Что называется целевой функцией уравнение

Линейное программирование — основные понятия с примерами решения

Содержание:

Исследование различных процессов, в том числе и экономических, обычно начинается с их моделирования, т.е. отражения реального процесса через математические соотношения. При этом составляются уравнения или неравенства, которые связывают различные показатели (переменные) исследуемого процесса, образуя систему ограничений. В этих процессах выделяются такие переменные, меняя которые можно получить оптимальное значение основного показателя данной системы (прибыль, доход, затраты и т.д.). Соответствующие методы, позволяющие решать указанные задачи, объединяются под общим названием «математическое программирование» или математические методы исследования операций.

Математическое программирование включает в себя такие разделы математики, как линейное, нелинейное и динамическое программирование. Сюда же относят и стохастическое программирование, теорию игр, теорию массового обслуживания, теорию управления запасами и некоторые другие.

Математическое программирование — это раздел высшей математики, посвященный решению задач, связанных с нахождением экстремумов функций нескольких переменных, при наличии ограничений на переменные.

Методами математического программирования решаются задачи о распределении ресурсов, планировании выпуска продукции, ценообразования, транспортные задачи и т.д.

Построение математической модели экономической задачи включает следующие этапы:

  1. выбор переменных задачи;
  2. составление системы ограничений;
  3. выбор целевой функции.

Переменными задачи называются величины

Система ограничений включает в себя систему уравнений и неравенств, которым удовлетворяют переменные задачи и которые следуют из ограниченности ресурсов или других экономических или физических условий, например, положительности переменных и т.п.

Целевой функцией называют функцию переменных задачи, которая характеризует качество выполнения задачи, и экстремум которой требуется найти.

Общая задача математического программирования формулируется следующим образом: найти экстремум целевой функции: и соответствующие ему переменные при условии, что эти переменные удовлетворяют системе ограничений:

Если целевая функция и система ограничений линейны, то задача математического программирования называется задачей линейного программирования и в общем виде может быть записана следующим образом:

Данная запись означает следующее: найти экстремум целевой функции задачи и соответствующие ему переменные X = (). при условии, что эти переменные удовлетворяют системе ограничений и условиям неотрицательности.

Допустимым решением (планом) задачи линейного программирования называется любойX = (). удовлетворяющий системе ограничений и условиям неотрицательности. Множество допустимых решений (планов) задачи образует область допустимых решений.

Оптимальным решением (планом) задачи линейного программирования называется такое допустимое решение задачи, при котором целевая функция достигает экстремума.

Задача линейного программирования

В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися. В случае, когда все ограничения являются уравнениями и все переменные удовлетворяют условию неотрицательности, задачу линейного программирования называют канонической. Каноническая задача линейного программирования в координатной форме записи имеет вид:

Используя знак суммирования эту задачу можно записать следующим образом:

Каноническая задача линейного программирования в векторной форме имеет вид:

В данном случае введены векторы:

Здесь С — X — скалярное произведение векторов С и X.

Каноническая задача линейного программирования в матричной форме записи имеет вид:

Здесь А — матрица коэффициентов системы уравнений, X -матрица-столбец переменных задачи; — матрица-столбец правых частей системы ограничений.

Нередко используются задачи линейного программирования, называемые симметричными, которые в матричной форме записи имеют вид:

Приведение общей задачи линейного программирования к канонической форме

В большинстве методов решения задач линейного программирования предполагается, что система ограничений состоит из уравнений и естественных условий неотрицательности переменных. Однако, при составлении математических моделей экономических задач ограничения в основном формулируются системы неравенств, поэтому возникает необходимость перехода от системы неравенств к системе уравнений. Это может быть сделано следующим образом. К левой части линейного неравенства:

прибавляется величина такая, что переводит неравенство в равенство , где:

Неотрицательная переменная называется дополнительной переменной.

Основания для возможности такого преобразования дает следующая теорема.

Теорема. Каждому решению неравенства соответствует единственное решение уравнения: и неравенства и, наоборот, каждому решению уравнения: и неравенства соответствует единственное решение неравенства:

Доказательство. Пусть — решение неравенства. Тогда:

Если в уравнение вместо переменных подставить значения , получится:

Таким образом, решение удовлетворяет уравнению: и неравенству .

Доказана первая часть теоремы.

