Что такое дифференциальное уравнение и зачем оно нужно

∀ x, y, z

Главная ≫ Инфотека ≫ Математика ≫ Видео ≫ Откуда берутся дифференциальные уравнения? // Владимир Побережный

Откуда берутся дифференциальные уравнения?

Владимир Побережный

Математик Владимир Побережный об экспонентах, источниках дифференциальных уравнений и векторном пространстве функций.

Что такое дифференциальные уравнения? Это уравнения на какую-то неизвестную функцию или соотношения, которым должна удовлетворять эта функция и какие-то ее производные (если функция одной переменной, то просто производные, если функция многих переменных, то частные производные). Это обобщение наших обычных уравнений, например алгебраических. Мы сначала учим в школе линейные уравнения, их графики дают прямые на плоскости — бывают квадратичные, кубические и так далее. Это все алгебраические уравнения. Можно брать более сложные функции и более сложные уравнения, они дают какие-то более сложные графики. Объекты, которые они описывают, становятся более сложными, то есть линейные уравнения рисуют прямые, квадратичные — параболы, это все какие-то графики на плоскости или в более общем случае в большой размерности, какие-то поверхности в пространстве той или другой размерности. Поверхности или более сложные объекты, сделанные из поверхностей, — так называемые многообразия и так далее.

Дифференциальные уравнения — это следующий шаг. Уравнения, которые мы сейчас перечислили, задают в пространстве какие-то точки, подмножества точек. Уравнение задает множество точек на плоскости, и мы знаем, что эти точки выглядят как прямая. Это и есть график. Дифференциальные уравнения тоже задают какие-то подмножества, но они заданы уже в пространстве функций, то есть это соотношения, которым удовлетворяют функции. Решение дифференциального уравнения — это какой-то набор подмножества точек в пространстве функций. Пространство функций является бесконечномерным.

Возникает нужда в анализе: как это все устроено и почему мы вообще на это так смотрим? Такой взгляд действительно имеет вполне разумное содержание и смысл. Если мы рассматриваем линейные дифференциальные уравнения, то у нас возникает аналогия с обычными линейными уравнениями. Например, мы знаем, что линейные уравнения на плоскости — это прямая, в пространстве — какая-то гиперплоскость. То есть это какой-то плоский объект. Оказывается, что множество функций, удовлетворяющих линейному дифференциальному уравнению, устроено примерно так же, это в каком-то смысле плоскость, или прямая, или плоскость какой-то размерности, но уже в бесконечномерном пространстве функций (официально это называется векторным пространством). Множество решений линейного дифференциального уравнения образует векторное пространство во множестве всех функций.

Откуда берутся дифференциальные уравнения? Конечно, основной поставщик дифференциальных уравнений (это мы тоже со школы знаем) — это физика и механика. Законы Ньютона, например, ускорение материальной точки (силе, которая на нее действует). Но ускорение — это вторая производная. Вот у вас получилось дифференциальное уравнение (вторая производная координаты) равна какой-то силе . Свойство классической механики состоит в том, что, как правило, уравнения там второго порядка. Видимо, оттуда это возникло, причем, как принято у физиков (это не редкость), дифференциальные уравнения возникли чуть ли не раньше дифференциального исчисления, и решать их тоже (конечно, без построения общей теории) люди начали раньше, чем все эти понятия вообще были определены, и добивались каких-то успехов. Мы знаем, что введение основ дифференциального исчисления произошло как раз во времена Ньютона и Лейбница, то есть практически одновременно с законом Ньютона, в котором уже есть дифференцирование.

Физика не единственный источник этих уравнений. Практически любая околоестественная наука является таким источником. Например, в химии происходят какие-то реакции, скорость реакций зависит от количества и пропорций компонентов. Два вещества смешиваются и как-то превращаются в третье с какой-то скоростью, пропорциональной чему-то. Это дифференциальные уравнения. В биологии тоже есть дифференциальные уравнения.

