Что понимается под словами решить уравнение шредингера

Расставляя все точки над «пси»

При планировании нескольких статей так или иначе связанных с квантовой механикой было решено вынести обсуждение ряда технических вопросов, философских споров и досужих мифов в отдельную статью. Речь пойдет о самом сложном и интересном инструменте человеческого интеллекта — квантовой теории.

Я вовсе не физик, но знаю, что к чему.
Попай-моряк

Большая часть нашей коллективной деятельности регулируется другими людьми. Мы получаем от них набор условных обозначений и правила их использования. Владение таким инструментом позволяет нам принимать сообщения и отвечать так, чтоб максимально точно передать результат работы своей нейронной сети. Человеческие правила коллективной деятельности определяют эволюцию нашей культуры.

Напротив, природные системы, от атомов до галактик, развиваются независимо от человеческих правил. Мы не можем изменять физические законы. Мы можем только попытаться понять их. Сама природа судит посредством экспериментов, насколько правдоподобно то или иное объяснение некоторых природных явлений. Тем не менее, в передовых исследованиях, где неизвестное только начинает обретать форму, новое знание достаточно неустойчиво.

Для должного обоснования модели исследователь обязан иметь обширный фундамент. По аналогии с высказыванием «ты — то что ты ешь» справедливо то, что мы оперируем при мышлении лишь знаниями поступившими извне (разумеется с учетом предустановок обусловленных на начальных этапах формирования мозга). Тут уже приходится полагаться помимо собственного чувственного опыта на утверждения окружающих. И не абы кого, а авторитетов.

Для того, чтобы быстро восполнить какой-либо пробел, достаточно вбить в поисковик ключевую фразу, а ля «двухщелевой эксперимент» и пробежаться глазами по предложенным источникам. И пожалуйста, у вас есть знание — быстро, дешево, наглядно! Теперь вы знаете ответ на вопрос и можете даже написать свою статью, чтоб учить окружающих. И она будет иметь шанс выпасть в поисковой выдаче. Вот только почему-то многие не обращают внимание на то, кто был автором ответов. Ютюбовское видео — блогер, бросивший учебу, но популярный из-за смазливой мордашки и умения вставлять мультики в ролик; запись из блога — школьница подросток увлекающаяся астральными путешествиями; статья из научпоп журнала — журналистка, чья специальность не подразумевала никаких технических дисциплин.

Конечно, из любого правила есть исключения, и приходится просматривать большую часть работ автора, чтоб сделать о нем выводы. Может по образованию она и журналистка, но на досуге листает твёрдую литературу. Однако, по вопросам физических моделей я пойду к знакомому доктору физико-математических наук, за объяснением когнитивных процессов полезу в книги специалиста по нейроанатомии, а рецепт наивкуснейших печений спрошу у сестры.

Нам приходится полагаться на мнения специалистов для экономии времени и сил. Если проверять все утверждения и успешные теории самому, то человеческой жизни не хватит, чтоб догнать современный уровень развития общества. От того вера учителям становится необходимой. При этом нужно всегда держать в уме, что они такие же люди и не застрахованы от ошибок, пороков и профдеформации. И будучи мастером своего дела человек будет полнейшим профаном в других аспектах. Даже в пределах одной области познания, мнения у именитых специалистов могут отличаться весьма и весьма. Скажем, Р. Пенроуз будет больше внимание уделять математике, везде и всюду вспоминать Гёделя, а сложную проблему разума спихивать на квантовые явления. Л. Сет — приверженец инженерного подхода, основной упор делает на теорию информации и детерминизм. С. Ааронсон как истинный программист больше внимания уделяет соотношению сложностей вычислений и квантовой информатике.

Физики экспериментаторы предрасположены к позитивизму и материализму. Математики (чаще подверженные комплексу величия) склонны к идеализму, антропоцентризму, а то и солипсизму. Биологи и медики менее религиозны и антропоцентричны чем первые и вторые. А химики… Хм, нужно побольше разузнать про мировосприятие химиков.

В общем, чтобы осмыслять окружающий мир приходится верить тем, кто убивал время на его понимание. А чтобы понять самому, придется поработать ручками и головой.

Где взять понимание

Но если квантовая механика — это не физика в обычном смысле, если она не занимается ни веществом, ни энергией, ни волнами, ни частицами, то чем же она занимается? С моей точки зрения, она занимается информацией, вероятностями, наблюдаемыми величинами и тем, как они соотносятся друг с другом.
Скотт Ааронсон

В нашу эпоху доступной информации важно умение отделять зерно от плевел. Чтобы оперировать определенными образами, нужно рассмотреть проблему с разных ракурсов ознакомившись с точками зрения нескольких авторов. Еще нужно много практики. Квантовая теория это в первую очередь инструмент, а не философское течение, где каждый волен озвучить свое мнение. Для использования этого сложного инструмента нужны инструкции и учителя.

Гуго Штейнгауз как-то сказал: «математик сделает это лучше». Под «это» подразумевается всё. Оно и понятно, ведь занятие точными науками есть многогранная тренировка мышления и привнесение в ум дисциплинированности. Так что, без должных навыков из линейной алгебры, дифференциального исчисления и математической логики с теорией алгоритмов путь в теоретическую физику закрыт. Все остальное самообман и иллюзия понимания — вы просто не будете восприимчивым к грамотным объяснениям, так как мышление не будет генерировать образов, которые пытается донести собеседник или автор касательно данной темы.