Пусть удовлетворяет уравнению и неравенству , т.е. . Отбрасывая в левой части равенства неотрицательную величину , получим:

т.е. удовлетворяет неравенству: что и требовалось доказать.

Если в левую часть неравенств системы ограничений вида

добавить переменную , то получится система ограничений — уравнений В случае, если система неравенств-ограничений имеет вид , то из левой части неравенств-ограничений нужно вычесть соответствующую неотрицательную дополнительную переменную

Полученная таким образом система уравнений-ограничений, вместе с условиями неотрицательности переменных, т.е. и целевой функцией является канонической формой записи задачи линейного программирования.

Дополнительные переменные вводятся в целевую функцию с нулевыми коэффициентами и поэтому не влияют на ее значения.

В реальных практических задачах дополнительные неизвестные имеют определенный смысл. Например, если левая часть ограничений задачи отражает расход ресурсов на производство продукции в объемах , а правые части — наличие производственных ресурсов, то числовые значения дополнительных неизвестных и означают объем неиспользованных ресурсов i-го вида.

Иногда возникает также необходимость перейти в задаче от нахождения минимума к нахождению максимума или наоборот. Для этого достаточно изменить знаки всех коэффициентов целевой функции на противоположные, а в остальном задачу оставить без изменения. Оптимальные решения полученных таким образом задач на максимум и минимум совпадают, а значения целевых функций при оптимальных решениях отличаются только знаком.

Множества допустимых решений

Множество точек называется выпуклым, если оно вместе с любыми двумя своими точками содержит их произвольную выпуклую линейную комбинацию.

Выпуклой линейной комбинацией произвольных точек Евклидова пространства называется сумма — произвольные неотрицательные числа, сумма которых равна 1.

Геометрически это означает, что если множеству с любыми двумя его произвольными точками полностью принадлежит и отрезок, соединяющий эти точки, то оно будет выпуклым. Например, выпуклыми множествами являются прямолинейный отрезок, прямая, круг, шар, куб, полуплоскость, полупространство и др.

Точка множества называется граничной, если любая окрестность этой точки сколь угодно малого размера содержит точки, как принадлежащие множеству, так и не принадлежащие ему.

Граничные точки множества образуют его границу. Множество называется замкнутым, если оно содержит все свои граничные точки.

Ограниченным называется множество, если существует шар с радиусом конечной длины и центром в любой точке множества, содержащий полностью в себе данное множество. В противном случае множество будет неограниченным.

Пересечение двух или более выпуклых множеств будет выпуклым множеством, так как оно отвечает определению выпуклого множества.

Точка выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации двух других различных точек этого множества.

Так, угловые точки треугольника — его вершины, круга — точки окружности, ее ограничивающие, а прямая, полуплоскость, плоскость, полупространство, пространство не имеют угловых точек.

Выпуклое замкнутое ограниченное множество на плоскости, имеющее конечное число угловых точек, называется выпуклым многоугольником, а замкнутое выпуклое ограниченное множество в трехмерном пространстве, имеющее конечное число угловых точек, называется выпуклым многогранником.

Теорема. Любая тонка многоугольника является выпуклой линейной комбинацией его угловых точек.

Теорема. Область допустимых решений задачи линейного программирования является выпуклым множеством.

Уравнение целевой функции при фиксированных значениях самой функции является уравнением прямой линии (плоскости, гиперплоскости и т.д.). Прямая, уравнение которой получено из целевой функции при равенстве ее постоянной величине, называется линией уровня.

Линия уровня, имеющая общие точки с областью допустимых решений и расположенная так, что область допустимых решений находится целиком в одной из полуплоскостей, называется опорной прямой.

Теорема. Значения целевой функции в точках линии уровня увеличиваются, если линию уровня перемещать параллельно начальному положению в направлении нормали и убывают при перемещении в противоположном направлении.

Теорема. Целевая функция задачи линейного программирования достигает экстремума в угловой точке области допустимых решений; причем, если целевая функция достигает экстремума в нескольких угловых точках области допустимых решений, она также достигает экстремума в любой выпуклой комбинации этих точек.

Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками

Каноническая задача линейного программирования в векторной форме имеет вид:

Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.

Базисным решением системы называется частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное , где n — число неизвестных, r- ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.

