Что такое эквивалентные системы уравнений

Эквивалентные системы линейных уравнений

Две системы линейных уравнений от одного набора x1. xn неизвестных и соответственно из m и p уравнений

называются эквивалентными, если их множества решений и совпадают (т. е. подмножества и в Kn совпадают, ). Это означает, что: либо они одновременно являются пустыми подмножествами (т. е. обе системы (I) и (II) несовместны), либо они одновременно непустые , и (т. е. каждое решение системы I является решением системы II и каждое решение системы II является решением системы I).

Элементарные преобразования систем линейных уравнений (строк матриц)

Определение 3.4.1 (элементарное преобразование 1-го типа). При к i -му уравнению системы прибавляется k -е уравнение, умноженное на число (обозначение: (i)’=(i)+c(k) ; т. е. лишь одно i -е уравнение (i) заменяется на новое уравнение (i)’=(i)+c(k) ). Новое i -е уравнение имеет вид (ai1+cak1)x1+. +(ain+cakn)xn=bi+cbk, или, кратко,

т. е. в новом i -м уравнении aij’=aij+cakj, bi’=bi+cbk.

Определение 3.4.2 (элементарное преобразование 2-го типа). При i -е и k -е уравнение меняются местами, остальные уравнения не изменяются (обозначение: (i)’=(k), (k)’=(i) ; для коэффициентов это означает следующее: для j=1. n

53. Метод Гаусса решения систем линейных уравнений
Формулы Крамера и матричный метод решения систем линейных уравнений не имеют серьезного практического применения, так как связаны с громоздкими выкладками. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса, состоящий в последовательном исключении неизвестных по следующей схеме. Для того чтобы решить систему уравнений выписывают расширенную матрицу этой системы и над строками этой матрицы производят элементарные преобразования, приводя ее к виду, когда ниже главной диагонали, содержащей элементы будут располагаться нули. Разрешается: 1) изменять порядок строк матрицы, что соответствует изменению порядка уравнений; 2) умножать строки на любые отличные от нуля числа, что соответствует умножению соответствующих уравнений на эти числа; 3) прибавлять к любой строке матрицы другую, умноженную на отличное от нуля число, что соответствует прибавлению к одному уравнению системы другого, умноженного на число. С помощью этих преобразований каждый раз получается расширенная матрица новой системы, равносильной исходной, т. е. такой системы, решение которой совпадает с решением исходной системы. Рассмотрим метод Гаусса на примерах. Пример 14. Установить совместность и решить систему Решение. Выпишем расширенную матрицу системы и поменяем местами первую и вторую строки для того, чтобы элемент равнялся единице (так удобнее производить преобразования матрицы). . Имеем Ранги матрицы системы и ее расширенной матрицы совпали с числом неизвестных. Согласно теореме Кронекера-Капелли система уравнений совместна и решение ее единственно. Выпишем систему уравнений, расширенную матрицу которой мы получили в результате преобразований: Итак, имеем Далее, подставляя в третье уравнение, найдем Подставляя и во второе уравнение, получим и, наконец, подставляя в первое уравнение найденные получим Таким образом, имеем решение системы 54. Однородные системы линейных уравнений Однородной системой m линейных уравнений с n неизвестными называется система вида
      
a11x1 + a12x2 + … + a1nxn = 0
a21x1 + a22x2 + … + a2nxn = 0
… … … … … … … … … … …
am1x1 + am2x2 + … + amnxn = 0
(1)

Эта система может быть записана в виде матричного уравнения

и операторного уравнения

^Ax = θ(2)

Система (1) всегда совместна, так как:

имеет очевидное решение x10 = x20 = … = xn0 = 0 , которое называется нулевым, или тривиальным;

добавление нулевого столбца не меняет ранга матрицы, следовательно, выполняется достаточное условие теоремы Кронекера–Капелли;

θ О Img ^A , так как Img ^A — линейное пространство.