Только разобравшись со вспомогательными инструментами из матана и с основами классической физики (механика, электродинамика, оптика, статы) можно приступать к квантам. Тут не сдержусь порекомендовать литературу «которая навсегда перевернет ваше сознание»

  • Иванов М.Г. Как понимать квантовую механику 2015 (Название говорит само за себя. В книге можно найти теоретический минимум и выжимку из философских рассуждений)
  • Тихонов Д. Теоретическая химия: внутри чёрного ящика (Неформальная методичка. Кого-то может отпугнуть лукморовский стиль изложения, кого-то, наоборот, привлечь. Наиболее ценна из-за ликбеза по основным материалам и кропотливых выкладок, а также раскрытия важных аспектов химической физики)
  • Блохинцев Д.И. Принципиальные вопросы квантовой механики 1966 (Большой упор на философию и методологию. Лично мне понравился вход в тему со стороны статистической физики)
  • Бом Д. Квантовая теория 1952 (Потряснейший учебник от товарища Бома, изданный им до перехода на темную сторону. Вход в тему со стороны электродинамики и постоянные поиски смысла. Особенно интересно идет с нападками редактора русского издания Вонсовского)
  • Дирак П. Принципы квантовой механики 1958 (Одна из тех редких книг, которую хочется иметь в бумажном виде, чтобы читать по вечерам у камина)
  • Балашов В.В. Курс квантовой механики 2001 (Хороша задачками и некоторыми аспектами не раскрытыми в других учебниках)
  • Фейнман Р. Статистическая механика курс лекций (Много крутых тем, но требует основательный бэкграунд по матану)
  • Флюгге З. Задачи по квантовой механике 1974 (Ну а вы как хотели? Полистать оглавления и все? Еще надо задачки решать!)
  • Хренников А.Ю. Введение в квантовую теорию информации 2008 (Это для встряски)
  • Jon Magne Leinaas Modern Quantum Mechanics 2016 (Современно, без воды, я б сказал хороший скелет)
  • David J. Griffiths Introduction to Quantum Mechanics 2004 (А здесь уже с мясцом и философией)
  • Ну и в прошлой публикации есть список литературы по квантовым вычислениям, там как правило присутствует ликбез по теме

Если вы не проявляли усилий для основательного освоения материала, то будьте честны хотя бы с собой — вы сторонний наблюдатель и нефига в квантах не смыслите. Не встревайте в споры, не выдвигайте теории и уж тем более не учите окружающих. Ну да, это наболевшее. Ладно здесь на хабре и еще много на каких технических форумах и тематических группах проскакивает дичь, порожденная необразованностью автора, но когда два профессора подряд на лекциях по философии упраздняли квантовую механику и теорию относительности, тут уж мне многое пришлось переосмыслить.

Однако же, на время отвлечемся от пространных разговоров и поработаем руками.

Уравнение Шредингера

Таким образом, основные физические законы, необходимые для математической теории значительной части физики и всей химии, полностью известны, и трудность заключается лишь в том, что точное применение этих законов приводит к уравнениям, которые слишком сложны, чтобы быть разрешимыми. Поэтому становится желательным разработать приближенные практические методы применения квантовой механики, которые могут привести к объяснению основных особенностей сложных атомных систем без слишком больших вычислений.
П. Дирак

В наиболее общем случае эволюцию (переход между состояниями) абстрактной системы можно описать взаимно-однозначными афинными преобразованиями фазового пространства: . В квантовом случае это будет перевод операторов плотности. Свойство аффинности имеет прямой статистический смысл: оно означает сохранение «весов» в смесях состояний.

Введя унитарный оператор U, мы имеем — афинное взаимно-однозначное отображение множества квантовых состояний S на себя, то есть, обратимую эволюцию. При обратимой эволюции чистые состояния переходят в чистые, при этом вектор исходного чистого состояния преобразуется в .

Для непрерывной однопараметрической группы унитарных операторов удовлетворяющей условиям:

  • (однородность по времени)
  • непрерывность функции

работает теорема Стоуна

где H — эрмитов оператор, а параметр t обычно играет роль времени. И вот, для векторов чистых состояний можно получить уравнение Шредингера

> <\partial t>= \hat\left|\Psi\right> $» data-tex=»display»/>

Из терминологии классической механики: — гамильтониан, оператор полной энергии системы, то есть, сумма кинетической энергии и энергии системы в поле некоего потенциала.

Тем кто полюбил линейную алгебру занимаясь компьютерной графикой (привет пользователям OpenGL), уравнение как бы намекает, что эволюция чистой квантовой системы это повороты вектора состояния путем умножения на матрицу-гамильтониан.

Формально, уравнение Шредингера ни откуда не выводится, будучи в нерелятивистской квантовой механике наиболее общим. Оно постулируется как обобщение экспериментов. Хотя, в книге Бома можно посмотреть довольно органичный способ его получения на основе выражения волны для свободной частицы.

