Что такое алгоритм решения линейного уравнения

Решение простых линейных уравнений

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Линейные уравнения — алгоритмы и примеры решений с объяснением для 6 класса

Общие сведения

Уравнение — совокупность чисел и переменных. Иными словами, тождеством, содержащим неизвестные величины, называется математическая запись, в которой следует определить значения переменных, превращающих это выражение в истинное. Например, переменная t в выражении 2t=6 эквивалентна 3, поскольку 2*3=6.

Линейное — тождество, в котором максимальный показатель степени при неизвестной величине всегда эквивалентен единице.

В математике существует термин «корень уравнения». Он означает, что для решения равенства необходимо найти все допустимые значения, превращающие его в истинное тождество. Далее следует разобрать классификацию линейных выражений с переменными.

Классификация уравнений

Прежде чем рассматривать примеры уравнений по алгебре в 7 классе (изучаются подробнее, чем в 6-м), необходимо разобрать их классификацию, поскольку она влияет на алгоритм нахождения корней. Они бывают трех типов:

  1. Обыкновенные.
  2. С параметром.
  3. Высшей степени.

Первый вид — обыкновенные приведенные линейные уравнения, состоящие из числовых величин и переменных с единичным степенным показателем. Они являются наиболее распространенными не только в математике и физике, но и в других дисциплинах с физико-математическим уклоном. Графиком их функции является прямая линия, которую также называют прямо пропорциональной зависимостью.

Ко второму типу относятся любые многочлены линейного типа, имеющие переменную, а также некоторый параметр. Последний влияет на решение и нахождение корней. Обычно он задается на начальном этапе решения, но бывают и исключения. В последнем случае необходимо указывать диапазон допустимых значений параметра.

Суть решения второго вида уравнений — предотвратить превращение тождества в пустое множество. Для этой цели требуется исключить при помощи записи в виде неравенства все ложные значения параметра. Выражения с параметром применяются в программировании при написании и разработке различных алгоритмов. Кроме того, их можно встретить при описании физических процессов и явлений.

Последний тип — выражения высшей степени, которые при помощи математических преобразований превращаются в первый или второй тип. Для их решения необходимо знать формулы сокращенного умножения, понижающие степень до единицы, а также навык раскрытия скобок и приведения подобных компонентов.

Обыкновенные тождества

Простое линейное уравнение записывается в таком виде: At+Bt+Ct+As+Bs+Cs=0. Некоторых коэффициентов может и не быть. Кроме того, тождество может записываться в виде выражения, включающего в свой состав скобки. Алгоритм решения имеет следующий вид:

  1. Раскрыть скобки.
  2. Произвести математические преобразования над компонентами уравнения.
  3. Сгруппировать элементы: перенести неизвестные в одну, а известные — в другую сторону.
  4. Найти корень или доказать его отсутствие (учитывать и знаменатель при его наличии).
  5. Выполнить проверку, подставив решение в исходное равенство.

Следует отметить, что также составляются примеры линейных уравнений для тренировки в 7 классе. Необходимо разобрать решение одного из них «7 (t-1)(t+1)-7t (t-1)=8». Решать его нужно по вышеописанному алгоритму:

  1. 7 (t 2 −1)-7t 2 +7t=7t 2 −7-7t 2 +7t=8.
  2. 7t 2 −7t 2 +7t-7=7t-7=8.
  3. 7t=15.
  4. t=2,5.
  5. 7 (2,5−1)(2,5+1)-7*2,5 (2,5−1)=8. При расчете можно получить следующее тождество, которое является истинным: 8=8.

Последний пункт реализации методики свидетельствует о том, что корень тождества найден правильно. Далее нужно рассмотреть выражения с параметром.

Выражения с параметром

Уравнения с некоторым параметром решаются немного по другой методике. Ее суть заключается в нахождении корня, дополнительно зависящего от некоторого значения. Алгоритм имеет следующий вид:

  1. Записать равенство.
  2. Раскрыть скобки и привести подобные элементы к общему виду.
  3. Выполнить математические преобразования, при помощи которых следует отделить некоторый параметр от переменной.
  4. Записать диапазон значений, при которых неизвестная величина в третьем пункте не превращает уравнение в пустое множество.
  5. Записать формулу определения корня.
  6. При необходимости подставить значение параметра.
  7. Проверить результат.