Естественно, нас интересуют нетривиальные решения однородной системы.

Условие нетривиальной совместности:

Для того, чтобы однородная система имела нетривиальное решение, необходимо и достаточно, чтобы ранг ее основной матрицы был меньше числа неизвестных.

Доказательство см. в книге О.В. Зиминой «Линейная алгебра и аналитическая геометрия», стр. 77.

Следствие. Для того, чтобы однородная система n линейных уравнений с n неизвестными (матрица системы A — квадратная) имела нетривиальное решение, необходимо и достаточно, чтобы определитель матрицы этой системы был равен нулю ( det A = 0 ).

Общим решением системы линейных уравнений называется формула, которая определяет любое ее решение.

Так как система (1) эквивалентна операторному уравнению (2), то множество всех ее решений есть ядро оператора ^A . Пусть Ker ^A ≠ θ , Rg ^A = r и x1, x2, … , xn − r — базис в ядре оператора.

Фундаментальной системой решений однородной системы (1) называется базис ядра оператора ^A (точнее, координатные столбцы базисных векторов в Ker ^A ).

Это определение можно сформулировать несколько иначе:

Фундаментальной системой решений однородной системы (1) называется n − r линейно независимых решений этой системы.

Будем обозначать координатные столбцы базисных векторов в Ker ^A X1, X2, … , Xn − r .

Теорема о структуре общего решения однородной системы уравнений:

Любое решение однородной системы линейных уравнений определяется формулой

X = C1 · X1 + C2 · X2 + … + Cn − r · Xn − r,(3)

где X1, X2, … , Xn − r — фундаментальная система решений однородной системы линейных уравнений и C1, C2, … , Cn − r — произвольные постоянные.

Свойства общего решения однородной системы уравнений:

При любых значениях C1, C2, … , Cn − r X , определяемое формулой (3), является решением системы (1).

Каково бы ни было решение X0 , существуют числа C10, … , Cn − r0 такие, что

X0 = C10 · X1 + C20 · X2 + … + Cn − r0 · Xn − r.

Вывод: Чтобы найти фундаментальную систему и общее решение однородной системы, нужно найти базис ядра соответствующего линейного оператора.

Понимание эквивалентных уравнений в алгебре

Понимание эквивалентных уравнений в алгебре — Науки

Содержание:

Эквивалентные уравнения — это системы уравнений, которые имеют одинаковые решения. Выявление и решение эквивалентных уравнений — ценный навык не только на уроках алгебры, но и в повседневной жизни. Взгляните на примеры эквивалентных уравнений, как решить их для одной или нескольких переменных и как вы можете использовать этот навык за пределами классной комнаты.

Ключевые выводы

  • Эквивалентные уравнения — это алгебраические уравнения, которые имеют одинаковые решения или корни.
  • Добавление или вычитание одного и того же числа или выражения к обеим сторонам уравнения дает эквивалентное уравнение.
  • Умножение или деление обеих частей уравнения на одно и то же ненулевое число дает эквивалентное уравнение.

Линейные уравнения с одной переменной

В простейших примерах эквивалентных уравнений нет переменных. Например, эти три уравнения эквивалентны друг другу:

  • 3 + 2 = 5
  • 4 + 1 = 5
  • 5 + 0 = 5

Признать, что эти уравнения эквивалентны, — это здорово, но не особенно полезно. Обычно задача эквивалентного уравнения просит вас решить для переменной, чтобы убедиться, что она такая же (та же корень) как одно в другом уравнении.

Например, следующие уравнения эквивалентны:

В обоих случаях x = 5.Откуда нам это знать? Как вы решите это для уравнения «-2x = -10»? Первый шаг — узнать правила эквивалентных уравнений:

  • Добавление или вычитание одного и того же числа или выражения к обеим сторонам уравнения дает эквивалентное уравнение.
  • Умножение или деление обеих частей уравнения на одно и то же ненулевое число дает эквивалентное уравнение.
  • Возведение обеих частей уравнения в одну и ту же нечетную степень или получение одного и того же нечетного корня приведет к эквивалентному уравнению.
  • Если обе части уравнения неотрицательны, возведение обеих сторон уравнения в одну четную степень или получение одного и того же четного корня даст эквивалентное уравнение.

