Что означает отделить корни уравнения

Что означает отделить корни уравнения

1. Приближенное решение нелинейных уравнений

Пусть дано уравнение с одним неизвестным

, (1.1)

где f ( x ) — заданная алгебраическая или трансцендентная функция.

Функция называется алгебраической, если для получения её значения нужно выполнить арифметические операции и возведение в степень с рациональным показателем. Примеры трансцендентных функций — показательная , логарифмическая, тригонометрические, обратные тригонометрические.

Решить уравнение — значит найти все его корни, то есть те значения х , которые обращают уравнение в тождество, или доказать, что корней нет.

В общем случае не существует формул, по которым определяются точные значения корней уравнения (1.1). Для отыскания корней используют приближенные методы, при этом корни находятся с некоторой заданной точностью ε . Это означает, что если x — точное значение корня уравнения, а x ’ — его приближенное значение с точностью ε , то | x — x ’ | ≤ ε . Если корень найден с точностью ε , то принято писать x = x ± ε .

Будем предполагать, что уравнение (1.1) имеет лишь изолированные корни, то есть для каждого корня существует окрестность, не содержащая других корней этого уравнения.

Приближенное решение уравнения состоит из двух этапов:

1. Отделение корней, то есть нахождение интервалов из области определения функции f ( x ), в каждом из которых содержится только один корень уравнения (1).

2. Уточнение корней до заданной точности.

Отделение корней можно проводить графически и аналитически.

Для того , чтобы графически отделить корни уравнения (1.1), строят график функции y = f ( x ). Абсциссы точек его пересечения с осью Ox есть действительные корни уравнения (рис. 1). Практически бывает удобнее заменить уравнение (1.1) равносильным ему уравнением

, (1.2)

где Φ( x ) и Ψ( x ) — более простые функции, чем f ( x ). Абсциссы точек пересечения графиков функций y = Φ( x ) и y = Ψ( x ) дают корни уравнения (1.2), а значит и исходного уравнения (1.1) (рис.2).

Аналитическое отделение корней основано на следующей теореме: если непрерывная на отрезке [ a , b ] функция y = f ( x ) принимает на концах отрезка значения разных знаков, т.е. f ( a )· f ( b ) f ( x ) = 0; если при этом производная f ’ ( x ) сохраняет знак внутри отрезка [ a , b ], то корень является единственным.

Уточнение корней заключается в сужении интервала изоляции корня и выполняется одним из специальных методов. Рассмотрим самый простой из них — метод половинного деления.

Пусть корень отделён и принадлежит отрезку [ a , b ]. Находим середину отрезка [ a , b ] по формуле

Если f ( c ) = 0, то с — искомый корень. Если f ( c ) ≠ 0, то в качестве нового отрезка изоляции корня [ a 1 , b 1 ] выбираем ту половину [ a , c ] или [ c , b ], на концах которой f ( x ) принимает значения разных знаков. Другими словами, если f ( a ) ∙ f ( c ) a , c ], если f ( a ) ∙ f ( c ) — отрезку [ c , b ]. Полученный отрезок снова делим пополам, находим c1 ,

вычисляем f ( c 1 ), выбираем отрезок [ a 2 , b 2 ] и т.д. Длина каждого нового отрезка вдвое меньше длины предыдущего, то есть за n шагов отрезок сократится в 2 n раз. Как только будет выполнено условие

то в качестве приближенного значения корня, вычисленного с точностью ε , можно взять

Пример . Пусть требуется решить уравнение

с точностью ε = 0,0001. Отделим корень графически. Для этого преобразуем уравнение к виду

и построим графики функций (рис. 4):

Из рисунка видно, что абсцисса точки пересечения этих графиков принадлежит отрезку [0; 1].

Подтвердим аналитически правильность нахождения отрезка изоляции корня. Для отрезка [0; 1] имеем:

. Следовательно, корень отделён правильно.