Практически вся волновая теория заключена в волновом уравнении, если мы знаем, как интерпретировать волновую функцию. Уравнение Шредингера является математическим выражением корпускулярно-волнового дуализма микрочастиц. В предельном случае, когда длины волн де Бройля значительно меньше размеров рассматриваемого движения, уравнение Шредингера позволяет описывать движение частиц по законам классической механики.

С математической точки зрения — это дифференциальное уравнение в частных производных, которое имеет множество решений. В каждой конкретной задаче из этого множества следует выбрать одно решение, отвечающее условиям задачи.

С физической точки зрения нужно отметить, что согласно уравнению Шредингера волновая функция изменяется детерминировано, то есть совершенно однозначно. В этом смысле квантовая механика напоминает классическую, в которой движение системы заранее предопределено начальными условиями. Однако сама волновая функция имеет вероятностный смысл.

Наконец, необходимо отметить важную особенность уравнения Шредингера: оно линейно. Волновая функция и ее производные входят в него в первой степени и для волновых функций справедлив принцип суперпозиции. Он позволяет сложные модели разбивать на подзадачи.

Факторизуя волновую функцию на временную и на пространственные компоненты получаем одномерное стационарное Уравнение Шредингера

Это ни что иное, как задача на собственные значения оператора Гамильтона. Энергия – одна из наблюдаемых, следовательно, это уравнение на допустимые наблюдаемые значения энергии и на соответствующие им состояния системы. Получим общее решение для нулевого потенциала:

Теперь знай себе, подставляй граничные и начальные условия в зависимости от задачи. Так можно получить, например, аналитическое выражение для свободной частицы в потенциальной яме, дающее вероятности локализации в некотором пространстве

К этой модели сводится, например, движение -электрона в цепи полиена .

Если же учитывать внешний потенциал (а он разнится в зависимости от среды) то волновую функцию в некой слоистой структуре можно представить в виде:

Используя граничные условия и довольно красивый метод матриц переноса получаем спектр и собственные функции для последовательности произвольных постоянных потенциалов

Этой же методой выуживают значения энергии резонансных переходов электронов в слоисто-неоднородных средах.

Чтобы не перегружать страницу формулами и кодом укажем ссылки на исходники и pdf-аналоги: раз два

Численные методы

Очень хорошо когда задача сводится к известной модели. Но не всегда удается получить аналитическое решение. Поэтому в квантмехе найдется работа не только чистым теоретикам, но и грязным числодробителям. Уравнение Шредингера вполне себе типичная дифура, для которых разработана уйма методов. Поиграем с одним из них.

Разностная аппроксимация по времени уравнения Шредингера с использованием метода Кранка-Николсона имеет вид:

Которую можно переписать в виде:

В одномерном случае конечно-разностная схема по координате расписывается как:

Это соответствует построению для гамильтониана разреженной матрицы. Например, для гамильтониан и волновая функция становятся:

Вот и все, теперь достаточно задать начальный волновой пакет, вид потенциального барьера, взять побольше шагов по времени и координате и пожалуйста — анимации квантовых явлений рассчитанные силами вашего пк:

Еще может быть интересна имплементация расщепления шага Фурье и решение несколькими методами нелинейного уравнения Шредингера находящего применение в физике плазмы, в частности при моделировании нелинейных быстрых магнитозвуковых волн в корональных магнитных трубках.

Но разумеется не все так радужно. Чем больше объектов в изучаемой системе, тем сложнее будет модель. Например, для молекулы воды в оператор Гамильтона будут входить импульсы трех ядер (два ядра водорода и одно кислорода) и 10 электронов, а также потенциалы кулоновского взаимодействия всех пар частиц:

И какой же ужас нас ждет когда мы захотим промоделировать элементарную химическую реакцию веществ в этой воде растворенных — каждый электронный переход происходит с оглядкой на наведенное поле, в свою очередь влияя на окружающие дипольные моменты молекул воды. А если же вам вздумается моделировать геометрию органических молекул.

И тут на помощь приходят семиэмпирические и квазиклассические методы, а также уйма эвристик, упрощений и хитрых солверов.


Метан собранный усилиями Gamess


Структура 5XER обсчитанная с учетом окружения

Такого жанра расчеты часто проводятся при проектировании микроэлектроники, в материаловедении, дефектоскопии, медицине и общей химии, то есть в плане практики детище умов двадцатого века находит все больше применений.

Если кто-то проталкивает мысль, что волновая механика бесполезна или ничего не объясняет, то значит для него это слишком сложно. Все еще надеюсь, что экзамен по философии пройдет в устной форме, уж тогда-то можно будет отыграться за всю ту боль, что эти гуманитарии причиняли на лекциях 🙂

Однако, перейдем к самым спорным мысленным и реальным экспериментам.

