Что такое наибольший отрицательный корень уравнения

Найдите наибольший отрицательный корень уравнения

Найдите наибольший отрицательный корень уравнения:

Решением уравнения cosx=a являются два корня:

Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.

Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.

Общая рекомендация для всех подобных задач: для начала берите диапазон n от –2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: –3 и 3, –4 и 4 и так далее. Вычисляем:

При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5

При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5

При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5

При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5

При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5

Получили, что наибольший отрицательный корень равен –1,5

Найдите наименьший положительный корень уравнения:

Решением уравнения sin x = a являются два корня:

Либо (он объединяет оба указанные выше):

Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от –90 о до 90 о синус которого равен a.

Значит
Выразим x (умножим на 4 и разделим на Пи):

Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n получим отрицательные корни. Поэтому будем подставлять n=0,1,2 …

При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4

При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6

При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12

Проверим при n=–1 х=(–1) –1 + 4∙(–1) + 3 = –2

Значит наименьший положительный корень равен 4.

Найдите наименьший положительный корень уравнения:

Решением уравнения tg x = a является корень:

Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.

Значит

Выразим x (умножим на 6 и разделим на Пи):

Найдём наименьший положительный корень. Подставим значения n=0,1,2,3 … Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:

Таким образом, наименьший положительный корень равен 0,25.

Тригонометрические уравнения

Тригонометрические уравнения. В составе экзамена по математике в первой части имеется задание связанное с решением уравнения — это простые уравнения, которые решаются за минуты, многие типы можно решить устно. Включают в себя: линейные, квадратные, рациональные, иррациональные, показательные, логарифмические и тригонометрические уравнения.

В этой статье мы рассмотрим тригонометрические уравнения. Их решение отличается и по объёму вычисления и по сложности от остальных задач этой части. Не пугайтесь, под словом «сложность», имеется виду их относительную сложность по сравнению с другими заданиями.

Кроме нахождения самих корней уравнения, необходимо определить наибольший отрицательный, либо наименьший положительный корень. Вероятность того, что вам на экзамене попадёт тригонометрическое уравнение, конечно же, мала.

Их в данной части ЕГЭ менее 7%. Но это не означает, что их нужно оставить без внимания. В части С тоже необходимо решить тригонометрическое уравнение, поэтому хорошо разобраться с методикой решения и понимать теорию просто необходимо.

Понимание раздела «Тригонометрия» в математике во многом определяет ваш успех при решении многих задач. Напоминаю, что ответом является целое число или конечная десятичная дробь. После того, как получите корни уравнения, ОБЯЗАТЕЛЬНО сделайте проверку. Много времени это не займёт, а вас избавит от ошибки.

В будущем мы также рассмотрим и другие уравнения, не пропустите! Вспомним формулы корней тригонометрических уравнений, их необходимо знать:

Знание этих значений необходимо, это «азбука», без которой невозможно будет справиться с множеством заданий. Отлично, если память хорошая, вы легко выучили и запомнили эти значения. Что делать, если этого сделать не получается, в голове путаница, да просто вы именно при сдаче экзамена сбились. Обидно будет потерять бал из-за того, что вы запишите при расчётах неверное значение.

Алгоритм восстановления этих значений прост, он также приведён в теории, полученной вами во втором письме после подписки на рассылку. Если ещё не подписались, сделайте это! В будущем также рассмотрим, как эти значения можно определить по тригонометрической окружности. Не даром её называют «Золотое сердце тригонометрии».

Сразу поясню, во избежание путаницы, что в рассматриваемых ниже уравнениях даны определения арксинуса, арккосинуса, арктангенса с использованием угла х для соответствующих уравнений: cosx=a, sinx=a, tgx=a, где х может быть и выражением. В примерах ниже у нас аргумент задан именно выражением.

Итак, рассмотрим следующие задачи:

Найдите корень уравнения:

В ответе запишите наибольший отрицательный корень.

Решением уравнения cos x = a являются два корня:

Определение: Пусть число a по модулю не превосходит единицы. Арккосинусом числа a называется угол x, лежащий в пределах от 0 до Пи, косинус которого равен a.

Найдём наибольший отрицательный корень. Как это сделать? Подставим различные значения n в полученные корни, вычислим и выберем наибольший отрицательный.