Опорным решением задачи линейного программирования называется такое допустимое решение , для которого векторы условий, соответствующие положительным координатам линейно независимы.

Число отличных от нуля координат опорного решения не может превосходить ранга r системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).

Если число отличных от нуля координат опорного решения равно m, то такое решение называется невырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше т, такое решение называется вырожденным.

Базисом опорного решения называется базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.

Теорема. Любое опорное решение является угловой точкой области допустимых решений.

Теорема. Любая угловая точка области допустимых решений является опорным решением.

Пример:

Графический метод решения задачи линейной оптимизации рассмотрим на примере задачи производственного планирования при n = 2.

Предприятие изготавливает изделия двух видов А и В. Для производства изделий оно располагает сырьевыми ресурсами трех видов С, D и Е в объемах 600, 480 и 240 единиц соответственно. Нормы расхода ресурсов на единицу продукции каждого вида известны и представлены в табл. 14.1

Прибыль от реализации изделия А составляет 40 млн. руб., а изделия В — 50 млн.руб. Требуется найти объемы производства изделий А и В, обеспечивающие максимальную прибыль.

Построим математическую модель задачи, для чего обозначим — объемы производства изделий А и В соответственно.

Тогда прибыль предприятия от реализации изделий А и изделий В составит:

Ограничения по ресурсам будут иметь вид:

Естественно, объемы производства должны быть неотрицательными

Решение сформулированной задами найдем, используя геометрическую интерпретацию. Определим сначала многоугольник решений, для чего систему ограничений неравенств запишем в виде уравнений и пронумеруем их:

Каждое из записанных уравнений представляет собой прямую на плоскости, причем 4-я и 5-я прямые являются координатными осями.

Чтобы построить первую прямую, найдем точки ее пересечения с осями координат: а при .

Далее нас интересует, по какую сторону от прямой будет находиться полуплоскость, соответствующая первому неравенству. Чтобы определить искомую полуплоскость, возьмем точку O(0,0) подставив ее координаты в неравенство, видим, что оно удовлетворяется. Так как точка O(0,0) лежит левее первой прямой, то и полуплоскость будет находиться левее прямой

. На рис 14 , расположение полуплоскости относительно первой прямой отмечено стрелками.

Аналогично построены 2-я и 3-я прямые и найдены полуплоскости, соответствующие 2-му и 3-му неравенству. Точки, удовлетворяющие ограничениям , находятся в первом квадранте. Множество точек, удовлетворяющих всем ограничениям одновременно, является ОДР системы ограничений. Такой областью на графике (рис. 14.1) является многоугольник ОАВС.

Любая точка многоугольника решений удовлетворяет системе ограничений задачи и, следовательно, является ее решением. Это говорит о том, что эта задача линейной оптимизации имеет множество допустимых решений, т.е. моговариантпа. Нам же необходимо найти решение, обеспечивающее максимальную прибыль.

Чтобы найти эту точку, приравняем функцию к нулю и построим соответствующую ей прямую. Вектор-градиент прямой функции

имеет координаты

Изобразим вектор на графике и построим прямую функции перпендикулярно вектору на рис. 14.1. Перемещая прямую функции параллельно самой себе в направлении вектора, видим, что последней точкой многоугольника решений, которую пересечет прямая функции, является угловая точка В. Следовательно, в точке В функция достигает максимального значения. Координаты точки В находим, решая систему уравнений, прямые которых пересекаются в данной точке.

Решив эту систему, получаем, что

Следовательно, если предприятие изготовит изделия в найденных объемах, то получит максимальную прибыль, равную:

Алгоритм решения задачи линейного программирования графическим методом таков:

  1. Строится область допустимых решений;
  2. Строится вектор нормали к линии уровня с точкой приложении в начале координат;
  3. Перпендикулярно вектору нормали проводится одна из линий уровня, проходящая через начало координат;
  4. Линия уровня перемещается до положения опорной прямой. На этой прямой и будут находиться максимум или минимум функции.

В зависимости от вида области допустимых решений и целевой функции задача может иметь единственное решение, бесконечное множество решений или не иметь ни одного оптимального решения.

На рис. 14.3 показан случай, когда прямая функции параллельна отрезку АВ, принадлежащему ОДР. Максимум функции Z достигается в точке А и в точке В, а, следовательно, и в любой точке отрезка АВ, т.к. эти точки могут быть выражены в виде линейной комбинации угловых точек А и В.