Эксперимент Штерна—Герлаха

Хотя наибольшую популярность у общественности снискал опыт Юнга с двухщелевым интерферометром, зарекомендовавшийся как самый контринтуитивный подарок микромира, лично мне больше нравится в этом плане эксперимент Штерна—Герлаха 1922 года

Из печи выпускаются быстрые атомы серебра, которые проходя через сильное магнитное поле образуют на экране зеркальное напыление. Атомы металлов имеют сложную структуру, поэтому для пущей наглядности можно брать водород. Из-за движения электрона в окрестности атома должен возникать магнитный момент, и напрашивается предположение, что в магнитном поле атом ведет себя как маленький магнитик. Имея произвольную начальную ориентацию наши магнитики, испытывая отклонение при прохождении внешнего поля, должны распределиться на экране более-менее равномерно. Не тут-то было! На экране будут кучки, которые можно посчитать по пальцам, а значит магнитные свойства квантуются. Пришлось вводить спин — собственный момент — дающий, наряду с орбитальным, вклад в полный момент атома.

И вот измеряя, скажем, Z компоненту мы получаем на выходе из установки два пучка. Видимо электроны делятся на два сорта: на мальчиков и девочек. Теперь затащим в лабораторию рояль и минибар еще одну установку и опрокинем ее набок супротив первой, так чтобы на вход второй подавался один из потоков струящихся из первой.

И на выходе получаем опять два пучка. То есть в новом ортогональном направлении тоже есть свой вклад. Ну ладно, девочки бывают разные… Занесем пилоны и лаборанток еще установку и сориентируем вертикально пристроив к первым двум

И опять на выходе два пучка! Это пошатывает убежденность, что спин является объективной характеристикой, которая может существовать до взаимодействия с экспериментальной установкой. Надеюсь, вы достаточно заинтригованы. Подробные детали и обсуждение результатов каскадного эксперимента Штерна-Герлаха в рамках кубитной модели читайте в книге Квантовые вычисления и квантовая информация М. Нильсен, И. Чанг. Возможно, мы потом вернемся к этому опыту в рамках различных интерпретаций.

(todo: поискать эксперименты с различным временем пребывания в МП)

Тот самый кот

Я напомню, что во время одной прогулки Эйнштейн неожиданно остановился, повернулся ко мне и спросил, действительно ли я верю, что Луна существует только тогда, когда я смотрю на нее. Оставшаяся часть прогулки была посвящена обсуждению того, что физик должен понимать под словом «существовать».
А. Пэ

Часто кота Шрёдингера используют для нагнетания мистицизма. Этот мысленный эксперимент раздувают до парадокса, им пытаются объяснять сложность и противоречивость квантовой механики или даже утверждают, что ее суть передается этим мемом. В зависимости от уровня абстрактного и критического мышления люди застревают на разных этапах: кто-то начинает спор на счет пола животного, кто-то плачет, что кису жалко, некоторые начинают прикапываться к деталям установки, многие спорят о роли наблюдателя.

С наблюдением вообще отдельная история. В экспериментах под процессом наблюдения понимается взаимодействие исследуемой системы с измерительным прибором. Наблюдателем можно считать и газоразрядный счетчик Гейгера и фотодетектор с мультиметром, а не только человека слушающего треск и видящего показания на дисплее. Для квантовых систем важна их чистота достигаемая изоляцией от внешних воздействий. Именно тогда на достаточно больших временах эволюцию можно описывать уравнением Шрёдингера. Если вы, скажем, поставили детектор возле одной из щелей в опыте Юнга, то получается вы привнесли в систему наблюдателя — многочастичную хреновину ограничивающую пространственные степени свободы исследуемых объектов. Подробней этот вопрос раскрыт в книге Бома в 6 части. Там он очень даже неплохо для 50х годов прошлого века проследил процесс измерения вплоть до мозга экспериментатора.

Опять же, нюансы это вопрос интерпретации, но с точки зрения матаппарата всё довольно согласовано и пригодно для практических применений. К слову, если уж совсем не хочется работать с литературой и привычней разжеванный видеоконцентрат, то можно посмотреть хотя бы на материалы по теме от ребят из физтеха. При просмотре вспомнил про подобное объяснение для трехщелевого эксперимента (да, это тот, где выходят отрицательные вероятности) в лекциях по матрицам плотности от Никитина Н.В.

Вернемся к котикам. Объяснения этого эксперимента желательно смотреть не по бложикам и видосикам, а в крепкой литературе. Возможно вы заметите, что во многих монографиях мысленные эксперименты и философия поднимаются в конце, уже после изложения необходимого формализма. Тогда уже приходит понимание, что и кот и ЭПР возникли во времена, когда терминология только формировалась и многим хотелось таким образом выразить свое недовольство какими-либо нюансами. В частности Шредингер с котом хотели заострить внимание на грани между микро- и макро-.

Источником проблемы является неопределенность, связанная со статистической интерпретацией волновой функции, которая однозначно не определяет результат измерения. Все, что она дает, — это статистическое распределение возможных результатов.

В связи с этим возникает глубокий вопрос: действительно ли физическая система «имела» рассматриваемый атрибут до измерения (так называемая реалистическая точка зрения), или же сам акт измерения «создал» это свойство, ограниченное лишь амплитудой вероятности (ортодоксальная позиция). Или же мы можем списав на метафизику сказать, что никакого смысла в этих спорах нет (агностика ответ).

Согласно реализму, квантовая механика — это неполная теория, ибо даже если вы знаете все, что квантовая механика может рассказать вам о системе, вы все равно не можете определить все ее особенности. Очевидно, существует и другая информация, внешняя по отношению к квантовой механике, которая необходима для полного описания физической реальности. Тут уже появляются теории со скрытыми переменными, парочку из которых вместе с неравенствами Белла рассмотрим позже.

