Что такое квадратная система линейных уравнений

Что такое квадратная система линейных уравнений

Пример 5. Решите уравнение 3у + у 2 = у.
Решение:
3у + у 2 = у – неполное квадратное уравнение; у 2 + 3у – у = 0;
у 2 + 2у =0; у∙(у + 2) = 0.

x 2 – 5х = – 6 или х 2 – 5х = 36;
х 2 – 5х + 6 = 0 или х 2 – 5х – 36 =0.
По теореме Виета:
х1 = 2, х2 = 3, х3 = – 4, х4 =9.
Ответ: – 4, 2, 3, 9.

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 \ 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля

Квадратная система линейных уравнений с определителем основной матрицы, отличным от нуля

  • Система квадратов следующего линейного уравнения Ненулевая основная матричная лемма. Давайте дадим квадрат Линейная система уравнений \ X \ + CL12X2 + … + CLinXn = С.10) \ X \ + an2X2 + … + appxn = bn Ненулевой определитель A главной матрицы A = ах шум ^ 22 ар2 С.11) Такие системы дополнительно включают в себя и найдите это решение.
  • Сначала докажите, что система C.10) может делать. Существует только одно решение (то есть, доказать единственность решения В.10) Предполагая его существование). Предположим, что существует n чисел xi, X2, …, xn. Подставляя эти числа в систему, C.10) весь баланс Выражение этой системы меняется на идентичность (то есть Второе решение системы C.10) xi, x2, …, xn).

Затем умножьте тождества C.10), алгебраические дополнения A \ j ^ A ^ j, …, Anj соответственно. Людмила Фирмаль

Сложите с j-ro элементом определителя столбца A матрицы C.11) Далее получаем идентификатор полученный таким образом ( Число j равно 1, 2, …, n) г = 1 aniAnj) = bnAnj. сумма произведений элементов в столбце r-ro соответствует Существующее алгебраическое дополнение элементов последовательности j-ro r = j для r f j и равна определителю A матрицы C.11) Получить из последнего равенства XjA = bAq + b2A2j + … + bnAnj. С.12) 8) гл. См.

Свойство 4 ° в подразделе 4 §2. 1. Отображать с помощью Aj (pi) (или проще с помощью Aj) Определитель, полученный из определителя А основной матрицы C.11) Заменить j-й столбец на пустой столбец-член B \, b, …, bn (если вы хотите сохранить все остальные столбцы без изменений Cov L).

Обратите внимание, что в правой части C.12 есть именно определители. Aj (pi) 9) это равенство принимает вид (J = 1, 2, …, n). С.13) Определитель Λ матрицы C.11) не равен нулю и равен Эквивалент C.13) Xj = ^ (i =! ‘2’¦ • ¦’ «) ¦ С.14) Таким образом, решение x1, x2, …, xn системы C.10 имеет вид Кроме определителя A основной матрицы C.11) Если la существует, это решение однозначно определяется формой Лами С.14).

Уравнение C.14) называется уравнением Крамера 10). Формула Крамера до сих пор была Предположение о существовании решения и доказательство его единственности нос Осталось доказать существование решения системы C.10). Для этого Благодаря Кронекеру — теоремы Капелли достаточно, чтобы доказать ее ранг Основная матрица С.11) равна рангу расширенной матрицы 11) «11 «22 «В 2р «Nl» n2 С.15)

Но это очевидно. Из-за отношения Φ0, основной ранг Матрица n является n, ранг расширенной матрицы, содержащей n строк C.15) Поскольку оно не может превышать число n, оно равно основному рангу Матрица. 9) Чтобы убедиться в этом, достаточно записать разложение детерминанта Aj (pi) элементом в i-м столбце. 10) Габриэль Крамер A704-1752) — швейцарский математик.

  • 11) Есть еще один способ доказать существование системного решения мы C.10), который состоит из проверки того, что числа x \, X2, •••, xn определены. Согласно уравнению Крамера C.14), они превращают все уравнения системы C.10) в тождества. Таким образом, линейная квадратная система полностью доказана Формула С.10)

Определитель основной матрицы отлично С нуля, имеет единственное решение, определяемое по форме Мул Крамер C.14). Утверждение, которое мы доказали, еще легче установить По-новому. Для этого замените (как в §1§1) Система C.10) Эквивалентное матричное уравнение AX = B.

Где A — основная матрица системы C.11, X и B — столбцы, С.16) X = X2 В = Людмила Фирмаль

Первый определяется, а второй дается. Поскольку определитель матрицы A не равен нулю, Обратная матрица от A до r (см. Подраздел 7 из 2 в главе 1). Предположим, что решение для системы C.10) существует. Столбец X является тождеством матричного уравнения С.16). Умножьте указанный тождество слева на обратное Рица А

1 A’1 (AX) = A’1 B С.17)

Из-за сочетания характеристик трех продуктов, Матрица (см. Подраздел 2 главы 1 § 1) и соотношение A-1A = E, E Матрица идентичности (см. Раздел 7§2Ch. 1), A (AX) = (от A до rA) X = EX = = X, так что берите из С.17) Х = А до 1В. С.18) Расширяя уравнение C.18), принимая во внимание форму обратной матрицы 12), Получите выражение Крамера для элемента в столбце X.

Следовательно, решение матричного уравнения С.16) имеет вид Если он присутствует, он однозначно определяется соотношением С.18)), Атомная формула Крамера. Легко убедиться, что столбец X определен с помощью: Фактически, C.18) является решением матричного уравнения C.16). 2) гл. См. П. 7 § 2 формулы А.41) 1.

Другими словами, если вы подставите это уравнение, оно превратится в тождество. в Фактически, если столбец X определяется уравнением C.18), AX = = A (от A до 1B) = (AA-> B = EB = B. Следовательно, если определитель D матрицы A отличен от нуля (то есть Существует, если эта матрица невырождена) Единственное решение матричного уравнения С.16) Мои отношения C.18) эквивалентны формуле Крамера.

Пример. Найти решение квадратной системы линейных уравнений коленный xi + 2×2 + Zzh3 + 4zh4 = 30, -xx + 2×2-Зж3 + 4ж4 = 10, % 2-X3 + W4 = 3 X \ + X2 + Xs + X4 = 10 Ненулевой определитель главной матрицы L = 1 -1 0 1 2 2 1 1 3 -3 -1 1 4 4 1 1 = -4. с того времени 30 -1 3 1 10 1 3 4 3 4 -1 1 1 1 = -4, к = Az = 1 2 30 4 №1 2 10 4 0 13 1 1 1 10 1 = -12, L4 = 1 1 0 1 1 1 0 1 30 10 3 10 2 2 1 1 — — 3 -3 -1 1 3 3 1 1 4 4 1 1 30 10 3 10 = -16

Во-вторых, благодаря формуле Крамера, Формат системы: x1-1, x

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://epmat.ru/modul-algebra/urok-4-uravneniya-sistemy-uravnenij/

http://lfirmal.com/kvadratnaya-sistema-lineynyh-uravneniy-s-opredelitelem-osnovnoy-matricy-otlichnym-ot-nulya/