Конечно, это не биология, а какой-то детский пример. Есть стандартная задача о размножении кроликов. У вас есть парочка кроликов, они с какой-то периодичностью рожают еще пару. У вас была пара кроликов, она родила — стало две пары. Каждая пара еще родила — стало четыре и так далее. Как устроен закон? Видно, что число растет очень быстро, это экспоненциальный рост. Здесь возникает очень интересный, но уже не совсем математический вопрос моделестроительства или адекватного построения модели. Вот мы хотим описать размножение кроликов. Если мы его описываем таким образом, то легко подсчитать, что если уравнение устроено так, что (это из физики идет такое стандартное обозначение; вообще производные функций обычно обозначаются , но если производная по времени, то ее удобно обозначать ) равняется , то есть скорость роста равна числу уже имеющихся пар. Такие уравнения мы умеем решать, это экспонента.

Эта модель, очевидно, не дает нам правильного приближения к жизни, на маленьких порядках немножко дает. С другой стороны, если бы все было в жизни устроено так, то кролики очень быстро бы захватили всю землю во много слоев, некуда было бы между ними наступить. Значит, надо как-то менять наше уравнение, подстраивать свойства модели под картинку, которую мы наблюдаем в жизни, и то, чему хотим быть адекватными. Например, чем больше кроликов, чем чаще они встречаются, тем больше вероятность, что у них возникнет какая-нибудь болезнь, которая будет заразной и будет передаваться от одного к другому, то есть надо вычесть какое-то слагаемое, пропорциональное частоте встреч. А как устроена частота встреч? Если кролики живут в каком-то лесу, каждый кролик занимает какое-то место, надо поделить площадь леса на площадь кроликов и так далее.

Стандартное, вполне обозримое и разумное приближение. Например, добавление в модель волков. У нас есть волки, есть кролики. Кролики как-то размножаются, и волки как-то размножаются. Кроликам для размножения нужен только лес и другие кролики, а волкам нужно что-то есть, им нужны, собственно, кролики. Поэтому скорость роста кроликов ( ), с одной стороны, равна числу пар (какому-то слагаемому ). С другой стороны, вычитается какое-то неудобство из-за перенаселенности, из-за ограниченности площади. С третьей стороны, вычитается какая-то пропорциональность числу волков, каждый волк кого-то съедает. А волки, в свою очередь, размножаются пропорционально своему имеющемуся числу (не как кролики, но все-таки), к тому же им надо что-то кушать, к тому же они тоже болеют. У нас получается набор, система уравнений. — это наши кролики, а , допустим, волки. Эти два уравнения должны выполняться одновременно, так модель усложняется и усложняется.

Даже в классической механике мы знаем, что если бросаем камень, то вблизи Земли у него ускорение постоянно . Но мы можем, например, добавлять сопротивление воздуха, оно уже зависит от скорости камня, то есть вторая производная будет не , а минус еще какое-то слагаемое, пропорциональное скорости . Например, падает дождевая капля. Во-первых, она падает из-за силы тяжести, во-вторых, тормозится воздухом, в-третьих, если воздух влажный, то она еще и конденсируется, растет, вбирает влажность из окружающего воздуха, то есть у нее меняется масса.

Можно строить разные модели, как-то их усложнять, исследовать те интересные вопросы, которые возникают почти в любом приложении, где как-то используется математика. Но математика ради математики здесь тоже имеется: дифференциальные уравнения — это очень большой отдельный разнообразный раздел со множеством вариаций. Он настолько большой, что даже практически не бывает конференций по дифференциальным уравнениям, потому что нужно более тонкое деление: качественная теория, асимптотические методы, интегрируемые системы, уравнения в частных производных и так далее. Это вполне большая развитая наука, продолжающая развиваться.

Какие основные свойства и характеристики есть у дифференциальных уравнений? Что можно о них сказать? Во-первых, краеугольный камень для обыкновенных дифференциальных уравнений для одной переменной (неважно, вещественной или комплексной, комплексной даже лучше, как всегда это устроено в анализе) — это теорема существования и единственности. Если у вас есть дифференциальное уравнение с достаточно разумными коэффициентами (эти слова формализуются разными способами, например гладкие) и есть начальные данные, то всегда есть локальное решение. Например, вы знаете, что ваш камень как-то падает, знаете, где он был в начальный момент времени и какая у него была в начальный момент времени скорость. После этого у него траектория считается по крайней мере локально, в окрестности этого положения.