Ортодоксальная позиция поднимает еще более тревожные проблемы, ибо если акт измерения заставляет систему «занять позицию», помогая создать атрибут, которого раньше не было, то в процессе измерения есть что-то очень своеобразное. Более того, чтобы объяснить тот факт, что немедленно повторенное измерение дает тот же самый результат, мы вынуждены предположить, что акт измерения разрушает волновую функцию таким образом, который в лучшем случае трудно согласовать с нормальной эволюцией, предписанной уравнением Шредингера. В свете этого неудивительно, что многие поколения физиков отступили на позиции агностиков и советовали своим ученикам не тратить время на размышления о концептуальных основах теории.

В период становления копенгагенской интерпретации, которая была сколочена на скорую руку, многие не соглашались с постулированным существованием объективной случайности и с нелокальностью коллапса волновой функции. В последующих трактовках ортодоксальной интерпретации сошлись на нефизичности коллапса, а для решения многих проблем ввели декогеренцию — разрушение самосогласованного состояния при запутывании квантовых объектов. В частности, проблема с котом решилась тем, что механизм приводящий в действие машину смерти производит измерение квантовой системы, непреклонно вынуждая ее принять значение из спектра собственных чисел.

Такое решение, по крайней мере, позволяет избежать отупляющего солипсизма Вигнера и других, которые убеждали себя, что именно вовлеченность человеческого сознания составляет измерение в квантовой механике. Частью проблемы является само слово «измерение» или «наблюдение», которое, безусловно, несет в себе намек на человеческое участие. Гейзенберг предложил слово «событие», которое, возможно, было бы предпочтительнее. Но ничего не поделаешь, термин устоялся и еще долго будет импонировать доморощенным упразднителям мирового заговора и бередить слух вовлеченных в тему.

Касательно ЭПР и неравенств Белла можно будет поговорить уже в рамках интерпретаций. Конечно, чтобы развеять иллюзии и непонимание каждый должен сам пройти через тонны литературы и исписанных тетрадей. Да, довольно субъективно, но я испытал это на своей шкуре, от отторжения того что вдалбливают на лекциях и уверенности, что всем просто пудрят мозги, до получения формул совпадающих с результатами экспериментов.

Будет сложно, но оно стоит того. Чтобы ни говорили про религиозные тексты (кстати, именно Библия убила во мне христианина), о том как они расставляют все на свои места и дают ответы на сокровенные вопросы, они не сравнятся с красотой математики различных формализмов, с хитросплетением связей разделов физики, с объяснительной мощью эволюционной теории и с простотой фундаментальных принципов, порождающих многообразие вселенских масштабов. Познание открывает взору все больше красоты окружающего мира. А разве не в этом состоит смысл жизни?

Уравнение Шрёдингера

Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что всё это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живём мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. Квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое «одномерное стационарное уравнение Шрёдингера»). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой ψ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам не понятно; главное — примите на веру, что это уравнение свидетельствует о том, что вероятность ведёт себя как волна):

где x — расстояние, h — постоянная Планка, а m, E и U — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведёт себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. Принцип неопределенности Гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведёт себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и всё тут. В мире квантовой механики всё не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведёт себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. Принцип дополнительности).

Эту проблему обычно называют двойственной или дуальной корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. Теорема Белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприменимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во Введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

Гидродинамика Шрёдингера на пальцах

В этой статье в качестве эксперимента я постараюсь максимально доступно рассказать, как работает новый метод расчёта гидродинамики, основанный на решении уравнения Шрёдингера.

Всем привет. В этой статье я хотел бы рассказать о новом методе расчёта гидродинамики, основанном на решении уравнения Шрёдингера вместо уравнений, типично используемых для гидродинамики вроде Навье-Стокса. Сам метод очень подробно и полно раскрыт в диссертации Albert Chern’а, названной «Fluid Dynamics with Incompressible Schrödinger Flow». Однако, статья Chern’а кому-то может показаться написанной на не самом доступном языке, поэтому своей статьёй я бы хотел в первую очередь если не объяснить в деталях, как работает этот метод, то хотя бы объяснить, какими интересными свойствами он обладает, и что же именно скрывается за его математикой. Попутно я кратко расскажу о том, как устроены классические методы расчёта гидродинаимики и как новый подход от них отличается. В качестве эксперимента я бы хотел попробовать написать статью так, чтобы каждый, кто отдалённо интересуется программированием физики, нашёл в ней что-то интересное, понятное, и новое для себя — от начинающего программиста до бывалых расчётчиков.

Вступление

Почему это важно? В первую очередь потому, что это обозначает глубинное родство квантовомеханических и гидродинамических систем. В диссертации того паренька больше сотни страниц уделено тому, как это вообще так получилось. С участием явления сверхтекучести, которая является загадочным связующим звеном, так как проявляет очевидные свойства идеальной жидкости, являющиеся исключительно следствием квантовой механики. Я же в этой статье далее я рассмотрю только некоторые из параллелей, которые из этого, простите, вытекают.