Реализацию методики необходимо рассмотреть на практическом примере «t-2+pt=0», где р — параметр тождества. Решать выражение нужно по такому алгоритму:

  1. t-2+pt=0.
  2. Опускается, поскольку в выражении нет скобок.
  3. (t+pt)=t (1+p)=2.
  4. p не должен быть -1: (-inf;-1)U (-1;+inf), где -inf и +inf — минус и плюс бесконечность соответственно.
  5. t=2/(1+p).
  6. При p=0: t=2.
  7. 2−2+0*2=0.

Иногда в некоторых задачах нет необходимости подставлять значение параметра. В этом случае следует просто записать формулу корня, указав допустимый интервал (диапазон) последнего. Например, в вышеописанном примере решение записывается следующим образом: t=2/(1+p). Каждый ученик должен понять основной смысл решения уравнений этого типа — научиться находить область значений параметра, не превращающие выражение в пустое множество.

Понижение степени

Некоторые уравнения представлены степенью при неизвестной, превышающую единицу. К ним относятся следующие виды: квадратные, кубические и бикубические. Каждый из трех видов имеет собственный алгоритм нахождения корней.

Однако некоторые из них можно свести к линейному типу. Для этого применяется метод разложения на множители. Он подразумевает алгебраические соотношения, при помощи которых выражение легко записывается в обыкновенной линейной форме. К ним относятся следующие:

Первая и вторая формула называется квадратом суммы или разности соответственно. Третья — разность квадратов. Кроме того, бывают случаи, при которых невозможно применить эти тождества. Для этого требуется выносить общий множитель за скобки, тем самым понижая степень. Для нахождения корней существует определенная методика:

  1. Написать равенство с неизвестным.
  2. Выполнить анализ его структуры и сопоставить с одним из соотношений. Если операцию выполнить невозможно, то следует осуществить математические преобразования по вынесению общего множителя.
  3. Решить линейные уравнения.
  4. Произвести проверку, подставив корни или корень в исходное выражение в первом пункте методики.

Реализация алгоритма нужно проверить на практическом примере, т. е. следует решить уравнение «3t^2-3=0». Найти его корни можно, воспользовавшись вышеописанной методикой:

  1. 3t^2-3=0.
  2. 3(t^2-1)=0.
  3. Сократить обе части на 3: t^2-1=0.
  4. Воспользоваться формулой сокращенного умножения (разность квадратов): (t-1)(t+1)=0.
  5. У уравнения два корня: t1=1 и t2=-1.
  6. Подставить t1 и t2: 3*1-3=0 и 3*(-1)^2-3=0. Оба решения являются верными, поскольку не обращают искомое тождество в пустое множество.

Кубические и бикубические должны сводиться к квадратным, а затем преобразовываться в линейные, поскольку формулы кубов суммы и разности, при их разложении на множители, дают вторую степень. Однако существует еще один частный случай, о котором не упоминалось при классификации линейных выражений с неизвестными — системы уравнений.

Системы линейного типа

Система уравнений — совокупность выражений с неизвестными, которые имеют общие решения. Методика для вычисления корней имеет следующий вид:

  1. Записать систему уравнений.
  2. Выбрать наиболее простое тождество и выразить одну величину через другую.
  3. Подставить в любое выражение переменную, выраженную во втором пункте алгоритма.
  4. Раскрыть скобки и выполнить математические преобразования.
  5. Решить уравнение в четвертом пункте.
  6. Подставить корень, полученный на пятом шаге алгоритма, во 2 пункт.
  7. Найти вторую переменную.
  8. Записать результат.
  9. Выполнить проверку.

Однако для практического применения вышеописанной методики необходимо разобрать систему уравнений, состоящую из двух тождеств (5t-2s=1 и 4t^2-s^2=0). Решать ее нужно по вышеописанной методике:

  1. 5t-2s=1 и 4t^2-s^2=0.
  2. Простое выражение: 5t-2s=1. Выразить s: s=(5t-1)/2.
  3. (2t-s)(2t+s)=[4t/2-(5t-1)/2][4t/2+(5t-1)/2]=8t=8.
  4. 8t=8=>t=1.
  5. 5*1-2s=1. Отсюда s=2.
  6. 5*1-2*2=1=1 (равенство действительное).

В третьем пункте математики рекомендуют разложить тождество на множители, поскольку необходимо всегда понижать степень при неизвестной величине. Во всех трех случаях описаны простые примеры, которые позволяют перейти к более сложным заданиям.

