанием друг с другом. Поверхность теплообмена находят из основного уравнения теплопередачи.

Основные уравнение теплообмена

Основное уравнение теплопередачи выражает общую зависимость для процессов теплопередачи, выражающее связь между тепловым потоком Q’ и поверхностью теплообмена F:

K — коэффициент теплопередачи, определяющий среднюю скорость передачи тепла вдоль всей поверхности теплообмена; Dtср — средняя разность температур между теплоносителями, определяющая среднюю движущую силу процесса теплопередчи, или температурный напор; t — время.

Физический смысл уравнения: количество тепла, передаваемое от более нагретого к менее нагретому теплоносителю, пропорционально поверхности теплообмена F, среднему температурному напору Dtср и времени t.

Для непрерывных процессов теплообмена:

Отсюда коэффициент теплопередачи:

Коэффициент теплопередачи показывает, какое количество тепла (в Дж) переходит за 1 секунду от более нагретого к менее нагретому теплоносителю через поверхность теплообмена 1 м 3 при средней разности температур между теплоносителями 1 градус.

В основе расчета теплопроводности лежит закон Фурье:

То есть, количество тепла dQ, передаваемое посредством теплопроводности через элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо порпорционально температурному градиенту ∂t/∂n поверхности dF и времени dt.

Количество тепла, передаваемое через единицу поверхности в единицу времени:

Здесь q — плотность теплового потока. Знак минус указывает на то, что тепло перемещается в сторону падения температуры.

Количество переданного тепла:

Здесь d — толщина стенки, м; tст1 – tст2 — разность температур поверхностей стенки, град; F — площадь поверхности стенки, м 2 ;  — время, с.

Для непрерывного процесса передачи тепла теплопроводностью при =1:

Коэффициент пропорциональности l называется коэффициентом теплопроводности.

Коэффициент теплопроводности l показывает, какое количество тепла проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на 1 градус на единицу длины нормали к изотермической поверхности. Его величина зависит от природы вещества, его структуры, температуры и некоторых других факторов.

При обычных температурах и давлениях лучшими проводниками тепла являются металлы, худшими — газы.

В основе расчета теплоотдачи лежит закон охлаждения Ньютона:

То есть: количество тепла dQ, отдаваемое за время dt поверхностью стенки dF, имеющей температуур tст, к жидкости с температурой tж, прямо пропорционально dF и разности температур tст – tж.

Применительно к поверхности теплообмена всего аппарата F для непрерывного процесса теплоотдачи это уравнение принимает вид:

Коэффициент пропорциональности a называется коэффициентом теплоотдачи. Величина его характеризует интенсивность переноса тепла между поверхностью тела и окружающей средой. Он выражается следующим образом:

То есть, коэффициент теплоотдачи a показывает, какое количество тепла передается от 1 м 2 поверхности стенки к жидкости (или наоборот) в течение 1 секунды при разности температур между стенкой и жидкостью 1 градус.

Вследствие сложной структуры потоков, особенно в условиях турбулентного движения, величина a является сложной функцией многих переменных. Коэффициент теплоотдачи зависит от: — скорости жидкости, ее плотности и вязкости, — тепловых свойств жидкости (удельная теплоемкость, теплопроводность) и коэффициента объемного расширения, — геометрических параметров — формы и определяющих размеров стенки (для труб – от размера и диаметра) и шероховатости стенки.

При сопоставлении уравнений теплопроводности и теплоотдачи получаем следующее выражение для установившегося процесса теплообмена:

После преобразований получим:

Nu — критерий Нуссельта. Равенство критериев Нуссельта характеризует подобие процессов теплопереноса на границе между стенкой и потоком жидкости. Он является мерой соотношения толщины пограничного слоя d и определяющего геометрического размера.

Процесс теплоотдачи

Процесс теплоотдачи

Процесс теплообмена между жидкостью и стенкой, которую эта жидкость омывает, называется конвективным теплообменом, или процессом теплоотдачи. Процесс теплоотдачи предполагает, что теплота передается одновременно путем теплопроводности и конвекции, и поэтому такой вид теплообмена представляет собой сложный процесс, зависящий от большего числа факторов по сравнению с процессом чистой теплопроводности.