Это очень сильный результат, опять-таки похожий на то, что у нас было с обычными уравнениями: мы знаем, что алгебраическое уравнение -того порядка имеет корней. В школе, конечно, учат, что бывает меньше, а потом если кто доучивается дальше, то учит, что нет, на самом деле столько же. Здесь есть аналогия: если уравнение -того порядка, то у него не решений, конечно, их бесконечно много, но множество решений параметризуется параметрами . Если есть уравнение второго порядка (наш камень), надо задать начальное положение и начальную скорость. И вообще, для уравнения -того порядка надо задать начальных данных, и тогда будет всегда существовать решение. Если уравнение линейное, то эти начальных данных — это просто его координаты в -мерном конечномерном векторном пространстве решений.

Это специфика обыкновенных уравнений от одной переменной, но при этом все-таки уравнение локально решается, то есть мы знаем, что решение существует, а вот найти его мы в явном виде можем не всегда. Мы можем использовать какие-то приближенные методы, как-то бороться, но гарантий, что мы напишем какое-то конечное выражение и оно будет решать наше уравнение, нет.

Это была деятельность XIX века, когда люди активно занимались этой областью и изучали уравнения математической физики, из этого возникла целая наука про классические многочленные специальные функции Лежандра, Лагерра, Чебышева. Это была попытка как-то решать уравнения, которые возникали при тогдашнем развитии науки. В явном и конечном виде решения не выписывались, но это совершенно не мешало заниматься их анализом: исследовать свойства, связи, асимптотики. Современная наука занимается более сложными уравнениями. Сейчас, например, вполне популярная деятельность — исследование уравнений Пенлеве. Это такие новые специальные функции — решения уравнений Пенлеве, сейчас занимаются их исследованиями, асимптотикой, связями, геометрическим смыслом, содержанием и так далее по аналогии с физикой XIX века.

Что такое дифференциальное уравнение и зачем оно нужно?

На сегодняшний день одним из важнейших навыков для любого специалиста является умение решать дифференциальные уравнения. Решение дифференциальных уравнений – без этого не обходится ни одна прикладная задача, будь это расчет какого-либо физического параметра или моделирование изменений в результате принятой макроэкономической политики. Эти уравнения также важны для ряда других наук, таких как химия, биология, медицина и т.д. Ниже мы приведем пример использования дифференциальных уравнений в экономике, но перед этим кратко расскажем об основных типах уравнений.

Дифференциальные уравнения – простейшие виды

Мудрецы говорили, что законы нашей вселенной написаны на математическом языке. Конечно, в алгебре есть много примеров различных уравнений, но это, большей частью, учебные примеры, неприменимые на практике. По-настоящему интересная математика начинается, когда мы хотим описать процессы, протекающие в реальной жизни. Но как отразить фактор времени, которому подчиняются реальные процессы – инфляция, выработка продукции или демографические показатели?

Вспомним одно важное определение из курса математики, касающееся производной функции. Производная является скоростью изменения функции, следовательно, она может помочь нам отразить фактор времени в уравнении.

То есть, мы составляем уравнение с функцией, которая описывает интересующий нас показатель и добавляем в уравнение производную этой функции. Это и есть дифференциальное уравнение. А теперь перейдем к простейшим типам дифференциальных уравнений для чайников.

Простейшее дифференциальное уравнение имеет вид $y’(x)=f(x)$, где $f(x)$ – некоторая функция, а $y’(x)$ – производная или скорость изменения искомой функции. Оно решается обычным интегрированием: $$y(x)=\int f(x)dx.$$

Второй простейший тип называется дифференциальным уравнением с разделяющимися переменными. Такое уравнение выглядит следующим образом $y’(x)=f(x)\cdot g(y)$. Видно, что зависимая переменная $y$ также входит в состав конструируемой функции. Уравнение решается очень просто – нужно «разделить переменные», то есть привести его к виду $y’(x)/g(y)=f(x)$ или $dy/g(y)=f(x)dx$. Остается проинтегрировать обе части $$\int \frac=\int f(x)dx$$ – это и есть решение дифференциального уравнения разделяющегося типа.