Общая рекомендация для всех подобных задач: для начала берите диапазон n от – 2 до 2. Если требуемое значение выявить не удалось, подставляем следующие значения x: – 3 и 3, – 4 и 4 и так далее.

При n = – 2 х1= 3 (– 2) – 4,5 = – 10,5 х2= 3 (– 2) – 5,5 = – 11,5

При n = – 1 х1= 3 (– 1) – 4,5 = – 7,5 х2= 3 (– 1) – 5,5 = – 8,5

При n = 0 х1= 3∙0 – 4,5 = – 4,5 х2= 3∙0 – 5,5 = – 5,5

При n = 1 х1= 3∙1 – 4,5 = – 1,5 х2= 3∙1 – 5,5 = – 2,5

При n = 2 х1= 3∙2 – 4,5 = 1,5 х2= 3∙2 – 5,5 = 0,5

Получили, что наибольший отрицательный корень равен –1,5

В ответе напишите наименьший положительный корень.

Решением уравнения sin x = a являются два корня:

Либо (он объединяет оба указанные выше):

Определение: Пусть число a по модулю не превосходит единицы. Арксинусом числа a называется угол x, лежащий в пределах от – 90 о до 90 о синус которого равен a.

Выразим x (умножим обе части уравнения на 4 и разделим на Пи):

Найдём наименьший положительный корень. Здесь сразу видно, что при подстановке отрицательных значений n мы получим отрицательные корни. Поэтому будем подставлять n = 0,1,2 …

При n = 0 х = (– 1) 0 + 4∙0 + 3 = 4

При n = 1 х = (– 1) 1 + 4∙1 + 3 = 6

При n = 2 х = (– 1) 2 + 4∙2 + 3 = 12

Проверим при n = –1 х = (–1) –1 + 4∙(–1) + 3 = –2

Значит наименьший положительный корень равен 4.

В ответе напишите наименьший положительный корень.

Решением уравнения tg x = a является корень:

Определение: Арктангенсом числа a (a – любое число) называется угол x принадлежащий интервалу – 90 о до 90 о , тангенс которого равен a.

Выразим x (умножим обе части уравнения на 6 и разделим на Пи):

Найдём наименьший положительный корень. Подставим значения n = 1,2,3. Отрицательные значения подставлять нет смысла, так как видно, что получим отрицательные корни:

Таким образом, наименьший положительный корень равен 0,25.

Определение котангенса: Арккотангенсом числа a (a – любое число) называется угол x принадлежащий интервалу (0;П), котангенс которого равен a.

Здесь хочу добавить, что в уравнениях в правой части может стоять отрицательное число, то есть тригонометрическая функция от аргумента может иметь отрицательное значение. Если в ходе решения вы не сможете определить угол, например, для

то данные формулы вам помогут:

Спасибо за внимание, учитесь с удовольствием!

Что такое квадратный корень

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:
√a = x
x 2 = a
x ≥ 0
a ≥ 0

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из √-16

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Если — 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным.

Здесь могут возникнуть резонные вопросы, почему, например, в примере x 2 = 16, x = 4 и x = -4.

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

  • x 2 = 16 не равно x = √16.

Это два нетождественных друг другу выражения.

  • x 2 = 16 — это квадратное уравнение.
  • x = √ 16 — арифметический квадратный корень.

Из выражения x 2 = 16 следует, что:

  • |x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения x = √16 следует, что x = 4.

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

  1. Пример решен неверно
  2. Это квадратное уравнение.

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения:

Первое выражение — квадратное уравнение.

Второе выражение — арифметический квадратный корень.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: x 2 = 2.

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит.

Переберем числа, чтобы удостовериться в этом:

1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Решение следующее:
Строим график функции y = x 2 .
Отмечаем решения на графике: -√2; √2.

Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: √2 = 1,414213… .

В таком виде ответ не записывают — нужно оставить квадратный корень.
x 2 = 2.
x = √2
x = -√2.

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Таблица квадратов

Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

  • 1. Извлеките квадратный корень: √289

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Влево — 1, вверх — 7.

  • 2. Извлеките квадратный корень: √3025

Ищем в таблице число 3025.
Влево — 5, вверх — 5.

  • 3. Извлеките квадратный корень: √7396

Ищем в таблице число 7396.

Влево — 8, вверх — 6.