На рисунке 14.4 изображен случай, когда система ограничений образует неограниченное сверху множество. Функция Z в данном случае стремится к бесконечности, так как прямую функции можно передвигать в направлении вектора градиента как угодно далеко, а на рисунке 14.5 представлен случай несовместной системы ограничений.

Основные понятия симплексного метода решения задачи линейного программирования.

Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж.Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения рассмотренного выше метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования; направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.

Симплекс-метод основан на следующих свойствах задачи линейного программирования:

  • Не существует локального экстремума, отличного от глобального. Другими словами, если экстремум есть, то он единственный.
  • Множество всех планов задачи линейного программирования выпукло.
  • Целевая функция ЗЛП достигает своего максимального (минимального) значения в угловой точке многогранника решений (в его вершине). Если целевая функция принимает свое оптимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
  • Каждой угловой точке многогранника решений отвечает опорный план ЗЛП.

Рассмотрим две разновидности симплексного метода: симплекс-метод с естественным базисом и симплекс-метод с искусственным базисом (или М-метод).

Симплекс-метод с естественным базисом

Для применения этого метода задача линейного программирования должна быть сформулирована в канонической форме, причем матрица системы уравнений должна содержать единичную подматрицу размерностью mхm. В этом случае очевиден начальный опорный план (неотрицательное базисное решение).

Для определенности предположим, что первые m векторов матрицы системы составляют единичную матрицу. Тогда очевиден первоначальный опорный план:

Проверка на оптимальность опорного плана проходит с помощью критерия оптимальности, переход к другому опорному плану — с помощью преобразований Жордана-Гаусса и с использованием критерия оптимальности.

Полученный опорный план снова проверяется на оптимальность и т.д. Процесс заканчивается за конечное число шагов, причем на последнем шаге либо выявляется неразрешимость задачи (конечного оптимума нет), либо получаются оптимальный опорный план и соответствующее ему оптимальное значение целевой функции.

Признак оптимальности заключается в следующих двух теоремах.

Теорема 1. Если для некоторого вектора, не входящего в базис, выполняется условие:

то можно получить новый опорный план, для которого значение целевой функции будет больше исходного; при этом могут быть два случая:

  1. если все координаты вектора, подлежащего вводу в базис, неположительны, то задача линейного программирования не имеет решения;
  2. если имеется хотя бы одна положительная координата у вектора, подлежащего вводу в базис, то можно получить новый опорный план.

Теорема 2. Если для всех векторов выполняется условие то полученный план является оптимальным.

На основании признака оптимальности в базис вводится вектор Ак, давший минимальную отрицательную величину симплекс-разности:

Чтобы выполнялось условие неотрицательности значений опорного плана, выводится из базиса вектор , который дает минимальное положительное отношение:

Строка называется направляющей, столбец и элемент направляющими (последний называют также разрешающим элементом).

Элементы вводимой строки, соответствующей направляющей строке, в новой симплекс-таблице вычисляются по формулам:

а элементы любой другой i-й строки пересчитываются по формулам:

Значения базисных переменных нового опорного плана (показатели графы «план») рассчитываются по формулам:

Если наименьшее значение Q достигается для нескольких базисных векторов, то чтобы исключить возможность зацикливания (повторения базиса), можно применить следующий способ.

Вычисляются частные, полученные от деления всех элементов строк, давших одинаковое минимальное значение Q на свои направляющие элементы. Полученные частные сопоставляются по столбцам слева направо, при этом учитываются и нулевые, и отрицательные значения. В процессе просмотра отбрасываются строки, в которых имеются большие отношения, и из базиса выводится вектор, соответствующий строке, в которой раньше обнаружится меньшее частное.

Для использования приведенной выше процедуры симплекс -метода к минимизации линейной формы следует искать максимум функции затем полученный максимум взять с противоположным знаком. Это и будет искомый минимум исходной задачи линейного программирования.

Симплексный метод с искусственным базисом (М-метод)

Симплексный метод с искусственным базисом применяется в тех случаях, когда затруднительно найти первоначальный опорный план исходной задачи линейного программирования, записанной в канонической форме.