пример

Применяя эти правила на практике, определите, эквивалентны ли эти два уравнения:

  • х + 2 = 7
  • 2x + 1 = 11

Чтобы решить эту проблему, вам нужно найти «x» для каждого уравнения. Если «x» одинаково для обоих уравнений, то они эквивалентны. Если «x» отличается (т.е. уравнения имеют разные корни), то уравнения не эквивалентны. Для первого уравнения:

  • х + 2 = 7
  • x + 2-2 = 7-2 (вычитая обе части на одно и то же число)
  • х = 5

Для второго уравнения:

  • 2x + 1 = 11
  • 2x + 1-1 = 11-1 (вычитая обе части на одно и то же число)
  • 2x = 10
  • 2x / 2 = 10/2 (разделив обе части уравнения на одно и то же число)
  • х = 5

Итак, да, два уравнения эквивалентны, потому что x = 5 в каждом случае.

Практические эквивалентные уравнения

Вы можете использовать эквивалентные уравнения в повседневной жизни. Это особенно полезно при покупках. Например, вам нравится определенная рубашка. Одна компания предлагает рубашку за 6 долларов с доставкой за 12 долларов, в то время как другая компания предлагает рубашку за 7,50 долларов с доставкой за 9 долларов. Какая рубашка имеет лучшую цену? Сколько рубашек (может быть, вы хотите подарить друзьям) вам придется купить, чтобы цена была одинаковой для обеих компаний?

Чтобы решить эту проблему, пусть x будет числом рубашек. Для начала установите x = 1 для покупки одной рубашки. Для компании №1:

  • Цена = 6x + 12 = (6) (1) + 12 = 6 + 12 = 18 $
  • Цена = 7,5x + 9 = (1) (7,5) + 9 = 7,5 + 9 = 16,50 $

Итак, если вы покупаете одну рубашку, вторая компания предлагает более выгодную сделку.

Чтобы найти точку, в которой цены равны, оставьте «x» числом рубашек, но приравняйте два уравнения друг к другу. Чтобы узнать, сколько рубашек вам нужно купить, решите для «x»:

  • 6х + 12 = 7,5х + 9
  • 6x — 7,5x = 9-12 (вычитая одинаковые числа или выражения с каждой стороны)
  • -1,5х = -3
  • 1,5x = 3 (деление обеих сторон на одно и то же число, -1)
  • x = 3 / 1,5 (деление обеих сторон на 1,5)
  • х = 2

Если вы покупаете две рубашки, цена будет одинаковой, независимо от того, где вы ее купите. Вы можете использовать ту же математику, чтобы определить, какая компания предлагает вам более выгодную сделку с крупными заказами, а также рассчитать, сколько вы сэкономите, используя одну компанию по сравнению с другой. Видите ли, алгебра полезна!

Эквивалентные уравнения с двумя переменными

Если у вас есть два уравнения и две неизвестные (x и y), вы можете определить, эквивалентны ли два набора линейных уравнений.

Например, если вам даны уравнения:

Вы можете определить, эквивалентна ли следующая система:

Чтобы решить эту проблему, найдите «x» и «y» для каждой системы уравнений. Если значения совпадают, то системы уравнений эквивалентны.

Начнем с первого подхода. Чтобы решить два уравнения с двумя переменными, выделите одну переменную и подставьте ее решение в другое уравнение. Чтобы изолировать переменную «y»:

  • -3x + 12y = 15
  • -3x = 15–12 лет
  • x = — (15 — 12y) / 3 = -5 + 4y (подставьте «x» во втором уравнении)
  • 7x — 10y = -2
  • 7 (-5 + 4лет) — 10лет = -2
  • -35 + 28–10 лет = -2
  • 18лет = 33
  • у = 33/18 = 11/6

Теперь вставьте «y» обратно в любое уравнение, чтобы найти «x»:

Проработав это, вы в конечном итоге получите x = 7/3.