  • 4. Извлеките корень: √9025

Ищем в таблице число 9025.

Влево — 9, вверх — 5.

  • 5. Извлеките корень √1600

Ищем в таблице число 1600.

Влево — 4, вверх — 0.

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

  • Корень произведения равен произведению корней
  • Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя
  • Чтобы возвести корень в степень, нужно возвести в степень значение под корнем

Давайте потренируемся и порешаем примеры на все три операции с корнями. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Примеры:

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

  1. Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:

Деление арифметических корней

Для деления арифметических корней используйте формулу:

Примеры:

Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49

  • Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

    Возведение арифметических корней в степень

    Для возведения арифметического корня в степень используйте формулу:

    Примеры:

    Эти две формулы нужно запомнить:

    • (√a) 2 = a
    • √a 2 = |a|

    Повторите свойства степеней или запишитесь на курсы по математике, чтобы без труда решать такие примеры.

    Внесение множителя под знак корня

    Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

    А теперь давайте разберемся, как вносить множитель под знак корня.

    Дано выражение: 7√9

    Число семь умножено на квадратный корень из числа девять.

    Извлечем квадратный корень и умножим его на 7.

    В данном выражение число 7 — множитель. Давайте внесем его под знак корня.

    Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

    Вы помните, что (√a) 2 = a

    Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же.

    7√9 = √7 2 * 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.

    Формула внесения множителя под знак корня:

    Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

    Вынесение множителя из-под знака корня

    С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

    Дано выражение в виде квадратного корня из произведения.

    Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

    Извлекаем корень из всех имеющихся множителей.

    В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:

    Таким образом множитель выносится из-под знака корня.

    Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

    Раскладываем подкоренное выражение на множители 28 = 7*4.

    Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.


  • Ответ: по правилу извлечения квадратного корня из произведения,

    Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.
  • Вынесите множитель из-под знака корня в выражении: √24

    Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.

  • Упростите выражение:

    Вынесем в двух последних выражения множитель из-под знака корня.

    Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.

    Мы видим, что во всем выражении есть один общий множитель — √5.
    Выносим общий множитель за скобки:

    Далее вычисляем все, что в скобках:
  • Сравнение квадратных корней

    Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

    Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

    Если:

    Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

      Сравните два выражения: √50 и 9√5

    Ответ: преобразовываем выражение 9√5.

    9√5 = √81 * √5 = √81*5 = √405

    Это значит, что 6√5 > √18.

    Сравните два выражения: 7√12 и √20

    Ответ: преобразовываем выражение 7√12.

    7√12 = √49 * √12 = √49*12 = √588

    Это значит, что 7√12 > √20.

    Как видите, ничего сложного в сравнении арифметических квадратных корней нет.

    Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

    Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

    Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее.

    Таких калькуляторов в интернете много, вот один из них.

    Извлечение квадратного корня из большого числа

    Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

    Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.

    Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

    1. Определить «сотни», между которыми оно стоит.
    2. Определить «десятки», между которыми оно стоит.
    3. Определить последнюю цифру в этом числе.

    Извлечь корень из большого числа можно разными способами — вот один из них.

    Извлечем корень из √2116.

    Наша задача в том, чтобы определить между какими десятками стоит число 2116.

    Мы видим что, 2116 больше 1600, но меньше 2500.

    Это значит, что число 2116 находится между 40 2 и 50 2 .

    41, 42, 43, 44, 45, 46, 47, 48, 49.

    Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

    Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.

    Как пользоваться таблицей

    4 2 = 16 ⇒ 6

    5 2 = 25 ⇒ 5

    6 2 = 36 ⇒ 6

    7 2 = 49 ⇒ 9

    8 2 = 64 ⇒ 4

    9 2 = 81 ⇒ 1

    Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

    Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

    Число 43, возведенное в квадрат, даст число, на конце которого — 9.

    Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

    Таким образом, у нас остаются два варианта: 44 2 и 46 2 .

    Далее вычисляем: 44 * 44 = 1936.

    Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат.

    Еще пример. Извлечем корень из числа √11664

    Разложим число 11664 на множители:

    Запишем выражение в следующем виде:

    Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

    Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.