Конвективный теплообмен характерен для большинства процессов тепловой обработки строительных материалов и изделий, связанных с прохождением газов через слой материала, через садку изделий, над уровнями жидкостей при сушке и т. д.

Факторы, влияющие на процесс теплоотдачи, условно можно разделить на следующие группы.

I. Природа возникновения движения жидкости вдоль стенки. В зависимости от причины, вызывающей движение жидкости, различают два вида движения — свободное и вынужденное. Свободное движение, называемое иначе естественной конвекцией, вызывается подъемной силой, обусловленной разностью плотностей холодных и нагретых частиц жидкости. Интенсивность свободного движения зависит от вида жидкости, разности температур между отдельными ее частицами и объема пространства, в котором протекает процесс.

Вынужденное движение жидкости, или вынужденная конвекция, обусловлено работой внешних агрегатов (насоса, вентилятора и т. п.). Движущая сила при этом виде движения возникает вследствие разности давлений, устанавливающихся на входе и выходе из канала, по которому перемещается жидкость. Если скорость вынужденного движения небольшая и есть разница температур между отдельными частицами жидкости, то наряду с вынужденным движением может наблюдаться и свободное движение.

II. Режим движения жидкости. Движение жидкости может иметь ламинарный или турбулентный характер. В первом случае частицы жидкости в форме отдельных несмешивающихся струй следуют очертаниям канала или стенки и профиль скоростей на достаточном удалении от начала трубы имеет вид правильной параболы. Подобное распределение установившихся скоростей обусловливается наличием сил внутреннего трения (вязкости) между частицами жидкости. При этом максимальная скорость движения частиц жидкости, перемещающейся по оси трубы, в 2 раза больше средней скорости их движения, получаемой в результате деления секундного объема жидкости на площадь поперечного сечения трубы (рис. 14.1, а).

Турбулентный режим движения характеризуется непостоянством скорости движения частиц жидкости в рассматриваемой точке пространства. Из — за непрерывного перемешивания жидкости в ней нельзя выделить отдельные струи, и такое движение лишь условно можно назвать стационарным, считая для каждой частицы жидкости характерными не мгновенные, а усредненные за некоторый промежуток времени значения скорости. В этом случае профиль скоростей по сечению трубы будет иметь вид усеченной параболы и максимальная скорость, наблюдаемая у частиц жидкости, движущихся по оси трубы, будет всего в 1,2 — 1,3 раза больше средней скорости. Характерно, что не все частицы жидкости при турбулентном режиме имеют неупорядоченное движение. Вблизи стенок, ограничивающих потоки, вследствие вязкости жидкости пульсации скорости уменьшаются, и около самой стенки сохраняется тонкий пограничный слой, движущийся ламинарно.

В пределах этого слоя, который имеет толщину не более нескольких тысячных долей диаметра трубы, скорость движения частиц жидкости резко меняется от нуля на самой стенке до 0,4 — 0,7 средней скорости на условной границе с турбулентным ядром потока (рис. 14.1, б).

Строго говоря, турбулентные пульсации проникают и в ламинарный подслой и затухают в нем вследствие действия сил вязкости. Поэтому термин «ламинарный подслой» правильнее заменять термином «вязкий подслой».

Английский физик Рейнольдс установил, что при движении жидкости в трубах переход из ламинарного режима в турбулентный определяется значением безразмерного комплекса wdp/µ, в который входят средняя скорость w, диаметр трубы d, плотность р и динамическая вязкость жидкости µ. Этот комплекс называют числом Рейнольдса и обозначают символом Re. При Re ≤ 2300 движение жидкости в трубах имеет ламинарный характер, а при Re ≥ 10 000 — турбулентный, т. е. критическая скорость, позволяющая определить переход любой жидкости из ламинарного режима в турбулентный для трубы любого диаметра, может быть найдена из соотношения wкр — 2300 µ /pd.

В большинстве случаев, встречающихся в теплотехнике, Re > 10 000 и движение оказывается турбулентным. В особых условиях (при отсутствии шероховатостей на стенках, безвихревом входе жидкости в трубу и т. п.) можно сохранить ламинарное движение при числах Re до 10 000, но такое движение весьма неустойчиво и при небольшом местном возмущении потока из ламинарного сразу переходит в турбулентное. Показанные на рис. 14.1 кривые, характеризующие закономерность распределения скоростей по сечению трубы, справедливы лишь для стабилизированного движения. На основании опытных данных длина участка стабилизации для ламинарного режима может быть принята 0,03 d Re, а для турбулентного режима — около 40 d.