Последний простой тип – это линейное дифференциальное уравнение первого порядка. Оно имеет вид $y’+p(x)y=q(x)$. Здесь $p(x)$ и $q(x)$ – некоторые функции, а $y=y(x)$ – искомая функция. Для решения такого уравнения применяют уже специальные методы (метод Лагранжа вариации произвольной постоянной, метод подстановки Бернулли).

Есть более сложные виды уравнений – уравнения второго, третьего и вообще произвольного порядка, однородные и неоднородные уравнения, а также системы дифференциальных уравнений. Для их решения нужна предварительная подготовка и опыт решения более простых задач.

Большое значение для физики и, что неожиданно, финансов имеют так называемые дифференциальные уравнения в частных производных. Это значит, что искомая функция зависит от нескольких переменных одновременно. Например, уравнение Блека-Шоулса из области финансового инжиниринга описывает стоимость опциона (вид ценной бумаги) в зависимости от его доходности, размера выплат, а также сроков начала и конца выплат. Решение дифференциального уравнения в частных производных довольно сложное, обычно нужно использовать специальные программы, такие как Matlab или Maple.

Пример применения дифференциального уравнения в экономике

Приведем, как и было обещано, простой пример решения дифференциального уравнения. Вначале поставим задачу.

Для некоторой фирмы функция маржинальной выручки от продажи своей продукции имеет вид $MR=10-0,2q$. Здесь $MR$ – маржинальная выручка фирмы, а $q$ – объем продукции. Нужно найти общую выручку.

Как видно из задачи, это прикладной пример из микроэкономики. Множество фирм и предприятий постоянно сталкивается с подобными расчетами в ходе своей деятельности.

Приступаем к решению. Как известно из микроэкономики, маржинальная выручка представляет собой производную от общей выручки, причем выручка равна нулю при нулевом уровне продаж.

С математической точки задача свелась к решению дифференциального уравнения $R’=10-0,2q$ при условии $R(0)=0$.

Проинтегрируем уравнение, взяв первообразную функцию от обеих частей, получим общее решение: $$R(q) = \int (10-0,2q)dq = 10 q-0,1q^2+C. $$

Чтобы найти константу $C$, вспомним условие $R(0)=0$. Подставим: $$R(0) =0-0+C = 0. $$ Значит C=0 и наша функция общей выручки принимает вид $R(q)=10q-0,1q^2$. Задача решена.

Другие примеры по разным типам ДУ собраны на странице: Дифференциальные уравнения с решениями онлайн.

Дифференциальные уравнения, общие понятия

Дифференциальные уравнения — это отдельный вид функциональных уравнений. А значит для дифференциальных уравнений такие понятия, как функция, аргумент функции, область определения функции и т.п., также являются актуальными.

Главное отличие дифференциальных уравнений от фунцкциональных в том, что одна из переменных (как правило искомая неизвестная величина) является производной или дифференциалом функции, аргументом которой является вторая переменная, впрочем аргументов у функции может быть несколько.

В общем случае определение дифференциального уравнения может выглядеть так:

Дифференциальным уравнением называется равенство между функцией и ее производной или дифференциалом.

Дифференциальное уравнение называется обыкновенным, если искомая функция зависит от одного аргумента. Например:

у’ = f(x) (539.1)

Напомню, функциональное уравнение может иметь следующий вид:

у = f(x) (538.1)

Дифференциальное уравнение называется уравнением в частных производных, если искомая функция зависит от нескольких аргументов. Например:

у’ = f(x1,x2) или у’ = f(x,u) (539.2)

где х1, х2 или х, u — возможные обозначения для различных аргументов функции.