Следующее очень важное следствие эквивалентности уравнения Шрёдингера и Навье-Стокса — это что решение одного из них эквивалентно решению другого. Так вот уравнение Навье-Стокса — нелиненое, его очень неудобно и неэффективно в общем случае решать, в то время как уравнение Шрёдингера — линеное и его решать гораздо проще. Чтобы составить представление, насколько же неудобным по сей день считается уравнение Навье-Стокса, могу сообщить, что существует целый международный фонд грантов для исследователей, которым хоть какую-то базу под них подстроит, так как(цитата):

Even basic properties of the solutions to Navier–Stokes have never been proven.

Уравнение Шрёдингера же, хоть и описывает мутную квантовую физику, поддаётся решению гораздо легче и эффективнее. Короче, я могу очень долго гудеть про то, как это невероятно и офигенно, но давайте уже перейдём к чему-то более конкретному.

Решение классической гидродинамики на пальцах

Что вообще такое — уравнение гидродинамики? Что такое уравнение Навье-Стокса и как его понять? С ответом на этот вопрос гораздо лучше меня справились миллионы авторов статей по этому делу, например, классическая статья от нвидии, по которой многие начинали: https://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html Однако, я попробую написать очень сжато и на пальцах, что это всё значит и что с этим обычно делают.
Уравнение Навье-Стокса описывает закон, которому обязана подчиняться скорость каждой точки пространства, заполненного равномерной несжимаемой жидкостью. Представьте себе, например, бассейн с водой, в котором выделили некоторый куб, достаточно далеко от стенок, поверхности и дна, в котором нет ничего кроме воды. Вода в нём может как угодно течь, но не может ни образовывать пузырей, ни с чем-то сталкиваться (мы для простоты опустим эти эффекты). Тогда само уравнение Навье-Стокса описывает закон, которому будет подчиняться скорость каждой точки воды в этом кубе:

\(\frac<\partial \vec u><\partial t>=-(\vec u \cdot \vec \nabla)\vec u-\frac<1><\rho>\vec \nabla p + \nu <\vec \nabla>^2 \vec u + \vec F\)
\(\vec \nabla \vec u = 0\)

прежде чем вообще смотреть на это уравнение, предлагаю сразу из него выбросить ненужное — то, что нам всё равно не пригодится для понимания и только место занимает. Это член, отвечающий за диффузию \(\nu <\vec \nabla>^2 \vec u\) (у идеальной жидкости один фиг диффузии нет), и за внешнюю силу \(\vec F\) (так как мы обойдёмся без неё). Остаётся система:
\(\frac<\partial \vec u><\partial t>=-(\vec u \cdot \vec \nabla)\vec u-\frac<1><\rho>\vec \nabla p\)
\(\vec \nabla \vec u = 0\)
Здесь перевёрнутый треугольник называется оператором Набла, который обозначает дифференцирование. Причём смысл этого оператора меняется в зависимости от того, где именно он стоит (например, перед вектором или скаляром). Я постараюсь объяснить смысл каждого его вхождения по порядку. На пальцах смысл всей формулы в следующем. \(\vec u(\vec x)\) — это значение скорости жидкости, которое определяется в каждой точке пространства \(\vec x\) . Уравнение описывает закономерности, которым обязана подчиняться эта величина, если она описывает поведение несжимаемой жидкости. Работает хоть для двумерного, хоть для трёхмерного случая. В левой части первого уравнения стоит \(\frac<\partial \vec u(\vec x)><\partial t>\) — это величина называется производной по времени и показывает, как быстро и куда(это вектор) изменится скорость в точке \(\vec x\) в момент времени \(t\) .

Нулевой вектор производной по времени обозначает, что скорость в этой точке сейчас не меняется, а, например, вектор (10, 0)[м/c 2 ] обозначает, что за следующую секунду скорость вырастет на 10[м/с] по оси x(если сама производная не поменяется).

Слагаемое вида \(-(\vec v \cdot \vec \nabla)\vec u\) называется адвекцией и говорит, что поле скоростей \(\vec u\) в этой точке утекает в направлении \(\vec v\) . В нашем же случае \(\vec u = \vec v\) , то есть поле скоростей сносит само себя. Это, кстати, и называется нелинейностью и из-за этого возникает миллион проблем при решении этого уравнения.

В принципе, смысл этого члена достаточно интуитивно можно представить именно как утекание каждой точки воды по вектору её скорости. Однако, в общем случае производная векторного поля \(\vec u\) по направлению \(\vec v\) обозначается как \((\vec v \cdot \vec \nabla)\vec u\) и обозначает, как меняется функция \(\vec u\) в направлении \(\vec v\) для этой точки.

Слагаемое же \(-\frac<1><\rho>\vec \nabla p\) является ускорением, которое получает жидкость в точке из-за градиента давления.

Оператор \(\vec \nabla\) , действующий на скалярное поле(например, давление), называется градиентом. Если слева от некоторой точки давление больше, чем справа, то градиент в ней будет направлен вправо и будет увлекать за собой жидкость в этом направлении. Например, ветер всегда дует в направлении, обратном градиенту давления воздуха (отсюда и минус). Электрический ток течёт в направлении градиента электрического потенциала:
\(E=\vec \nabla \phi\)

Второе уравнение \(\vec \nabla \vec u = 0\) называется уравнение непрерывности, а оператор \(\vec \nabla\) здесь действует на вектор и называется дивергенцией.