Режим движения жидкости определяет механизм переноса теплоты в процессе теплоотдачи. При ламинарном движении перенос теплоты от жидкости к стенке (или наоборот) осуществляется главным образом путем теплопроводности. При турбулентном движении такой способ передачи теплоты наблюдается лишь в ламинарном пограничном слое, а внутри турбулентного ядра теплота переносится путем конвекции. При этом на интенсивность теплоотдачи в основном влияет термическое сопротивление пограничного слоя. Последнее наглядно иллюстрируется рис. 14.2, на котором представлена схема движения жидкости при обтекании плоской поверхности (пластины).

Следует отметить, что по мере движения потока вдоль поверхности стенки толщина пограничного слоя постепенно возрастает тормозящее воздействие стенки распространяется на все более далекие слои жидкости. На небольших расстояниях от передней кромки стенки пограничный слой еще тонкий и течение жидкости в нем носит струйный ламинарный характер. Далее на некотором расстоянии хкр в пограничном слое начинают возникать вихри и характер течения становится турбулентным (рис. 14.2,б) Эти вихри обеспечивают интенсивное перемешивание жидкости в пограничном слое, но в непосредственной, близости от поверхности стенки они затухают, и здесь сохраняется очень тонкий вязкий подслой. Толщина пограничного слоя б погр.сл зависит от расстояния х от передней кромки стенки, скорости движения потока и кинематической вязкости v = µ /р. Переход к турбулентному режиму течения жидкости в пограничном слое определяется критическим значением числа Reкp, на которое при продольном обтекании пластины основное влияние оказывают степень начальной турбулентности набегающего потока жидкости, а также шероховатость поверхности, интенсивность теплообмена поверхности с жидкостью и т. д. Поскольку сам переход от ламинарного режима течения к турбулентному в пограничном слое происходит не в точке, а на некотором участие, вводят два критических значения числа Рейнольдса. При этом Reкp1 соответствует превращению ламинарного режима течения в переходный. В это время в пограничном слое начинают возникать первые вихри и пульсации, а Reкр2 соответствует переходу к развитому турбулентному режиму течения.

Следует также отметить, что наряду с описанным процессом формирования гидродинамического пограничного слоя происходит аналогичный процесс формирования и теплового пограничного слоя, в пределах которого температура меняется от tст до tж. Характер распределения температуры в тепловом пограничном слое зависит от режима течения жидкости в динамическом пограничном слое.

При ламинарном течении перенос теплоты между слоями жидкости осуществляется путем теплопроводности. В турбулентном пограничном слое основное изменение температуры происходит в пределах тонкого вязкого подслоя около стенки, через который теплота также передается путем теплопроводности. В турбулентном ядре пограничного слоя вследствие интенсивного перемешивания жидкости температура изменяется незначительно (см.рис. 14.2, б) и поле температур имеет ровный пологий характер, т. е. отмечается качественное сходство в пограничном слое между распределением температур и скоростей.

III.Физические свойства жидкостей. На процесс теплоотдачи непосредственно влияют следующие физические параметры жидкостей: теплопроводность µ, удельная теплоемкость с, плотность р, а также вязкость и температуропроводность.

Рис. 14.1. Распределение скоростей по сечению трубы при ламинарном (а) и турбулентном (б) режимах.

Рис. 14.2. Характер изменения температуры в пограничном слое (а) и скорости в тепловом и динамическом пограничных слоях (б) бл, бт — толщина пограничного слоя соответственно ламинарного и турбулентного.

Известно, что все жидкости обладают вязкостью, т. е. между отдельными частицами или слоями, перемещающимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующая движению. По закону Ньютона, эта сила F, отнесенная к единице поверхности, пропорциональна градиенту скорости dw/dn, т. е. F = µdw/dn.