Порядком дифференциального уравнения считается порядок наивысшей производной, входящей в уравнение. Например уравнение (539.1) является уравнением первого порядка. Уравнение второго порядка может иметь вид:

y» = f(x) (539.3)

Решением дифференциального уравнения является функция, подставление которой вместо неизвестной функции обращает уравнение в тождество. Другими словами уравнение становится равенством.

А теперь эти общие математические понятия (кстати тут приведены далеко не все основные понятия) попробуем описать простым человеческим языком, но начать придется издалека.

Производная функции

Мы живем в несовершенном, постоянно изменяющемся мире. Все течет, все изменяется, как подметил еще Гераклит. Однако в древности были и другие мыслители, которые в отличие от Гераклита пытались этот мир как-то понять и оценить. Так далеко в историю мы заглядывать не будем, хотя предпосылки к дифференциальному исчислению следует искать именно там, а ограничимся простыми и наглядными примерами:

Пример 1

Мы вышли из пункта А в пункт Б и находились в пути 4 часа, каждый час мы проходили по 2 километра. Вопрос: какое расстояние между пунктами А и Б?

Вообще это задачка для 3-4 класса начальной школы и решить ее вроде бы не сложно (потому я ее и выбрал): достаточно сложить все расстояния, пройденные за каждый час, а так как эти расстояния одинаковые, то можно еще больше упростить задачу, умножив на 4 расстояние, пройденное за один промежуток времени. Таким образом расстояние между пунктами А и Б составляет:

2 км · 4 = 8 км (539.4)

А между тем условия задачи можно рассматривать и по другому, т.е. как зависимость пройденного расстояния от времени. В этом случае у нас время -независимая переменная t или аргумент функции, а пройденное расстояние — значение функции в тот или иной момент времени или переменная s. Тогда условия задачи соответствуют следующему функциональному уравнению:

s = f(t) = 2t (539.5)

а также графику этой функции:

Рисунок 539.1. График функции f(t) = 2t.

Так если по оси t откладывать промежутки времени Δt (ч), которое мы были в пути, а по оси s — преодоленное за эти промежутки времени расстояние Δs (км), то график указанной функции будет иметь такой вид, как показано на рисунке 539.1. В общем случае используются более привычные оси х и у, соответственно рассматриваются функции вида y = f(x), но сути дела это никак не меняет.

Решая уравнение (539.5) мы можем определить не только общее расстояние, преодоленное за 4 часа пути, но и в любой интересующий нас момент времени. Например, нас интересует, какое расстояние мы прошли за 1.5 часа. Согласно уравнению (539.5) это расстояние составит 2·1.5 = 3 километра.

А если нас интересует не расстояние, преодоленное к тому или иному моменту времени, а скорость движения? Можем ли мы определить эту скорость на основе имеющихся данных?

Оказывается можем, потому что скорость — это тоже функция, которая в свою очередь также зависит от времени.

Так как каждый час мы преодолевали по 2 км, то отсюда можно сделать вывод, что скорость нашего движения была постоянной, тогда по давно известному нам уравнению, описывающему движение с постоянной скоростью:

v = s/t = 8/4 = 2 км/ч (539.6)

В данном случае, так как скорость постоянная, не имеет значения, на каком временном промежутке мы эту скорость определяем. Тем не менее рассмотрим данную ситуацию с точки зрения математики.

Временные промежутки, когда засекалось пройденное расстояние, мы обозначим как Δt = 1, соответственно t = ΣΔt = 1 + 1 + 1 + 1 = 4. Расстояния, пройденные за эти промежутки времени обозначим как Δs = 2. На графике функции это будет выглядеть так:

Рисунок 539.2

С точки зрения математики временные промежутки Δt — это приращение аргумента функции:

Δt = t — t0 (539.7)

Соответственно расстояния, пройденные за рассматриваемый промежуток времени — это приращение функции:

Δs = Δf(t) = f(t) — f(t0) (539.8)

А так как использовать греческую литеру Δ не всегда удобно (в частности мне для этого приходится заходить в отдельный редактор текста, а наборщикам в типографиях вставить эту литеру было еще сложнее), то часто приращение значения искомой функции и приращение аргумента функции обозначают как ds и dt.