Уточнение корня выполним методом половинного деления.

Корень принадлежит отрезку

Корень принадлежит отрезку

Корень принадлежит отрезку

Уточнение корня уравнения методом половинного деления

Пояснения к работе

2.1 Краткие теоретические сведения:

Отделение корней

Пусть имеется уравнение вида

где f (х) — алгебраическая или трансцендентная функция. Напомним, что функция называется алгебраической, если для получения значения функции по данному значению х нужно выполнить арифметические операции и возведение в степень с рациональным показателем. К трансцендентным функциям относятся все неалгебраические функции – показательная , логарифмическая , тригонометрические и обратные тригонометрические .

Решить уравнение (1) — значит установить, имеет ли оно корни, сколько корней, и найти значения корней с требуемой точностью. Решение указанной задачи в общем случае начинают с этапа отделения корней, который заключается в установлении ко­личества корней, а также наиболее тесных промежутков, каждый из которых содержит только один корень.

Грубое отделение корней во многих случаях можно произвести графическим методом. При этом задачу часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением

В этом случае строятся графики функций f1(х) и f2(x), а потом на оси ОХ отмечаются по возможности наименьшие отрезки, лока­лизующие абсциссы точек пересечения этих графиков с осью ОХ.

Пример 1.Для графического отделения корней уравнения sin2х- 1n х = 0 преобразуем его к равносильному уравнению sin = lnх и отдельно построим графики функций sin2х и lnx (рис. 1).

Из графика вполне очевидно, что уравнение имеет единствен­ный корень ξ и этот корень находится на отрезке [1; 1,5].

Рис. 1 Графическое отделение корня уравнения sin2х-lnx = 0

При решении задачи об отделении корней бывают полезными следующие очевидные

1) если непрерывная на отрезке [а; b] функция f (х) принимает на его концах значения разных знаков (т.е. f (а) f (b) 0, так что отрезком, на котором находится корень, можно считать [1,3; 1,5].

В простейших случаях графическое отделение корней можно осуществить вручную, однако в более сложных случаях для исследования вопроса о наличии (и количестве) корней уравнения на заданном отрезке целесообразнее воспользоваться инструментальным пакетом или составить программу для ЭВМ на языке программирования. Рассмотрим коротко суть идеи для применения указанных подходов.

Пусть имеется уравнение f (х) = 0, причем известно, что все интересующие вычислителя корни находятся на отрезке [А; В], в котором функция f (х) определена, непрерывна и f (А) f (В)

х
знак f(x)++

Уравнение имеет два корня, т.к. происходит две смены знака функции. Составим новую таблицу, с более мелким интервалом изоляции корня

х-1
знак f(x)++

Корни уравнения находятся в промежутках (-1; 0) и (4; 5)

Уточнение корня уравнения методом половинного деления

Второй этап приближенного решения алгебраических и трансцендентных уравнений – уточнение корней.

Пусть уравнение f (х) = 0 имеет на отрезке [а; b] единственный корень, причем функция f(х) на этом отрезке непрерывна. Раз­делим отрезок [а; b] пополам точкой с = (а + b )/2. Если

f (с)≠0 (что наиболее вероятно), то возможны два случая: либо f (х) меняет знак на отрезке [a; с] (рис. 3, а), либо на отрезке [с; b](рис. 3, б).

К решению уравнения f (х) = 0 методом половинного деления

Выбирая в каждом случае тот из отрезков, на котором функ­ция меняет знак, и продолжая

процесс половинного деления даль­ше, можно дойти до сколь угодно малого отрезка, содержащего

Рассмотренный метод, его называют методом половинного де­ления(другое название — метод дихотомии), можно использовать как метод решения уравнения с заданной точностью.

Действительно, если на каком-то этапе процесса получен отрезок [а; b], содержащий корень, то, приняв приближенно х=(а + b)/2, полу­чим ошибку, не превышающую значения

(заметим, что речь в данном случае идет о погрешности метода). Метод половинного деления требует утомительных ручных вычислений, однако он легко реализуется с помощью программы на ЭВМ.