Коэффициент пропорциональности µ, в этом уравнении называется коэффициентом внутреннего трения или динамической вязкостью. При dw/dn = 1, µ = F, т. е. динамическая вязкость численно равна силе трения, приходящейся на единицу поверхности соприкосновения двух слоев жидкости, скользящих один по другому, при условии, что на единицу длины нормали к поверхности скольжения скорость движения изменяется на единицу. Отношение µ /p = v называется кинематической вязкостью. Если в комплексе wdp/µ заменить отношение р/µ = 1/v, то число Рейнольдса принимает вид Re = wd/v.

Понятие температуропроводности тел связано с протеканием в них нестационарных тепловых процессов, наблюдаемых обычно при нагревании или охлаждении. Скорость теплового процесса при нестационарном режиме определяется отношением µ/ср = а, которое называется температуропроводностью. Температуропроводность характеризует скорость выравнивания температуры в различных точках тела. Чем больше величина а, тем быстрее все точки какого-либо тела при его остывании или нагревании достигнут одинаковой температуры.

Единицей измерения динамической (абсолютной) вязкости µ. служит Па — с, а единицей измерения v и а — м 2 /с.

IV.Форма, размеры и состояние поверхности стенки, омываемой жидкостью. Обычно поверхности стенок имеют форму плит или труб, которые могут располагаться вертикально, горизонтально или наклонно. Каждая из этих форм поверхностей создает специфические условия для теплообмена между поверхностью стенки и жидкостью, омывающей эту поверхность. Для процесса теплоотдачи очень важно, перемещается ли жидкость внутри замкнутого пространства или поверхность стенки со всех сторон омывается жидкостью.Большое значение имеет также состояние поверхности стенки, оцениваемое ее шероховатостью.

Из рассмотрения факторов, влияющих на процесс теплоотдачи, видно, насколько сложно определить количество теплоты, переданной при конвективном теплообмене. Поскольку интенсивность процесса теплоотдачи в основном определяется наличием и толщиной ламинарного пограничного слоя, через который теплота передается лишь путем теплопроводности, для решения указанной задачи можно было бы воспользоваться законом Фурье, написав его в виде следующего уравнения:

(14.1)

Однако для расчетов использовать это уравнение не представляется возможным, так как значение температурного градиента у стенки grad ts и его изменение по всей поверхности теплообмена S определить не удается.

Для удобства расчетов в соответствии с рис. 14.2, а значение градиента температуры dt/dn из подобия элементарного треугольника и треугольника ABC заменяют отношением:

(14.2)

Это уравнение в теплотехнике называется уравнением Ньютона.

В формуле (14.2) Δt — температурный напор, а коэффициент пропорциональности α, характеризующий условия теплообмена между жидкостью и поверхностью твердого тела называется коэффициентом теплоотдачи (теплообмена) Единицей измерения для α служит Вт/(м 2 ×К).

Числовое значение коэффициента теплоотдачи определяет мощность теплового потока, проходящего от жидкости к стенке (или обратно) через единицу поверхности (1 м 2 ) при разности температур между жидкостью и стенкой 1°.

Коэффициент теплоотдачи α зависит от большого числа разнообразных факторов, указанных в перечисленных четырех группах. Это приводит к тому, что при одинаковых условиях процесса теплоотдачи значения α колеблются в весьма широких пределах, Вт/(м 2 ×К), например:

Следует отметить, что с возрастанием вязкости повышается толщина пограничного слоя и уменьшается коэффициента возрастание скорости потока теплоносителя приводит к уменьшению толщины пограничного слоя и к увеличению коэффициента теплоотдачи.

Наиболее точно коэффициент теплоотдачи а можно определить опытным путем. Но этот способ определения а представляет собой нелегкую задачу, особенно для сложных и громоздких тепловых устройств, например таких, как паровой котел. Но и проводя опыты, нельзя быть уверенным в том, что закономерности, найденные для данного теплового агрегата, окажутся справедливыми для другого аппарата, может быть еще не построенного и потому недоступного для непосредственного изучения.