Оператор дифференцирования, действующий на вектор, называется дивергенцией. Дивергенция, равная нулю, говорит, что для каждого маленького кубика сколько в него жидкости втекает, столько и вытекает. А так как любой объём можно разбить на маленькие кубики, то свойство будет справедливо и для объёма любой формы. Это свойство называют также условием несжимаемости, так как если бы в какой-то объём втекало больше жидкости, чем вытекало, это бы означало, что жидкость в объёме накапливается, сжимаясь. Другой случай применения дивергенции, который может помочь её представить — это теорема Гаусса:
\(\vec \nabla E=\rho\)
Эта теорема говорит, что напряжённость электрического поля, которая «вытекает» из некоторого объёма, всегда вызвана электрическим зарядом плотности \(\rho\) внутри этого объёма. Если в объёме заряда нет, то и дивергенция нулевая.

То есть, одним предложением уравнение Навье-Стокса можно описать так: темп изменения скорости определяется течением и градиентом давления, но жидкость при этом не может сжиматься.

Классическое решения уравнения Навье-Стокса

Посмотрим теперь, как это уравнение можно программно решить. Для этого можно использовать подход, который называется расщеплением — разбить сложный физический процесс, состоящий из нескольких элементарных, на отдельные чередующиеся стадии и считать, что на каждой стадии работает только один элементарный процесс, а остальные выключены. Как ни странно, можно доказать (см. статью выше), что это — на самом деле математически обоснованная стратегия. Поэтому будем считать, что состояние скоростей для каждой точки в текущий момент времени \(\vec u(\vec x, t)\) нам известно. А для расчёта состояния в следующий момент времени \(t+dt\) , разобьём сложный процесс гидродинамической эволюции на простые стадии:
1) снесём поле скоростей по течению. это может немного «сжать» жидкость.
2) найдём такое давление, чтобы жидкость «расжалась».
Первый шаг называется адвекцией, второй — проекцией.

Адвекция

Адвекция, или течение, можно приближённо посчитать достаточно легко — если известно, что в точке \(\vec x\) , в момент времени \(t\) скорость равна \(\vec u(\vec x, t)\) , то в момент времени \(t+dt\) скорость в неё притечёт жидкость из точки \(\vec x — \vec u(x, t)\cdot dt\) .
\(\vec u^*(\vec x, t+dt)=\vec u(\vec x — \vec u(\vec x, t), t)\)
То есть мы получили промежуточное значение скорости, котороже уже утекло по течению, но теперь в нём нарушено условие непрерывности.

Это особенно удобно программируется на GPU, так как это можно посчитать, если хранить скорость в текстуре и её обновлять, просто читая тексели со смещением \(- \vec u(x, t)\cdot dt\) и используя стандартную аппаратную линейную интерполяцию.

Проекция

Проекция берёт скорость, для которой нарушено условие непрерывности \(\vec u^*\) и ищет такое давление, которое её «выправит» до нормальной скорости \(\vec u\) . Умные мужики доказали, что такое поле можно найти единственным образом и оно всегда будет градиентом некоторого скалярного поля (давления, в нашем случае):
\(\vec u(\vec x, t+dt)=\vec u^*(\vec x, t+dt) + \vec \nabla p\)
Помножим обе стороны этого равенства на оператор дифференцирования:
\(\vec \nabla \vec u(\vec x, t+dt)=\vec \nabla \vec u^*(\vec x, t+dt) + \vec \nabla^2 p\)
«ПОГОДИ-КА СУСЕЛ, ЭТО ЕЩЁ ЧТО» — можете меня спросить вы. Всё по порядку, но на самом деле отсюда для общего понимания достаточно знать, что если \(\vec u^*(\vec x)\) известно(а оно известно), то отсюда можно найти давление \(p(\vec x)\) . Если вспомнить, что в нашем случае дивергенция скорости равна нулю, то остаётся вот такое выражение.
\(\vec \nabla^2 p=-\vec \nabla u^*\)

В правой части этого равенства стоит дивергенция скорости, которую можно легко приблизительно посчитать, если известна скорость \(\vec u^*\) (а она известна). В левой части стоит штука, которая называется лапласианом давления.

Лапласиан — это оператор дифференцирования (ещё называется оператор набла) в квадрате, то есть применённый дважды к скалярному полю. Первый раз применяем оператор дифференцирования — получаем градиент. Второй раз — получаем дивергенцию. Таким образом оператор лапласа — это дивергенция градиента скалярного поля. Его можно представить как изменение потока скорости через маленький кубик, которое будет вызвано давлением в точке. Ещё одна аналогия — как поменяется дивергенция электрического поля в объёмчике, если в него положить заряд плотностью \(\rho\) (опять же, теорема Гаусса):
\(\vec nabla \vec E = \rho\) , \(\vec nabla \phi=\vec E\) => \(\vec nabla^2 \vec phi = \rho\)