    • 1. Вычислите значение квадратного корня: √36
    • 2. Вычислите значение квадратного корня: √64*36
    • 3. Вычислите значение квадратного корня:
    • 4. Вычислите значение квадратного корня:
    • 5. Вычислите значение квадратного корня:
    • 6. Вычислите значение выражения: 4√16 — 12
    • 7. Вычислите значение выражения: 5√9 — 8
    • 8. Вычислите значение выражения: 7√25 — 10
    • 9. Вычислите значение квадратного корня:
    • 10. Вычислите значение квадратного уравнения:
    • 11. Вычислите значение квадратного уравнения:
    • 12. Извлеките квадратный корень из числа √7056 удобным вам способом
      Как решаем:

    • 13. Вычислите значение квадратного корня √0,81
      Ответ: √0,81 = 0,9
    • 14. Вычислите значение квадратного корня:
      Как решаем: = 0,09
    • 15. Вычислите значение выражения: 8√81 — 20
      Как решаем: 8√81 — 20 = 8 * 9 — 20 = 72 — 20 = 52
      Ответ: 8√81 — 20 = 52.
    • 16. Вычислите значение выражения: 13√100 — 15
      Как решаем: 13√100 — 15 = 13 * 10 — 15 = 130 — 15 = 115
      Ответ: 13√100 — 15 = 115.
    • 17. Вычислите значение выражения: √16 + 5√4
      Как решаем: √16 + 5√4 = 4 + 5 * 4 = 4 + 20 = 24 Ответ: √16 + 5√4 = 24.
    • 18. Вычислите значение выражения: √36 + 2√9
      Как решаем: √36 + 2√9 = 6 + 2 * 3 = 6 + 6 = 12
      Ответ: √36 + 2√9 = 12.
    • 19. Вычислите значение выражения: 2√16 — 3√25
      Как решаем: 2√16 — 3√25 = 2 * 4 — 3 * 5 = 8 — 15 = -7
      Ответ: 2√16 — 3√25 = -7.
    • 20. Вычислите значение выражения: 3√81 — 5√9
      Как решаем: 3√81 — 5√9 = 3*9 — 5 * 3 = 27 — 15 = 12
      Ответ: 3√81 — 5√9 = 12.
    • 21. Вынесите множитель из-под знака корень: √60
      Как решаем: √60 = √15 * √4 = 2√15
      Ответ: √60 = 2√15.
    • 22. Вынесите множитель из-под знака корень: √160
      Как решаем: √160 = √16 * √10 = 4√10
      Ответ: √160 = 4√10.
    • 23. Внесите множитель под знак корня: 6√7
      Как решаем: √6 2 * 7 = √36 * √7 = √252
      Ответ: 6√7 = √252.
    • 24. Внесите множитель под знак корня: 8√2
      Как решаем: 8√2 = √8 2 * 2 = √64 * √2 = √128 Ответ: 8√2 = √128.
    • 25. Внесите множитель под знак корня: 9√5

      Как решаем: 9√5 = √9 2 * 5 = √81 * √5 = √405
      Ответ: 9√5 = √405.

    • 26. Упростите выражение: (5 — √2) 2
      Как решаем: (5 — √2) 2 = 5 2 — 2 * 5 * √2 + (√2) 2 = 25 — 10√2 + 2 = 27 — 10√2.
      Ответ: (5 — √2) 2 = 27 — 10√2.
    • 27. Вычислите значение выражения: 3√49 — 3√25
      Как решаем: 3√49 — 3√25 = 3 * 7 — 3 * 5 = 21 — 15 = 6
      Ответ: 3√49 — 3√25 = 6.
    • 28. Вычислите значение квадратного корня: √484 * √576
      Как решаем: √484 * √576 = 22 * 24 = 528
      Ответ: √484 * √576 = 528.
    • 29. Вычислите значение квадратного корня: √625 * √81
      Как решаем: √625 * √81 = 25 * 9 = 225
      Ответ: √625 * √81 = 225.
    • 30. Найдите значение выражения: 3√100 — √144
      Как решаем: 3100 — 144 = 3 * 10 — 12 = 18
      Ответ: 3√100 — √144 = 18.

      0 0 0 0 0 0

    109004, Москва, ул. Александра Солженицына, 23а, строение 1, подъезд 10


    источники:

    http://matematikalegko.ru/uravnenia/trigonometricheskie-uravneniya.html

    http://skysmart.ru/articles/mathematic/chto-takoe-kvadratnyj-koren