В настоящее время опытное определение коэффициента теплоотдачи производится, как правило, не на самих образцах тепловых устройств, а на их упрощенных моделях, более удобных для экспериментирования. Результаты опытов, проведенных на моделях, обобщают, используя тепловую теорию подобия (см. § 14.3). Основной вывод, который делают на основе этой теории, заключается в том, что нет необходимости искать зависимость коэффициента теплоотдачи от каждого из тех факторов, которые на него влияют, а достаточно найти зависимость между определенными безразмерными комплексами величин, характерных для рассматриваемых условий процесса теплоотдачи. Эти безразмерные комплексы величин называют критериями подобия. Составленные из размерных величин критерии подобия отражают физическую сущность, или, как говорят, модель процесса. Следовательно, задача заключается в том, чтобы найти вид зависимостей между критериями подобия, называемых критериальными уравнениями. Составляют критерии подобия с помощью дифференциальных уравнений конвективного теплообмена, т. е. уравнений, которые дают аналитическую зависимость между параметрами, характеризующими процесс теплоотдачи в дифференциальной форме.

Что называется теплоотдачей и основное уравнение теплоотдачи

1.8. Механизмы переноса тепла. Основное уравнение теплоотдачи (закон сохранения Ньютона). Теплопроводность (закон Фурье). Передача тепла через многослойную стенку.

Процессы, скорость протекания которых определяется скоростью подвода или отвода теплоты (нагревание, охлаждение, испарение (или кипение), конденсация и др.), называют тепловыми . Движущей силой тепловых процессов является разность температур более нагретого и менее нагретого тела (температурный напор). Аппараты, в которых осуществляются тепловые процессы, называются теплообменниками .

Различают три вида переноса теплоты: теплопроводность, тепловое излучение и конвекция.

Явление теплопроводности состоит в том, что перенос теплоты происходит путем непосредственного соприкосновения между микрочастицами (молекулами, атомами, электронами) – от частиц с большей энергией к частицам с меньшей энергией, то есть процесс переноса теплоты теплопроводностью протекает по молекулярному механизму. В подвижных средах (жидкость, газ) при турбулентном режиме движения потока молекулярный механизм переноса теплоты, то есть теплопроводность, имеет существенное значение в тонких, пограничных с твердой стенкой слоях. При ламинарном движении потока или в неподвижной жидкости теплопроводность может быть основным видом переноса теплоты. Поскольку теплопроводность – явление молекулярное, то на скорость процесса переноса теплоты теплопроводностью существенное влияние оказывают структура и свойства вещества (например, для подвижных сред – вязкость, плотность и др.). В твердых телах, например в диэлектриках, перенос энергии осуществляется фотонами, в металлах электронами.

Явление теплового излучения – это процесс распространения энергии с помощью электромагнитных колебаний. Источником этих колебаний являются заряженные частицы – электроны и ионы, входящие в состав излучающего вещества. Твердые тела и жидкости излучают волны всех длин, то есть дают сплошной спектр излучения. При переносе теплоты излучением тепловая энергия вначале превращается в лучистую, а затем обратно: встречая на своем пути какое-либо тело, лучистая превращается в тепловую.

Явление конвекции состоит в том, что перенос теплоты осуществляется вследствие движения и перемешивания макроскопических объемов жидкости или газа. При этом очень большое значение имеют состояние и характер движения жидкости или газа. Наряду с этим в движущейся жидкости из-за наличия градиента температур происходит перенос теплоты перемещающимися частицами жидкости из зоны с большой температурой в зону с меньшей, то есть за счет теплопроводности. Таким образом, конвекция всегда сопровождается теплопроводностью. Если массовое перемещение жидкости вызвано разностью плотностей в различных точках жидкости или газа (вследствие разности температур в этих точках), такую конвекцию называют естественной. Если перемещение жидкости или газа возникает вследствие затраты на это механической энергии (насос, мешалка и т.д.), такую конвекцию называют принудительной. Конвекция – явление макроскопическое

Перенос теплоты от более нагретой среды к менее нагретой через разделяющую их стенку называют теплопередачей . Оба вещества, участвующих в теплопередаче, называют теплоносителями : более нагретый – горячий теплоноситель, менее нагретый – холодный теплоноситель.

Различают установившийся и неустановившийся процессы теплопередачи. При установившемся (стационарном) процессе температура является функцией только системы координат, то есть не зависит от времени (установившийся режим в аппаратах непрерывного действия). При неустановившемся (нестационарном) процессе температура изменяется в пространстве и во времени (аппараты периодического действия, остановка и пуск аппаратов непрерывного действия).