М-метод заключается в применении правил симплекс-метода к так называемой М-задаче. Она получается из исходной добавлением к левой части системы уравнений в канонической форме исходной задачи линейного программирования таких искусственных единичных векторов с соответствующими неотрицательными искусственными переменными, чтобы вновь полученная матрица содержала систему единичных линейно-независимых векторов. В линейную форму исходной задачи добавляется в случае её максимизации слагаемое, представляющее собой произведение числа (-М) на сумму искусственных переменных, где М — достаточно большое положительное число.

В полученной задаче первоначальный опорный план очевиден. При применении к этой задаче симплекс-метода оценки А, теперь будут зависеть от числа М. Для сравнения оценок нужно помнить, что М — достаточно большое положительное число, поэтому из базиса будут выводиться в первую очередь искусственные переменные.

В процессе решения M-задачи следует вычеркивать в симплекс-таблице искусственные векторы по мере их выхода из базиса. Если все искусственные векторы вышли из базиса, то получаем исходную задачу. Если оптимальное решение М-задачи содержит искусственные векторы или М-задача неразрешима, то исходная задача также неразрешима.

Путем преобразований число вводимых переменных, составляющих искусственный базис, может быть уменьшено до одной.

Теория двойственности

Любой задаче линейного программирования можно сопоставить сопряженную или двойственную ей задачу. Причем, совместное исследование этих задач дает, как правило, значительно больше информации, чем исследование каждой из них в отдельности.

Любую задачу линейного программирования можно записать в виде:

Первоначальная задача называется исходной или прямой.

Модель двойственной задачи имеет вид:

Переменные двойственной задачи называют объективно обусловленными оценками или двойственными оценками.

Связь исходной и двойственной задач заключается, в частности, в том, что решение одной из них может быть получено непосредственно из решения другой. Каждая из задач двойственной пары фактически является самостоятельной задачей линейного программирования и может быть решена независимо от другой.

Двойственная задача по отношению к исходной составляется согласно следующим правилам:

    Целевая функция исходной задачи формулируется на максимум, а целевая функция двойственной задачи — на минимум, при этом в задаче на максимум все неравенства в функциональных ограничениях имеют вид

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Что называется целевой функцией уравнение

Индивидуальные онлайн уроки: Отправьте запрос сейчас: irina@bodrenko.org
Математика (ЕГЭ, ОГЭ), Английский язык (разговорный, грамматика, TOEFL)
Решение задач: по математике, IT, экономике, психологии

Методы оптимальных решений

Тема лекции 1: «Основы линейного программирования»

1. Основные элементы модели линейного программирования.

2. Графический анализ чувствительности.

3. Общая задача линейного программирования.

РАЗДЕЛ 1. ОСНОВНЫЕ ЭЛЕМЕНТЫ МОДЕЛИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.

ЧТО ТАКОЕ ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ?

Успешность решения подавляющего большинства экономических задач зависит от наилучшего, наивыгоднейшего способа использования ресурсов. В процессе экономической деятельности приходится распределять такие важные ресурсы, как деньги, товары, сырье, оборудование, рабочую силу и др. И от того, как будут распределяться эти, как правило, ограниченные ресурсы, зависит конечный результат деятельности, бизнеса. Суть методов оптимизации заключается в том, что, исходя из наличия определенных ресурсов, выбирается такой способ их использования (распределения), при котором обеспечивается максимум (или минимум) интересующего нас показателя. При этом учитываются определенные ограничения, налагаемые на использование ресурсов условиями экономической ситуации. В качестве методов оптимизации в экономике находят применение все основные разделы математического программирования (планирования): линейное, нелинейное и динамическое.

ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ (ЛП) – это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. Линейное программирование (ЛП) является наиболее простым и лучше всего изученным разделом математического программирования. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. Широкое использование этого метода также подкрепляется высокоэффективными компьютерными алгоритмами, реализующими данный метод. На алгоритмах линейного программирования (учитывая их компьютерную эффективность) базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач исследования операций (ИО), включая целочисленное, нелинейное и стохастическое программирование. Вычисления в методе ЛП, как и во многих задачах ИО, как правило, очень трудоемкие и поэтому требуют применения вычислительной техники. Линейное программирование (планирование) служит для выбора наилучшего плана распределения ограниченных однородных ресурсов в целях решения поставленной задачи.

В этом разделе на простых примерах с двумя переменными показаны основные элементы модели ЛП. Далее эти примеры будут обобщены в общую задачу линейного программирования.