Пример 3. Методом половинного деления уточнить до меньший корень уравнения

.

Решение: отделим корни этого уравнения аналитически. Функция f(х) определена на всей числовой оси. Приравняем производную нулю и найдем критические точки:

.

Составим таблицу знаков функции:

х -2-1
знак f(x)+++

Из таблицы видим, что левый корень принадлежит интервалу ( ; -2). Возьмем для пробы . Тогда получим таблицу:

х-3-2-1
знак f(x)++

Следовательно, корни уравнения принадлежат промежуткам (-3; -2); (-2; -1); (0; 1). Уточним меньший корень, лежащий в интервале (-3; -2), метом половинного деления. Для удобства вычислений составим таблицу (знаки «-» и «+» в верхних индексах означают, что )

п
-3-2-2,500-15,62518,7500,125
-3-2.500-2,750-20,80022,689-1,111
-2,750-2.500-2.625-17, 9020,670-0,320
-2,625-2,500-2,563-16,84019,701-0,130
-2,563-2,500-2,532-16,23019,2330,003
-2,563-2,532-2,548-16,54019,479-0,071
-2,548-2,532-2,540-16,39019,356-0,034
-2,540-2,532-2,536-16,31019,293-0,014
-2,536-2,532-2,534-16,27019,263-0,007
-2.534-2,532-2,533-16, 25019,248-0,002
-2,533-2,532

Итак, корень уравнения .

Численное решение нелинейных уравнений с одной переменной

Учащимся 10-11 классов

доцент кафедры информатики и информационных технологий ГОУ ВПО ДВГГУ

Численное решение нелинейных уравнений с одной переменной

При решении задач прикладного характера в разнообразных разделах физики, механики, техники и других областях возникает необходимость решения нелинейных уравнений с одной переменной. При этом многие уравнения не имеют аналитических решений. Это относится к большинству трансцендентных уравнений. Также доказано, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраические уравнение выше четвертой степени.

Уравнение будем называть линейным[1], алгебраическим или трансцендентным в зависимости от того, имеет ли оно одно решение, n решений или неопределенное число решений.

Нелинейные уравнения можно разделить на два класса – алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). Например, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и другие) называются трансцендентными.[2]

Методы решения нелинейных уравнений делятся на две группы:

Точные методы позволяют записать корни в виде некоторого конечного соотношения (формулы). Из школьного курса алгебры известны такие методы для решения тригонометрических, логарифмических, показательных, а также простейших алгебраических уравнений.

Если алгебраическое или трансцендентное уравнение достаточно сложное, то его корни сравнительно редко удается найти точно. Поэтому большое значение приобретают способы приближенного нахождения корней уравнения и оценки степени их точности. Если точно определить корни уравнения не представляется возможным, для их решения используют численные итерационные (iteration — повторение) методы с заданной степенью точности.

Далее будут рассмотрены несколько численных методов и приведены алгоритмы нахождения корней уравнений.

В общем случае нелинейное уравнение можно записать в виде:

(1)

где функция F(x) — определена и непрерывна на некотором конечном или бесконечном интервале

(2)

где функции f(x) и g(x) также определены и непрерывны на интервале .

Всякое число обращающее уравнения (1) или (2) в верные числовые равенства называется корнем этого уравнения.

Корни уравнения могут быть действительными и комплексными. В дальнейшем будет идти речь только о вычислении действительных корней.

Решить уравнение численно значит:

1) установить имеет ли оно действительные корни;

2) отделить эти корни (то есть на числовой оси найти достаточно тесные промежутки, называемые интервалами изоляции корня[3], содержащие только один корень данного уравнения);

3) уточнить отделенные корни, т. е. найти значения корней с заданной степенью точности .

Последнее означает следующее.

