Что такое матрица системы линейных уравнений

Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы

В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.

Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.

Найти решение системы n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n

Матричный вид записи: А × X = B

где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.

X = x 1 x 2 ⋮ x n — столбец неизвестных,

B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.

Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :

A — 1 × A × X = A — 1 × B .

Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .

Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .

В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.

Пример решения системы линейных уравнений с помощью метода обратной матрицы

Решаем СЛАУ методом обратной матрицы:

2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2

  • Записываем систему в виде матричного уравнения А X = B , где

А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .

  • Выражаем из этого уравнения X :
  • Находим определитель матрицы А :

d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25

d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.

  • Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :

А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,

А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,

А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,

А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,

А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,

А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,

А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,

А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,

А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .

  • Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :

А * = — 6 7 5 17 1 — 10 — 10 — 5 0

  • Записываем обратную матрицу согласно формуле:

A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,

  • Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:

X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1

Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1

Матрицы и системы линейных уравнений

Содержание:

Матрицы и системы линейных уравнений. Матричная запись системы линейных уравнений

Одно из важных применений матриц связано с системами линейных уравнений. Рассмотрим систему

(1)

и соответствующие ей матрицы

Тогда систему (1) можно заменить единственным уравнением АХ = В.

Уравнение (2) называют матричной записью системы (1). Например, система

в матричной записи выглядит так:

Заметим, что матричную запись систем линейных уравнений применяли древнекитайские математики во в. до н.э., а в европейской науке она применяется с XIX

Обратная, вырожденная и невырожденная матрицы

Рассмотрим вопросы, связанные с умножением квадратных матриц порядка . Тогда произведение АВ имеет смысл для любых матриц А и В . Мы уже вводили понятие единичной матрицы

и говорили о том, что для любой квадратной матрицы А выполняется свойство АЕ = ЕА = А.

Известно, что любого числа существует обратное число , для которого .

Нечто подобное имеет место и для квадратных матриц, причем роль условия играет своеобразное условие невырожденности матрицы А.

Определение 1. Пусть А — квадратная матрица порядка . Квадратная матрица того же порядка называется обратной для А, если .

Для обратных матриц выполняется свойство: .

Заметим, что строки матрицы А — это арифметические векторы из , поэтому можно ставить вопрос об их линейной зависимости или независимости.

Определение 2. Квадратная матрица А называется невырожденной, если ее строки линейно независимы, и вырожденной в противном случае.

В лекции 1 мы указывали, что линейно независимая система векторов не может содержать нулевой вектор. Т.о., в невырожденной матрице не может быть нулевых строк. Над строками матрицы можно совершать элементарные преобразования:

1) переставлять строки;

2) вычеркивать нулевую строку;

3) умножать строку на число ;

4) прибавлять к одной из строк другую строку, умноженную на любое число. Заметим, что речь идет о тех же самых элементарных преобразованиях, которые используются в методе Гаусса, с той лишь разницей, что теперь это строки матрицы, а не уравнения системы.

Теорема 1. Если над строками невырожденной матрицы А проделать элементарные преобразования, то получим снова невырожденную матрицу.

Теорема 2. Для любой невырожденной матрицы А существует обратная матрица .

Метод Жордана-Гаусса решения матричных уравнений

Рассмотрим матричное уравнение

, (3)

где А и В — две данные матрицы, X — искомая матрица. Существенно, что А — квадратная матрица порядка . В частном случае, когда В = Е, искомая матрица X будет обратной к А , т.е.

Эффективным методом решения матричных уравнений (3) является метод полного исключения Жордана-Гаусса.

Метод Жордана-Гаусса. Пусть А — невырожденная матрица. Припишем к ней (например, справа) матрицу В и далее будем работать уже со «сдвоенной» матрицей:

Если, выполняя элементарные преобразования над строками этой матрицы, привести ее левую часть к единичной матрице , то правая часть приведется к искомой матрице X. Фактически, метод Жордана-Гаусса можно представить следующей схемой:

В частном случае, когда нужно найти обратную матрицу надо совершить переход:

.

Пример №26

Методом Жордана-Гаусса для матрицы

найти обратную матрицу

Решение:

Составим «сдвоенную» матрицу

С помощью элементарных преобразований приведем ее левую часть к единичной матрице :

Правее вертикальной черты получилась обратная матрица :

Замечание 1. При нахождении обратной матрицы методом Жордана-Гаусса возможны вычислительные ошибки. Поэтому желательно делать проверку:

.

Решение системы с помощью обратной матрицы

Рассмотрим произвольную систему линейных уравнений с неизвестными:

Запишем эту систему матричным уравнением АХ — В,

Теорема 3. Пусть квадратная матрица А является невырожденной. Тогда решением матричного уравнения АХ = В будет

.

Доказательство. Используя очевидные преобразования, получим

. Теорема доказана.

Замечание 2. Результат, полученный при доказательстве теоремы 3, часто называют методом обратной матрицы.

Пример №27

Решить систему методом обратной матрицы:

Решение:

Этой системе соответствуют матрицы:

Подобно тому, как это делалось в примере 1, найдем обратную матрицу к матрице А:

Используя теорему 3, получим

Итак, наша система имеет решение: . Проверкой убеждаемся в том, что оно правильное.

Эта лекция взята из раздела о предмете высшая математика, там вы найдёте другие лекци по всем темам высшей математики:

Высшая математика: полный курс лекций

Другие темы которые вам помогут понять высшую математику:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Система линейных алгебраических уравнений

В данной публикации мы рассмотрим определение системы линейных алгебраических уравнений (СЛАУ), как она выглядит, какие виды бывают, а также как ее представить в матричной форме, в том числе расширенной.

Определение системы линейных уравнений

Система линейных алгебраических уравнений (или сокращенно “СЛАУ”) – это система, которая в общем виде выглядит так:

Индексы коэффициентов ( aij ) формируются следующим образом:

  • i – номер линейного уравнения;
  • j – номер переменной, к которой относится коэффициент.

Решение СЛАУ – такие числа c1, c2,…, cn , при постановке которых вместо x1, x2,…, xn , все уравнения системы превратятся в тождества.

Виды СЛАУ

  1. Однородная – все свободные члены системы равны нулю ( b1 = b2 = … = bm = 0 ).

В зависимости от количества решений, СЛАУ может быть:

  1. Совместная – имеет хотя бы одно решение. При этом если оно единственное, система называется определенной, если решений несколько – неопределенной.

    СЛАУ выше является совместной, т.к. есть хотя бы одно решение: , y = 3 .
  2. Несовместная – система не имеет решений.

    Правые части уравнений одинаковые, а левые – нет. Таким образом, решений нет.

Матричная форма записи системы

СЛАУ можно представить в матричной форме:

  • A – матрица, которая образована коэффициентами при неизвестных:
  • X – столбец переменных:
  • B – столбец свободных членов:

Пример
Представим систему уравнений ниже в матричном виде:

Пользуясь формами выше, составляем основную матрицу с коэффициентами, столбцы с неизвестными и свободными членами.

Полная запись заданной системы уравнений в матричном виде:

Расширенная матрица СЛАУ

Если к матрице системы A добавить справа столбец свободных членов B , разделив данные вертикальной чертой, то получится расширенная матрица СЛАУ.

Для примера выше получается так:

– обозначение расширенной матрицы.


источники:

http://natalibrilenova.ru/matritsyi-i-sistemyi-linejnyih-uravnenij/

http://microexcel.ru/slau/