ПРИМЕР 1. Компания «Яркие краски» производит краску для внутренних и наружных работ из сырья двух типов: М1 и М2. Следующая таблица представляет основные данные для задачи.

Расход сырья (в тоннах) на тонну краски

Максимально возможный ежедневный расход сырья

Для наружных работ

Для внутренних работ

Доход в ($1000) на тонну краски

Отдел маркетинга компании ограничил ежедневное производство краски для внутренних работ до 2 тонн (из-за отсутствия надлежащего спроса), а также поставил условие, чтобы ежедневное производство краски для внутренних работ не превышало более чем на 1 тонну аналогичный показатель производства краски для наружных работ. Компания хочет определить оптимальное (наилучшее) соотношение между видами выпускаемой продукции для максимизации общего ежедневного дохода.

КАКИЕ ОСНОВНЫЕ ЭЛЕМЕНТЫ ВКЛЮЧАЕТ ЗАДАЧА (МОДЕЛЬ) ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ?

Задача (модель) линейного программирования, как и любая задача исследования операций, включает три основных элемента.

1. Переменные, которые следует определить.

2. Целевая функция, подлежащая оптимизации.

3. Ограничения, которым должны удовлетворять переменные.

Определение переменных – это первый шаг в создании модели. После определения переменных построение ограничений и целевой функции обычно не вызывает трудностей.

1. Переменные. В нашем примере необходимо определить ежедневные объемы производства краски для внутренних и наружных работ. Обозначим эти объемы как переменные модели: переменная x 1 – это ежедневный объем производства краски для наружных работ (измеряется в тоннах); переменная x 2 – это е жедневный объем производства краски для внутренних работ (измеряется в тоннах).

2. Целевая функция. Используя эти переменные, далее строим целевую функцию. Логично предположить, что целевая функция, как суммарный ежедневный доход, должна возрастать при увеличении ежедневных объемов производства красок. Обозначим эту функцию через z : (суммарный ежедневный доход – функция z , измеряется в тысячах долларов) и положим, что z =5х1+4х2. В соответствии с целями компании получаем задачу: максимизировать функцию z = 5х1 + 4х2.


3. Ограничения. Итак, остался не определенным последний элемент модели — условия (ограничения), которые должны учитывать ограниченные возможности ежедневного потребления сырья и ограниченность спроса на готовую продукцию. Другими словами, ограничения на сырье можно записать следующим образом.

Из таблицы с данными имеем следующее.

Используемый объем сырья М1 = 6х1 + 4х2 (т); используемый объем сырья М2 = 1х1 + 2х2 (т).

Так как ежедневный расход сырья М1 и М2 ограничен соответственно 24 и 6 тоннами, получаем следующие ограничения. 6х1+4х2≤24 (сырье М1); х1+2х2≤6 (сырье М2).

Существует еще два ограничения по спросу на готовую продукцию:

(1) максимальный ежедневный объем производства краски для внутренних работ не должен превышать 2 тонн, и

(2) ежедневный объем производства краски для внутренних работ не должен превышать ежедневный объем производства краски для наружных работ более чем на одну тонну.

Первое ограничение (1) простое и записывается так: ( х2≤2). Второе (2) можно сформулировать так: разность между ежедневными объемами производства красок для внутренних и наружных работ не должна превышать одной тонны, т. е. ( х2– x 1≤1).

Еще одно неявное ограничение состоит в том, что переменные х1 и х2 должны быть неотрицательными. Таким образом, к сформулированным выше ограничениям необходимо добавить условие неотрицательности переменных: х1≥0, х2≥ 0. Окончательно задача будет записана следующим образом:

Максимизировать целевую функцию z ( x 1, x 2)=5х1+4х2,

при выполнении ограничений:

КАКОЕ РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ ЯВЛЯЕТСЯ ДОПУСТИМЫМ?

Любое решение, удовлетворяющее ограничениям модели, является допустимым. Например, решение х1=3 и х2=1 будет допустимым, так как не нарушает ни одного ограничения, включая условие неотрицательности. Чтобы удостовериться в этом, подставим значения х1=3 и х2=1 в левые части неравенств системы ограничений и убедимся, что ни одно неравенство не нарушается. Значение целевой функции z ( x 1; x 2)=5х1+4х2 при этом решении будет равно z (3;2) =1+4=19 (тысяч долларов).