Тогда формулу определения скорости можно записать так:

v = ds/dt (539.9)

Таким образом мы с одной стороны вроде бы просто разделили расстояние на время — задача для 3-4 класса, а с другой стороны мы определили производную функции s = f(t), соответствующим образом ее продифференцировав, а это уже задача курса алгебры, а то и высшей математики.

Возможно и не стоило это так подробно расписывать, но на мой взгляд это очень важно, чтобы показать, что в дифференциальном исчислении нет ничего трудного, если рассматривать его на соответствующих примерах.

Итак скорость v является производной функции s = f(t) = 2t. Дифференциальное уравнение в этом случае будет выглядеть так:

v = s’ = f'(t) (539.10.1)

v = (2t)’ = 2 (539.10.2)

Но и это еще не все, на основании имеющихся данных: времени в пути и расстояний, преодоленных за 1 час, мы можем определить ускорение нашего движения.

Так как скорость нашего движения оставалась постоянной, соответственно dv = 0, то само собой и ускорения никакого не было, ни положительного ни отрицательного. Другими словами ускорение нашего движения составляло а = 0 км/ч 2 .

На языке математики это будет выглядеть так:

а = v’ = dv/dt = s» = d 2 s/dt 2 (539.11.1)

a = 0/1 = (2t)» = (2)’ = 0 (539.11.2)

Т.е. в данном случае для определения ускорения нужно определить первую производную функции скорости (уравнения, выражающего зависимость скорости от времени) или вторую производную функции расстояния (уравнения, выражающего зависимость пройденного расстояния от времени).

На основании вышеизложенного мы можем дать следующее предварительное определение производной:

Производная — это скорость изменения функции

В рассмотренном выше примере скорость движения — это скорость изменения функции расстояния, а ускорение — это скорость изменения функции скорости. Если бы мы все 4 часа сидели на месте, то и расстояние, пройденное нами, было бы равно нулю, и скорость и ускорение, но даже для такого случая можно записать соответствующие дифференциальные уравнения:

Однако в жизни гораздо чаще встречаются функции, даже третьи производные которых не равны нулю.

Рассмотрим другой пример все с тем же движением, на этот раз чуть более сложный.

Пример 2

По ровной наклонной поверхности скатывается шар. Начальная скорость движения равна vo = 0. Определить пройденное шаром за 4 секунды расстояние, скорость после 1, 2, 3 и 4 секунд движения и постоянное ускорение движения, если за первую секунду шар преодолел расстояние 3 м, за вторую — 9 м, за третью — 15 м, за четвертую — 21 м.

С определением пройденного расстояния по прежнему проблем нет: достаточно сложить расстояния, которые преодолел шар за каждую секунду s = ΣΔs = 3 + 9 + 15 + 21 = 48 метров. А вот скорость и ускорение в данном случае определить не так просто. Тем не менее попробуем.

Если воспользоваться полученными раннее знаниями, то вроде бы в первый промежуток времени скорость должна быть равна:

Вот только в данном случае у нас скорость — изменяющаяся величина, зависящая от времени, поэтому результат полученный при решении уравнения (539.12) можно рассматривать лишь как среднюю скорость движения на первом участке. Тогда более правильно уравнение скорости на первом участке записать так:

v1ср = ds1/dt1 = 3/1 = 3 м/с (539.12.2)

Подобным образом мы достаточно легко можем определить среднюю скорость на всех участках пути, и она составит v2ср = 9 м/с, v3ср = 15 м/с, v4ср = 21 м/с, но в данном случае нас интересует не среднее значение функции скорости на рассматриваемом участке, а значение функции скорости во вполне определенной точке, т.е. после 1, 2, 3 и 4 секунд движения. Как это сделать?