В практических условиях конвективный теплообмен между поверхностью твердой стенки и омывающей ее жидкостью (газом) называют теплоотдачей .

Расчет скорости процесса теплоотдачи осуществляется с помощью эмпирического закона охлаждения Ньютона (уравнение теплоотдачи) . При установившемся процессе уравнение имеет вид:

где: Q – тепловой поток;

α – коэффициент теплоотдачи (показывает, какое количество теплоты передается от теплоносителя к 1 м 2 поверхности стенки (или от стенки поверхностью 1 м 2 к теплоносителю) в единицу времени при разности температур между теплоносителем и стенкой 1°). Характеризует скорость переноса теплоты в теплоносителе. Зависит от многих факторов: режима движения, физических свойств теплоносителя (вязкость, плотность, теплопроводность), геометрических параметров каналов, состояния поверхности стенки.

F – поверхность теплоотдачи

tж – температура жидкости

tст – температура стенки

Рассматривается процесс передачи теплоты теплопроводностью в твердой стенке. Обязательное условие такого процесса: разность температур поверхностей стенки. При этом образуется поток теплоты направленный от поверхности стенки с большей температурой к поверхности стенки с меньшей температурой.

При установившемся процессе закон Фурье имеет вид:

где: Q – тепловой поток;

λ – коэффициент теплопроводности (показывает, какое количество теплоты проходит вследствие теплопроводности в единицу времени через единицу поверхности теплообмена при падении температуры на 1° на единицу длины нормали к изотермической поверхности), физическая характеристика вещества, определяющая способность тела проводить теплоту, зависит от природы вещества, его структуры, температуры и других факторов.

F – поверхность стенки

t’ст – t»ст – температурный напор, разность температур поверхностей стенки

δ – толщина стенки

Рассмотрим передачу теплоты сквозь многослойную плоскую стенку от горячего теплоносителя к холодному

В слое горячего теплоносителя температура изменяется от t1 до tст1,

по толщине стенки от tст1 до tст2 и в слое холодного теплоносителя

Теплопроводности слоев равны: λ1, λ2.

Тепловое сопротивление всей стенки составит

Коэффициент теплопередачи (всегда меньше любого из коэффициентов теплоотдачи α) будет равен:

Количество теплоты при передаче через многослойную стенку будет равно:

Q = КF(t1 – t2

ОСНОВЫ ТЕПЛОПЕРЕНОСА

Теплоперенос, иначе — перенос теплоты от тела к телу, от объекта к объекту, от точки к точке занимает особое место среди явлений и процессов переноса.

Во-первых, он широко распространен в химической технологии (в тепловых процессах, во многих процессах разделения, в собственно химических процессах), так что устанавливаемые в этой и следующих главах понятия и закономерности, а также полученные в них соотношения будут прямо использованы при изучении ряда последующих глав (выпаривание, дистилляция и ректификация, сушка и др.) и учебных дисциплин (АСУ ТП, спецтехнологии и т.д.). Этими понятиями, закономерностями, соотношениями очень часто пользуются исследователи, проектировщики, производственники.

Во-вторых, несмотря на множество еще не разрешенных проблем, описание явлений и процессов теплопереноса зача­стую проще, нежели массопереноса (во многих проявлениях проще и переноса импульса) в силу линейности значительного числа задач — из-за существенного постоянства входящих в них теплофизических величин. Поэтому подходы здесь нагляднее, легче усваиваются, а сами задачи чаще удается довести до аналитических решений.

И в-третьих, подходы и решения задач теплопереноса нередко служат основой и отправной точкой при анализе более сложных задач — переноса вещества и других субстанций.

Основные цели теплопереноса обусловлены характером техно­логического процесса. Наиболее часто они связаны со следую­щими моментами:

— подвод теплоты к системе, рабочему телу (целевому про­дукту, теплоносителю, хладоагенту) для повышения (или от­вод — для понижения) температуры либо изменения агрегатного состояния (плавления — затвердевания, кипения — конденса­ции и т.п.); здесь цель — сам теплоперенос;

Сущность самого технологического процесса, заключающегося в подводе (отводе) теплоты, иногда — в изменении агрегатного состояния; здесь без теплопереноса процесс просто невозможен;

Выделение (поглощение) теплоты в ходе химических превращений (экзо- и эндотермические реакции), так что необходимо обеспечивать отвод и подвод теплоты реакции либо учитывать влияние накопления теплоты на изменение температуры и ход этой реакции.