Итак, задача сформулирована, теперь встает вопрос о нахождении оптимального допустимого решения, доставляющего максимум целевой функции. После некоторых раздумий приходим к выводу, что задача имеет много (фактически, бесконечно много) допустимых решений. По этой причине невозможна подстановка значений переменных для поиска оптимума, т.е. нельзя применить простой перебор всех допустимых решений. Следовательно, необходима эффективная процедура отбора допустимых решений для поиска оптимального. На этой лекции мы покажем графический метод нахождения оптимального допустимого решения.

В примере 1 целевая функция и все ограничения были линейными. Свойство линейности функций предполагает следующее.

1. Значения левых частей неравенств ограничений и значение целевой функции прямо пропорциональны значениям переменных.

2. Аддитивность переменных означает, что общий вклад всех переменных в значения целевой функции и левых частей неравенств ограничений является прямой суммой вкладов каждой отдельной переменной.

ГРАФИЧЕСКОЕ РЕШЕНИЕ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ.

Мы покажем, как в задаче ЛП с двумя переменными можно получить решение графическим способом. Хотя такая задача редко встречается на практике (типовая задача ЛП обычно содержит тысячи переменных), идеи, вытекающие из графического способа нахождения оптимального решения, положены в основу построения общего метода решения задачи ЛП (называемого симплекс-методом).

ИЗ КАКИХ ЭТАПОВ СОСТОИТ ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ?

Графический способ решения задачи ЛП состоит из двух этапов.

Этап 1. Построение пространства допустимых решений, удовлетворяющих всем ограничениям модели.

Этап 2. Нахождение оптимального решения среди всех точек пространства допустимых решений.

Далее графический способ решения описан в двух вариантах: для максимизации и минимизации целевой функции.

ВАРИАНТ 1 . НАХОЖДЕНИЕ МАКСИМУМА ЦЕЛЕВОЙ ФУНКЦИИ

Мы используем модель, построенную для компании «Яркие краски» в примере 1, чтобы показать оба этапа графического решения задачи ЛП.

Этап 1. Построение пространства допустимых решений.

Сначала на плоскости проведем оси координат: на горизонтальной оси будут указываться значения переменной x 1, а на вертикальной оси – значения переменной х2 (рисунок 1). Далее рассмотрим условие неотрицательности переменных: х1≥0 и х2≥0. Эти два ограничения показывают, что множество допустимых решений будет лежать в первом квадранте (т.е. выше оси х1 и правее оси х2).

Чтобы учесть оставшиеся ограничения, проще всего в этих ограничениях заменить неравенства на равенства, в результате чего мы получим уравнения прямых, а затем на плоскости О x 1 x 2 проведем эти прямые.

Например, неравенство (6х1 + 4х2≤ 24) заменяется уравнением прямой (6х1 + 4х2 = 24). Чтобы провести эту прямую , надо найти две различные точки, лежащие на этой прямой. Можно положить х1=0, тогда х2=24/4= 6. Аналогично, для х2=0 находим х1=24/6= 4. Итак, прямая, заданная уравнением 6х1 + 4х2 = 24, проходит через две точки (0,6) и (4, 0). Эта прямая обозначена на рисунке 1 как линия (1).

Рисунок 1. Построение пространства допустимых решений.


Теперь рассмотрим, как графически интерпретируются неравенства. Каждое неравенство делит плоскость Ох1х2 на две полуплоскости, которые располагаются по обе стороны прямой, которая, как показано выше, соответствует данному неравенству. Точки плоскости, расположенные по одну сторону прямой, удовлетворяют неравенству (допустимая полуплоскость), а точки, лежащие по другую сторону, нет. Точкой, проверяющей, точки какой полуплоскости удовлетворяют неравенству, а какой — нет, может служить точка (0,0). Например, эта точка удовлетворяет первому неравенству (6х1+4х2≤ 24) (здесь 6∙0 +4∙0=0 В том случае, когда точка (0,0) не удовлетворяет неравенству, допустимой полуплоскостью будет та, которая не содержит эту точку. Если же прямая проходит через эту точку (0,0), то следует в качестве «тестовой» взять какую-либо другую точку.

Этап 2. Нахождение оптимального решения.