Пусть x* — точный корень уравнения и x* , то есть x* . Если , тогда числа и могут рассматриваться как приближенные значения корня x* соответственно с недостатком и с избытком с точностью до , так как и .

Любое число, содержащееся между и , можно принять за приближенное значение корня x* с точностью до .

Графические методы решения уравнений[4]

Пусть дано уравнение F (х) = 0. Построим график функции F (х). Абсциссы точек пересечения графика с осью Ох и являются корнями уравнения.

Иногда для графического решения уравнения удобнее записать его в виде и построить графики функций: и Абсциссы точек пересечения этих графиков и являются корнями уравнения F (х) = 0 (рис. 1).

Однако этот метод позволяет получить лишь грубо приближенные значения корней уравнения. Для получения значений корней с большей точностью применяются численные методы. Однако, графи­ческий метод очень удобен, так как он позволяет найти корни с точностью, достаточной для решения многих практических задач, а также достаточно нагляден, прост и доступен.

Численные методы решения уравнений

Наиболее распространенными на практике численными методами решения уравнения (1) являются: метод половинного деления, метод хорд, метод касательных, метод простой итерации и т. д.[5]

Процесс численного решения уравнений разбивается на три этапа:

1. Отделение корней уравнения. Этот процесс можно сделать как графически, так и аналитически. Важно найти такие отрезки, которые бы содержали по одному корню уравнения (1).

2. Выбор метода решения и преобразование уравнения к виду, удобному для применения данного метода.

3. Уточнение корней с заданной точностью при помощи выбранного численного метода.

Говорят, что корень x* уравнения отделен на отрезке , если он содержится в данном отрезке, и если на этом отрезке других корней нет.

Провести полное отделение всех корней уравнения – значит разбить всю область допустимых значений на интервалы (или на отрезки), в каждом из которых содержится ровно по одному корню (или не содержится ни одного корня).

Отделение корней обычно начинают проводить графически. Для этого строят графики функций, получают интервалы, в которых на­ходятся корни уравнения. Это предположение затем проверяют ана­литически, пользуясь следующим свойством непрерывной функции F(x): если функция непрерывна на интервале и на его концах имеет разные знаки (), то между точками a и b имеется хотя бы один корень уравнения .

При этом корней может оказаться и несколько, как показано на рис. 2. Рис.2

Для того, чтобы на интервале существовал только один корень, должно выполняться следующее свойство: если функция непрерывна и монотонна на отрезке и принимает на концах отрезка значения разных знаков, то внутри отрезка содержится корень уравнения и этот корень единственный (рис. 3, а, b).

Пример 1: Отделить графически положительные корни уравнения

Решение: Найдем приближенные значения корней уравнения графически. Для этого удобно представить уравнение в следующем виде: e0,3x = 2 sin(2x).

Решением данного уравнения будет являться абсцисса x точки пересечения графиков следующих функций:

На рисунке видно, что графики функций y1(x) и y2(x) пересекаются в двух точках A и B, абсциссы которых положительны и лежат соответственно в промежутках и. Следовательно, уравнение имеет два положительных корня x1 и x2, которые лежат в промежутках и.

Примечание: Графики функций можно строить с помощью компьютера, например, в электронных таблицах Excel или в свободно распространяемой системе компьютерной математики Scilab.[7]

Пример 2: Отделить аналитически корни уравнения

Решение: Для аналитического отделения корней найдем производную функции

Производная этой функции

ни в одной точке не обращается в нуль, т. к. D = 36 -4*3*11 0, следовательно, функция f везде возрастает, и уравнение (4) может иметь один корень.

[3] Методы определения интервала изоляции корня основаны на следующем свойстве: если непрерывная функция f(x) на интервале [a, b] поменяла знак, т. е. f(a)*f(b)


источники:

http://poisk-ru.ru/s34420t9.html

http://pandia.ru/text/77/276/87588.php