Следует отметить, что еще одним методом решения системы уравнений считается построение графиков функций, входящих в ее состав. Методика поиска решений сводится к простым шагам, которые можно править относительно предыдущего алгоритма таким образом:

  1. Упростить все выражения, входящие в систему.
  2. Выразить одну величину через другую в каждом выражении. Следует учитывать, что искомая переменная должна быть обязательно без степени и коэффициентов.
  3. Построить отдельно для каждой функции специальные таблицы значений зависимости одной переменной от другой.
  4. Начертить прямоугольную систему координат.
  5. Отметить точки, исходя из таблицы, в системе координат.
  6. Соединить точки плавными линиями при помощи карандаша.
  7. Проделать аналогичные действия над другими тождествами (5 и 6).
  8. Определить точки пересечения функций и записать их координаты.

В последнем пункте методики находятся корни системы уравнений. Далее рекомендуется их подставить в исходные выражения для проверки.

Таким образом, линейные уравнения применяются в различных физико-математических дисциплинах и прикладных науках. Для их решения существуют определенные методики, позволяющие выполнить эту операцию за короткий промежуток времени и не допустить ошибок.

Решение линейных уравнений с одной переменной

В данной статье рассмотрим принцип решения таких уравнений как линейные уравнения. Запишем определение этих уравнений, зададим общий вид. Разберем все условия нахождения решений линейных уравнений, используя, в том числе, практические примеры.

Обратим внимание, что материал ниже содержит информацию по линейным уравнениям с одной переменной. Линейные уравнения с двумя переменными рассматриваются в отдельной статье.

Что такое линейное уравнение

Линейное уравнение – это уравнение, запись которого такова:
a · x = b , где x – переменная, a и b – некоторые числа.

Такая формулировка использована в учебнике алгебры ( 7 класс) Ю.Н.Макарычева.

Примерами линейных уравнений будут:

3 · x = 11 (уравнение с одной переменной x при а = 5 и b = 10 );

− 3 , 1 · y = 0 (линейное уравнение с переменной y, где а = — 3 , 1 и b = 0 );

x = − 4 и − x = 5 , 37 (линейные уравнения, где число a записано в явном виде и равно 1 и — 1 соответственно. Для первого уравнения b = — 4 ; для второго — b = 5 , 37 ) и т.п.

В различных учебных материалах могут встречаться разные определения. К примеру, Виленкин Н.Я. к линейным относит также те уравнения, которые возможно преобразовать в вид a · x = b при помощи переноса слагаемых из одной части в другую со сменой знака и приведения подобных слагаемых. Если следовать такой трактовке, уравнение 5 · x = 2 · x + 6 – также линейное.

А вот учебник алгебры ( 7 класс) Мордковича А.Г. задает такое описание:

Линейное уравнение с одной переменной x – это уравнение вида a · x + b = 0 , где a и b – некоторые числа, называемые коэффициентами линейного уравнения.

Примером линейных уравнений подобного вида могут быть:

3 · x − 7 = 0 ( a = 3 , b = − 7 ) ;

1 , 8 · y + 7 , 9 = 0 ( a = 1 , 8 , b = 7 , 9 ) .

Но также там приведены примеры линейных уравнений, которые мы уже использовали выше: вида a · x = b , например, 6 · x = 35 .

Мы сразу условимся, что в данной статье под линейным уравнением с одной переменной мы будем понимать уравнение записи a · x + b = 0 , где x – переменная; a , b – коэффициенты. Подобная форма линейного уравнения нам видится наиболее оправданной, поскольку линейные уравнения – это алгебраические уравнения первой степени. А прочие уравнения, указанные выше, и уравнения, приведенные равносильными преобразованиями в вид a · x + b = 0 , определим, как уравнения, сводящиеся к линейным уравнениям.

При таком подходе уравнение 5 · x + 8 = 0 – линейное, а 5 · x = − 8 — уравнение, сводящееся к линейному.

Принцип решения линейных уравнений

Рассмотрим, как определить, будет ли заданное линейное уравнение иметь корни и, если да, то сколько и как их определить.

Факт наличия корней линейного уравнения определятся значениями коэффициентов a и b . Запишем эти условия:

  • при a ≠ 0 линейное уравнение имеет единственный корень x = — b a ;
  • при a = 0 и b ≠ 0 линейное уравнение не имеет корней;
  • при a = 0 и b = 0 линейное уравнение имеет бесконечно много корней. По сути в данном случае любое число может стать корнем линейного уравнения.

Дадим пояснение. Нам известно, что в процессе решения уравнения возможно осуществлять преобразование заданного уравнения в равносильное ему, а значит имеющее те же корни, что исходное уравнение, или также не имеющее корней. Мы можем производить следующие равносильные преобразования:

  • перенести слагаемое из одной части в другую, сменив знак на противоположный;
  • умножить или разделить обе части уравнения на одно и то же число, не равное нулю.