Чтобы ответить на вопрос, вы мог примените те же принципы ко второму набору уравнений, чтобы решить для «x» и «y», чтобы обнаружить, что да, они действительно эквивалентны. В алгебре легко увязнуть, поэтому неплохо проверить свою работу с помощью онлайн-программы для решения уравнений.

Однако умный ученик заметит, что две системы уравнений эквивалентны без каких-либо сложных вычислений. Единственная разница между первым уравнением в каждом наборе состоит в том, что первое в три раза больше второго (эквивалентного). Второе уравнение точно такое же.

02. Элементарные преобразования системы линейных уравнений

Определение 5. Элементарными преобразованиями системы линейных уравнений называются ее следующие преобразования:

1) перестановка любых двух уравнений местами;

2) умножение обеих частей одного уравнения на любое число ;

3) прибавление к обеим частям одного уравнения соответствующих частей другого уравнения, умноженных на любое число k ;

(при этом все остальные уравнения остаются неизменными).

Нулевым уравнением называем уравнение следующего вида:

.

Теорема 1. Любая конечная последовательность элементарных преобразований и преобразование вычеркивание нулевого уравнения переводит одну систему линейных уравнений в равносильную ей другую систему линейных уравнений.

Доказательство. В силу свойства 4 предыдущего пункта достаточно доказать теорему для каждого преобразования отдельно.

1. При перестановке уравнений в системе местами сами уравнения неизменяются, поэтому по определению полученная система равносильная первоначальной.

2. В силу первой части доказательства достаточно доказать утверждение для первого уравнения. Умножим первое уравнение системы (1) на число , получим систему

(2)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (2) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеет место верное числовое равенство:

. (3)

Умножая его на число K, получим верное числовое равенство:

, (4)

Т. о. устанавливаем, что решение системы (2).

Обратно, если решение системы (2), то числа удовлетворяют всем уравнениям системы (2). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (2), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (2), то справедливо числовое равенство (4). Разделив обе его части на число ,получим числовое равенство (3) и доказываем, что решение системы (1).

Отсюда по определению 4 система (1) равносильна системе (2).

3. В силу первой части доказательства достаточно доказать утверждение для первого и второго уравнения системы. Прибавим к обеим частям первому уравнению системы соответствующие части второго умноженные на число K , получим систему

(5)

Пусть решение системы (1) . Тогда числа удовлетворяют всем уравнениям системы (1). Так как все уравнения системы (5) кроме первого совпадают с уравнениями системы (1), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (1), то имеют место верные числовые равенства:

, (6)

. (7)

Прибавляя почленно к первому равенству второе, умноженное на число K получим верное числовое равенство:

. (8)

Обратно, если решение системы (5), то числа удовлетворяют всем уравнениям системы (5). Так как все уравнения системы (1) кроме первого совпадают с уравнениями системы (5), то числа удовлетворяют всем эти уравнениям. Так как числа удовлетворяют первому уравнению системы (5), то справедливо числовое равенство (8). Вычитая из обеих его частей соответствующие части равенства (7) умноженные на число K получим числовое равенство (6).

Отсюда по определению 4 система (1) равносильна системе (5).

4. Так как нулевому уравнению удовлетворяет любой упорядоченный набор из n чисел, то при вычеркивании нулевого уравнения в системе получим систему равносильную исходной.


источники:

http://ru1.kyaaml.org/understanding-equivalent-equations-4157661-12621

http://matica.org.ua/metodichki-i-knigi-po-matematike/algebra-i-geometriia-tolstikov-a-v/02-elementarnye-preobrazovaniia-sistemy-lineinykh-uravnenii