Точки пространства допустимых решений, показанного на рисунке 1 , удовлетворяют одновременно всем ограничениям. Это пространство ограничено отрезками прямых, которые соединяются в угловых точках А, В, С, D , Е и Е. Любая точка, расположенная внутри или на границе области, ограниченной ломаной АВС D Е F , является допустимым решением, т.е. удовлетворяет всем ограничениям. Поскольку пространство допустимых решений содержит бесконечное число точек, необходима некая процедура поиска оптимального решения.
Нахождение оптимального решения требует определения направления возрастания целевой функции ( z = 5х1 +4х2) (напомним, что мы максимизируем функцию z ). Мы можем приравнять z к нескольким возрастающим значениям, например, к 10 и 15. Эти значения, подставленные вместо z в выражение целевой функции, порождают уравнения прямых. Для значений 10 и 15 получаем следующие уравнения прямых: ( 5х1+4х2 =10) и ( 5х1+ 4х2=15) . На рисунке 2 эти прямые показаны штриховыми линиями, а направление возрастания целевой функции z — толстой стрелкой. Целевая функция может возрастать до тех пор, пока прямые, соответствующие возрастающим значениям этой функции, пересекают область допустимых решений. Точка пересечения области допустимых решений и прямой, соответствующей максимально возможному значению целевой функции, и будет точкой оптимума.

Рисунок 2. Нахождение оптимального решения .

На рисунке 2 видно, что оптимальное решение соответствует точке С. Эта точка является точкой пересечения прямых (1) и (2), поэтому ее координаты х1 и х2 находятся как решение системы уравнений, задающих эти прямые:

Решением этой системы будет точка: х1=3 и х2=1,5. При этом значение целевой функции z в данной точке равно = 5 х1+ 4х2=15+6=21 . Полученное решение означает, что для компании «Яркие краски» оптимальным выбором будет ежедневное производство 3 тонны краски для наружных работ и 1,5 тонны для внутренних работ с ежедневным доходом в $21 000.

Не случайно, что оптимальное решение расположено в угловой точке пространства допустимых решений, где пересекаются две прямые. Если мы изменим наклон функции (путем изменения ее коэффициентов), то обнаружим, что в любом случае решение достигается в одной из угловых точек (или одновременно в нескольких угловых точках). В этом и состоит основная идея построения общего симплексного алгоритма.

ВАРИАНТ 2. НАХОЖДЕНИЕ МИНИМУМА ЦЕЛЕВОЙ ФУНКЦИИ.

ПРИМЕР 2. (ЗАДАЧА О ДИЕТЕ).


Фармацевтическая фирма «Здоровое питание» ежедневно производит не менее 800 килограммов некой пищевой добавки, которая состоит из смеси кукурузной и соевой муки, состав которой представлен в следующей таблице.

2.2. Целевая функция (план)

Определение. Целевая функция – выражение, значение которого стремимся сделать максимальным или минимальным.

Целевая функция позволяет количественно сравнить два альтернативных решения. С математической точки зрения целевая функция описывает некоторую (N+1)-мерную поверхность.

1) Если имеется только один проектный параметр, то целевую функцию можно представить кривой на плоскости (рис. 1).

2) Если проектных параметров два, то целевая функция будет изображаться поверхностью в пространстве трех измерений (рис. 2).

Определение. При трех и более проектных параметрах поверхности, задаваемые целевой функцией, называются Гиперповерхностями и не поддаются изображению обычными средствами.

Целевая функция в ряде случаев может быть представлена:

 только целыми значениями;

 двумя значениями – да или нет (дискретная функция).

В каком бы виде ни была представлена целевая функция, она должна быть однозначной функцией проектных параметров.

В ряде задач оптимизации требуется введение более одной целевой функции. Иногда одна из них может оказаться несовместимой с другой. Примером служит проектирование самолетов, когда одновременно требуется обеспечить максимальную прочность, минимальный вес и минимальную стоимость. В таких случаях конструктор должен ввести систему приоритетов. В результате получается «функция компромисса», позволяющая в процессе оптимизации пользоваться одной составной целевой функцией.


источники:

http://bodrenko.org/moptr/moptr-l1.htm

http://matica.org.ua/metodichki-i-knigi-po-matematike/metody-optimizatcii-nekrasova-m-g/2-2-tcelevaia-funktciia-plan