По условиям задачи ускорение — производная от скорости — является постоянной величиной, т.е. скорость изменения скорости будет постоянной. В этом случае значение средней скорости является средним арифметическим от начальной и конечной скорости на рассматриваемом участке:

тогда при vo = 0

v1 = 3·2 = 6 м/с (539.13.2)

Соответствующим образом мы можем определить значения скорости и в остальных точках, например (6 + v2)/2 = 9, v2 = 9·2 — 6 = 12 м/с; (12 + v3)/2 = 15, v3 = 15·2 — 12 = 18 и так далее, а теперь переведем полученные данные на язык высшей математики. Мы видим, что v1 = 6·1, v2 = 6·2 = 12, v3 = 6·3 = 18, т.е. значение скорости явно зависит от времени, соответственно уравнение скорости мы можем записать следующим образом:

v = s’ = 6t (539.14)

Соответственно ускорение движения шара составит:

a = v’ = (6t)’ = 6 м/с 2 (539.15)

Между тем, если бы нам были заданы меньшие значения временных промежутков и соответственно меньшие значения пройденных расстояний за эти промежутки времени, например при dt1 = 1 секунда, ds1 = 3 м, dt2 = 0.1 секунды и ds2 = 0.63 м, то средняя скорость на рассматриваемом втором участке составила бы v2ср = ds/dt = 0.63/0.1 = 6.3 м/с, а скорость в в точке t2: v2сp = (6 + v2)/2 = 6.3, v2 = 12.6 — 6 = 6.6 м/с. Т.е. закономерность изменения значения скорости никуда не девается, тем не менее, чем меньше рассматриваемый временной промежуток dt, тем меньше разница между значением средней скорости изменения функции и скоростью изменения функции в рассматриваемой точке. Из этого можно сделать еще один очень важный вывод:

Скорость изменения функции может быть разная. Чем меньше приращение аргумента функции dt, тем ближе значение среднего изменения скорости к изменению скорости функции в рассматриваемой точке.

На основании этого можно сформулировать более полное определение производной функции:

Производная функции в точке — это скорость изменения функции в рассматриваемой точке при стремлении приращения аргумента функции к нулю (Δt → 0)

Поэтому иногда производную называют мгновенной скоростью изменения функции. В нашем случае уравнение производной будет выглядеть так:

(539.16)

На данном этапе вид формулы (539.16) нас уже не пугает (во всяком случае мне так кажется). Совсем другое дело, когда подобная формула приводится в начале темы, посвященной рассмотрению производных функции.

Дифференциал (первообразная) функции

С задачей определения скорости и ускорения в примере 2 мы вроде бы справились и даже составили соответствующие уравнения (539.14) и (539.15). Но иногда требуется решить и обратную задачу — например определить исходное уравнение, описывающее зависимость перемещения от времени.

Если скорость является производной функции расстояния v = s’, то расстояние при этом является первообразной (дифференциалом) функции скорости s = ∫v. Процесс нахождения первообразной функции называется интегрированием. Так, чтобы получить уравнение зависимости пройденного расстояния от времени, нам нужно проинтегрировать уравнение скорости. При этом уравнение расстояния более правильно записывать так

s = ∫vdt (539.17)

В общем случае интегрирование может быть более сложной задачей, чем дифференцирование, потому что функции бывают не только степенными, как в данном примере, но и тригонометрическими, обратными тригонометрическими и т.п., но пока нас интересует, как проинтегрировать простую степенную функцию вида f(t) = 6t.

Вообще-то мы могли сразу построить график, отражающий зависимость пройденного расстояния от времени по данным примера 2, тем не менее сделаем это сейчас, а заодно построим график для уравнений скорости и ускорения и расположим их в такой последовательности:

Рисунок 539.3. Графики степенных функции а) а= 6, б) v = at, в) s = at 2 /2.

Как видим, график, отражающий зависимость ускорения от времени, у нас самый простой. Ускорение постоянное, а = 6 м/с 2 и от времени никак не зависит. Тем не менее, зная ускорение, мы можем определить скорость движения в любой точке времени. Так из уравнений (539.14) и (539.15) следует, что:

v = 6t = at (539.14.2)

Соответственно решая это уравнение, мы можем определить скорость в любой момент времени.