Часто в осуществлении химико-технологического процесса реализуются все или несколько из этих целей.

Нередко теплопереносу сопутствует перенос вещества (из одной системы в другую, из одной фазы в другую); как правило, теплоперенос связан с переносом количества движения (импульса) — эту связь учитывают при описании процессов теплопереноса.

В наиболее распространенных случаях (далее будут рассматриваться и другие ситуации) поток теплоты передается от теп­лоносителя с высокой температурой Т к теплоносителю с низ­кой — t через теплопередающую стенку. Принципиальная схема такого теплопереноса для фрагмента теплообменного аппарата представлена на рис.

Общая схема теплопереноса:

1 — теплопередаюшая стенка (поверхность), 2 — по­граничные пленки, 3 — области движения теплоносителей вдоль поверхности;

Теплота (ее поток изображен левой вертикальной стрелкой) вводится в исследуемый фрагмент теплообменника с потоком горячего теплоносителя под действием постороннего побудителя (например, насоса). Далее поток теплоты через пограничную пленку, примыкающую к поверхности со стороны горячего теплоносителя, передается к границе поверхности, проходит через поверхность (стенку), затем через пограничную пленку со стороны холодного теплоносителя (эти потоки теплоты изображены горизонтальными стрелками). Наконец, теплота выводится из исследуемого фрагмента с холодным теплоносителем (правая вертикальная стрелка).

Происходящие в ходе переноса теплоты процессы — в целом или на отдельных стадиях — именуются по-разному. В целях большей четкости разграничения понятий в учебнике принята следующая терминология (она выдержана и для процессов массопереноса).

Теплопереносом (иначе — тепловым процессом) именуется любое явление (процесс), связанное с переносом теплоты на любой стадии или в целом.

Элементом (видом, способом) процесса теплопереноса называется стадия (акт), относящаяся к какой-либо одной составляющей теплопереноса: через пограничную пленку — теплоотдача; в твердой стенке или другой среде возможен кондуктивный перенос; теплоперенос излучением (на схеме не показан); потоковый теплоперенос с движущимся теплоносителем.

Под теплопередачей будем понимать перенос теплоты через теплопередающую поверхность (нормально к ней); для схемы на рис. 6.1 это три стадии: перенос теплоты через пограничные пленки и через стенку.

Под теплообменом будем понимать теплоперенос в целом, включающий отвод (подвод) теплоты с горячим и холодным теплоносителями; для схемы на рис. теплообмен включает пять стадий: три стадии теплопередачи и две — переноса теплоты с потоками теплоносителей.

Рассматриваются явления и процессы переноса теплоты, относящиеся к отдельным стадиям.

Основным законом передачи тепла теплопроводностью явл. закон Фурье, согласно которому кол-во тепла dQ ,передаваемое посдедством теплопроводности ч/з элемент поверхности dF, перпендикулярный тепловому потоку, за время dt прямо пропорционально температурному градиенту dt/dn поверхности dF и времени dt:

dQ = — λ dt/dn dF dt (1)

или кол-во тепла, передаваемое ч/з единицу поверхности в единицу времени

q = Q/Ft = — λ dt/dn (2)

Величина q называется плотностью теплового потока.

Знак «минус», стоящий перед правой частью уравнений (1) и (2), указывает на то, что тепло перемещается в сторону падения температуры,

Коэффициент пропорциональности λ называется коэффициентом теплопроводности.

Коэффициент теплопроводности λ показывает, какое кол-во тепла проходит вследствие теплопроводности в единицу времени ч/з единицу поверхности теплообмена при падении температуры на 1 град на единицу длины нормали к изотермической поверхности.

Величина λ характеризующая способность тела проводить тепло путем теплопроводности, зависит от природы в-ва, его структуры, температуры и некоторых других факторов.


источники:

http://www.kotel-kv.com/process-heat.html

http://sliv1985.narod.ru/index/0-9