Уравнение вида «лапласиан чего-то неизвестного равен чему-то известному» называется уравнением Пуассона. Что бы это ни значило, существует стандартный итеративный алгоритм, который позволяет его решить, то есть найти такое давление, чтобы его лапласиан был равен чему угодно. «Что угодно» мы знаем — это дивергенция промежуточной скорости, поэтому считаем по ней давление. Далее для давления считаем градиент и вычитаем результат из промежуточной скорости, чтобы получить окончательную скорость для следующего шага по времени:
\(\vec u=\vec u^* + \vec \nabla p\)

Шаги адвекции и проекции повторяем до посинения, рассчитывая всё дальше и дальше эволюцию поля течений по времени. Для визуализации можно, например, напускать частиц, которые могу сноситься этим полем скоростей. Результат выглядит так:

Важно понять, что в этом видосе, равно как и во всех остальных гифках этой статьи, жидкость на самом деле находится в большом кубе (границы которого не показаны), а не только там, где видны частицы. Частицы только уносятся полем скоростей, как, например, частицы дыма уносятся полем скоростей воздухе. Сами частицы никакой роли в физике процесса не играют и только позволяют относительно наглядно его продемонстрировать. Частицы обычно добавляются заранее туда, где ожидаются какие-то интересные турбулентности.

Важные особенности классического подхода

«Всё здорово, сусел, но в названии статьи ты написал что-то там про Шрёдингера! Он вообще где? Зачем нам это всё?» — спросите вы. Вопрос резонный. Но всю крутость подхода со Шрёдингером можно осознать, только если иметь представление о слабых сторонах классического солвера, который мы рассмотрели в предыдущей главе. В чём же они заключаются? Давайте об этом поговорим.

Основа любого расчётного метода — это то, как в нём представлены моделируемые данные. В рассмотренном нами подходе мы храним значение скорости для каждой точки. Например, в текселях двумерной или трёхмерной текстуры. Этот способ здорово работает, если требуется описать ровное поле течений, в котором нет особенностей (так называются завихрения и разные другие неоднородности). Неоднородностей обычно нет в вязких жидкостях вроде мёда или майонеза, поэтому метод очень здорово подходит, чтобы моделировать майонез. Но более текучие среды (например, вода, воздух и дым) отличаются тем, что в них существенную роль играют злополучные турбулентные течения — мелкие завихрения, имеющие очень сложную и нерегулярную структуру, даже образующие фракталы, которые очень неудобно описывать просто их значениями в каждой точке текстуры/массива. Если попытаться их моделировать, то все мелкие особенности быстро смазываются и расплываются, что соответствует поведению вязкой жидкости. Такое поведение называется численной вязкостью — это вязкость жидкости, которая появляется не потому что она является частью уравнения, которое мы решаем, а это паразитная вязкость, всплывающая как паразитное следствие нашего метода решения. Более того, напомню, что первое, что мы сделали, не успев взглянуть на уравнение Навье-Стокса — выкинули из него вязкость, так в ней недостатка точно не будет.

А вот избавиться от вязкости гораздо труднее, чем случайно её посчитать. Один из способов — это измельчать расчётную сетку. Чтобы таким методом получить что-то хоть как-то похожее на дым, понадобится сетка минимум 1024x1024x1024, то есть как минимум гигабайт памяти, если хранить по 1 байту на узел. А хранить захочется как минимум трёхкомпонентную скорость, то есть, скорее всего, 32 гигабайта в сумме. Это не только не разумно с точки зрения затрат памяти, это ещё и очень медленно. Другой способ — это представлять скорость не её направлением в каждой точке, а как сумму маленьких элементарных вихрей. Этот метод называется также методом дискретных вихрей. В нём вообще всё не так просто с процессами порождения новых вихрей и удаления старых, с поддержанием нужной плотности (так как вихри друг друга уносят, как частицы) и ещё миллион проблем, можете сами почитать, если интересно. Другой подход основан на том, что в реальных течениях вихри имеют свойство образовывать вращающиеся нити. Представьте медленно движущийся жгут, вокруг которого быстро вращается жидкость. Если такой жгут замыкается в кольцо, получается тороидальный вихрь, образующий знакомое кольцо дыма:

Существуют подходы, которые вместо хранения величины скорости в точках, хранят именно параметры таких жгутов. Но такие методы полагаются на топологию, поэтому в них необходимо считать, как жгуты взаимодействуют, сливаются, распадаются и вообще происходящее быстро теряет простоту и наглядность.

Однако, у классического метода есть одно очень важное положительное свойство — в нём вообще нет параметров. Обратите внимание, что для расчёта используется только скорость и больше вообще ничего — ни вязкости, ни даже плотности. В уравнении Навье-Стокса без вязкости есть плотность, но её можно «спрятать» в нормировку давления, поэтому можно сказать, что в исходном уравнении параметров также нет. Забегая вперёд, замему, что в солвере на уравнении Шрёдинге будет параметр. Загадочный.

На следующей странице мы рассмотрим, как же применить уравнения Шрёдингера, чтобы смоделировать тот же самый процесс, и какой в этом профит. Будет много картинок.


источники:

http://elementy.ru/trefil/21/Uravnenie_Shryodingera

http://gamedev.ru/code/articles/shrodinger_hydrodynamics