Но если рассматривать это действие с точки зрения геометрии, то мы, умножая ускорение на время, определяем площадь прямоугольника со сторонами а = 6 и t. При t = 4 площадь прямоугольника составит 6·4 = 24, точнее 24 м/с так как мы все-таки определяем скорость.

Если мы построим график, отражающий зависимость изменения скорости от времени, то увидим, что на этом графике значения скорости в той или иной момент времени соответствуют площадям прямоугольника со сторонами а = 6 и t.

Получается, что если определить площадь треугольника со сторонами v и t, то это и будет расстояние, преодоленное к тому или иному промежутку времени:

s = vt/2 = at 2 /2 = 6t 2 /2 = 3t 2 (539.18)

Уравнение (539.18) можно записать как дифференциальное:

s = ∫6tdt = 3t 2 (539.18.2)

Если график, показанный на рисунке 539.3.в) также является графиком для производной некоторой функции, то для определения первообразной этой функции нам также следовало бы найти площадь фигуры, ограниченной квадратной параболой.

Сделать это в принципе не сложно, так как площадь фигуры, очерченной квадратной параболой таким образом, как показано на рисунке 539.3.в) в 3 раза меньше площади прямоугольника со сторонами s и t, соответственно S = st/3 = 3t 2 t/3 = t 3 и эту процедуру можно повторять до бесконечности.

Почему площадь фигуры, ограниченной квадратной параболой именно в 3 раза меньше, чем площадь прямоугольника, а площадь фигуры ограниченной кубической параболой в 4 раза меньше площади прямоугольника, я здесь объяснять не буду, тем не менее такая закономерность существует и в математическом выражении выглядит так:

∫aх n dx = ax n+1 /n + C (539.19)

В данном случае С — это некоторая постоянная величина. Как мы выяснили, при дифференцировании постоянные величины обращаются в нуль, как пример — уравнение (539.11.2), соответственно решая обратную задачу, т.е. интегрируя функцию, мы допускаем, что некая постоянная величина в первообразной функции была.

Например в общем случае уравнение скорости (539.14.2) должно выглядеть так:

v = vo + at (539.14.3)

где vo — это и есть некая постоянная величина. В нашем случае по условиям задачи vo = 0, поэтому мы использовали сокращенную форму записи.

Определенный интеграл

В общем случае график функции может выглядеть как угодно, например так:

Рисунок 539.4

В этом случае сразу определить площадь фигуры, ограниченной графиком функции, не получится. Но мы можем разбить эту фигуру на участки шириной Δх и определить среднее значение у для каждого участка. Теперь определить площади трех прямоугольников большого труда не составит, вот только суммарная площадь прямоугольников не будет равна площади фигуры, ограниченной графиком функции:

S ≈ ∑yiΔx (539.20)

Но чем больше будет у нас прямоугольников с шириной Δх, т.е, чем меньше будет значение Δх, тем точнее будет значение у, а значит и суммарная площадь прямоугольников будет ближе к площади фигуры, ограниченной графиком функции.

При интегрировании, как и при дифференцировании для получения более точного результата приращение аргумента функции должно стремиться к нулю (maxΔx → 0) .

Из этого можно сделать следующий вывод:

Если существует предел суммы, определяемой по формуле (539.20) вне зависимости от количества прямоугольников и при стремлении ширины прямоугольников к нулю, то такой предел называется определенным интегралом, а суммы, определяемые по формуле (539.20) — интегральными суммами.

Так как на рисунке 539.4 показан график непрерывной функции, то такая функция является интегрируемой и для определения дифференциала функции используется определенный интеграл. При этом 0 и 3 — это пределы интегрирования.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:
  • Расчет конструкций . Уравнения, основные понятия
Оценка пользователей:10.0 (голосов: 1)
Переходов на сайт:1701
Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).


источники:

http://www.matburo.ru/mart_sub.php?p=art_du

http://doctorlom.com/item539.html