Таким образом, преобразуем линейное уравнение a · x + b = 0 , перенеся слагаемое b из левой части в правую часть со сменой знака. Получим: a · x = − b .

Далее мы разделим обе части равенства на число а , при этом условившись, что это число отлично от нуля, иначе деление станет невозможным. Случай, когда а = 0 , рассмотрим позже.

Итак, производим деление обеих частей уравнения на не равное нулю число а, получив в итоге равенство вида x = — b a . Т.е., когда a ≠ 0 , исходное уравнение a · x + b = 0 равносильно равенству x = — b a , в котором очевиден корень — b a .

Методом от противного возможно продемонстрировать, что найденный корень – единственный. Зададим обозначение найденного корня — b a как x 1 . Выскажем предположение, что имеется еще один корень линейного уравнения с обозначением x 2 . И конечно: x 2 ≠ x 1 , а это, в свою очередь, опираясь на определение равных чисел через разность, равносильно условию x 1 − x 2 ≠ 0 . С учетом вышесказанного мы можем составить следующие равенства, подставив корни:
a · x 1 + b = 0 и a · x 2 + b = 0 .
Свойство числовых равенств дает возможность произвести почленное вычитание частей равенств:

a · x 1 + b − ( a · x 2 + b ) = 0 − 0 , отсюда: a · ( x 1 − x 2 ) + ( b − b ) = 0 и далее a · ( x 1 − x 2 ) = 0 . Равенство a · ( x 1 − x 2 ) = 0 является неверным, поскольку ранее условием было задано, что a ≠ 0 и x 1 − x 2 ≠ 0 . Полученное противоречие и служит доказательством того, что при a ≠ 0 линейное уравнение a · x + b = 0 имеет лишь один корень.

Обоснуем еще два пункта условий, содержащие a = 0 .

Когда a = 0 линейное уравнение a · x + b = 0 запишется как 0 · x + b = 0 . Свойство умножения числа на нуль дает нам право утверждать, что какое бы число не было взято в качестве x, подставив его в равенство 0 · x + b = 0 , получим b = 0 . Равенство справедливо при b = 0 ; в прочих случаях, когда b ≠ 0 , равенство становится неверным.

Таким образом, когда a = 0 и b = 0 , любое число может стать корнем линейного уравнения a · x + b = 0 , поскольку при выполнении этих условий, подставляя вместо x любое число, получаем верное числовое равенство 0 = 0 . Когда же a = 0 и b ≠ 0 линейное уравнение a · x + b = 0 вовсе не будет иметь корней, поскольку при выполнении указанных условий, подставляя вместо x любое число, получаем неверное числовое равенство b = 0 .

Все приведенные рассуждения дают нам возможность записать алгоритм, дающий возможность найти решение любого линейного уравнения:

  • по виду записи определяем значения коэффициентов a и b и анализируем их;
  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число станет корнем заданного уравнения;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , отличном от нуля, начинаем поиск единственного корня исходного линейного уравнения:
  1. перенесем коэффициент b в правую часть со сменой знака на противоположный, приводя линейное уравнение к виду a · x = − b ;
  2. обе части полученного равенства делим на число a , что даст нам искомый корень заданного уравнения: x = — b a .

Собственно, описанная последовательность действий и есть ответ на вопрос, как находить решение линейного уравнения.

Напоследок уточним, что уравнения вида a · x = b решаются по похожему алгоритму с единственным отличием, что число b в такой записи уже перенесено в нужную часть уравнения, и при a ≠ 0 можно сразу выполнять деление частей уравнения на число a .

Таким образом, чтобы найти решение уравнения a · x = b , используем такой алгоритм:

  • при a = 0 и b = 0 уравнение будет иметь бесконечно много корней, т.е. любое число может стать его корнем;
  • при a = 0 и b ≠ 0 заданное уравнение не будет иметь корней;
  • при a , не равном нулю, обе части уравнения делятся на число a , что дает возможность найти единственный корень, который равен b a .

Примеры решения линейных уравнений

Необходимо решить линейное уравнение 0 · x − 0 = 0 .

Решение

По записи заданного уравнения мы видим, что a = 0 и b = − 0 (или b = 0 , что то же самое). Таким образом, заданное уравнение может иметь бесконечно много корней или любое число.

Ответ: x – любое число.


источники:

http://nauka.club/matematika/algebra/lineynye-uravneniya.html

http://zaochnik.com/spravochnik/matematika/systems/reshenie-linejnyh-uravnenij-s-odnoj-peremennoj/